Protection of valuable goods, products and brands has always been a key requirement of modern markets. The rapidly developing field of nanotechnologies, the recent advances in relatively cheap multimedia devices providing high resolution scanning, printing and high volume storage as well as the use of digital technologies, networks and computers recently revealed unprecedented security threats, counterfeiting and unauthorized distribution leading to an strong need for efficient solutions for products and goods authentication. Authentication is defined as the process of verification of added specific overt, covert or forensic features added to the product, package, label or of the identification of a component within a product or package that may verify the product or packaging as genuine. The solution to the problem of product protection against counterfeiting is highly dependent on the clear definition of risk factors incurred by the company or brand as well as by the end-users. Among the major risk factors, the most important are threats related to the counterfeiting of products, refillment of original packaging, goods tampering, illegal trading, production of look-like products, illegal franchising or any mixture of the above ones.
The above threats have very important impact on both consumers and legitimate manufacturers regarding mostly: (a) health, safety, financial or legal damages as well as abuse of consumers rights because of non-genuine products in any form of consumption, (b) reputation of manufacturer and loss of confidence of consumers with respect to the corresponding product or even brand in general, that result in the loss of sales and damage to business, (c) direct loss of sales and even of a part of market due to the presence on the market of competitive non-genuine products.
The problem of product authentication is mainly complicated due to existing schemes of international economy and distributed manufacturing and is determined in part by the chain of manufacturer-distributor-reseller-consumer. The main factors that complicate the efficient solution of product protection are:
(a) international or multiregional character of the above chain, i.e., the products produced in one county or region can be consumed in another one;
(b) sophisticated and non-uniform rules and laws of different countries;
(c) no possibility of efficient centralized control of the chain manufacturer-distributor-reseller-consumer. Essentially it concerns the difficulty of regular and mass inspection of goods in selling points by the inspections bodies trusted by the manufacturer due to the above mentioned reasons of non-uniform laws, logistics of product distribution, storage and sell as well as economic attractiveness;
(d) the protection schemes and authentication devices are often based on proprietary (in the sense of non-cryptographic) principles that results in the difficulty of their broad distribution, in quite high price and finally in limited availability to every selling point where the consumer ought to be able to verify the product;
(e) the absence of direct control of the product manufacturer over all international resellers. Once the reseller obtains a license from the manufacturer or distributor to sell N items of some product or brand, he/she can try to sell at the same time K non-genuine items of the above product or brand under the cover of the obtained license. In many cases, the end-consumer is unable to distinguish the counterfeited product or replica from the genuine, since the quality of replicas and level of counterfeiting was considerably increased during last years. Moreover, in most recent cases, the equipment of replica producers is either at the same level or even of the same origin as the original manufacturer's. In some cases, the components of goods and products of replica manufacturers have the same origin as those of original one and even sophisticated expert analysis meets difficulties in distinguishing between original and its replica. We will refer to such replica manufacturers as gray ones;
(f) even if the authentication devices are available at the selling points or pay desks, it is very likely that they will be damaged or their normal functioning will be sabotaged or the even fact of such an authentication might be hidden from the consumer by reselling personnel due to the above reasons;
(g) on the technical side of the authentication scheme and device design it should also be unfortunately acknowledged that no a single security feature can be considered completely resistant to all criminal attacks. Given enough time, money and efforts, almost any feature could be reproduced. This again recalls the need to use practically approved cryptographic principles potentially combined with multiple features and multifunctional security devices;
(h) the authentication devices designed to detect the security features are often quite expensive for the end-consumers, the procedure of authentication is quite complex and timely, the proprietary nature of security features restricts at the same time the broad distribution of such devices, finally the stand-alone functional aim of the authentication device, i.e., the fact that it can only be used for the authentication of a given product, is not very attractive for the majority of consumers who do not often buy a given product thus do not need to keep such a device nearby;
(i) finally, authentication devices are not sufficient by themselves without appropriate protocols and broad public popularization of such a possibility or even additional consumer motivation to perform the authentication check.
Thus, there is a great need in efficient protocols, methods and tools to prevent counterfeiting and to motivate consumers to only use genuine products. This problem is still open and very challenging due to the above reasons. At the same time, the protection should be cheap and well suited to the manufacturing process in both mass-market and luxury segments. Simultaneously, it should be available to every consumer disregarding the country or region, time and place and should not require any special devices based on proprietary technology. Contrarily, it is highly desirable to design such a technology that can be based on public devices that are also at the disposal of most potential consumers and are independent of sellers or distributors. All these conflicting requirements should be simultaneously satisfied. It is not always the case and a compromise solution should be proposed.
Therefore, we consider an alternative cryptographic-based approach modifying the basic principles of common authentication protocols. Further, on-line product authentication based on technical capabilities of portable devices available to the majority can represent a reasonable trade-off for many practical scenarios described above. Finally, to cope with the cryptographic-based principles it is beneficial not to rely on security features that are based on physical properties of materials that are either known to a small number of professionals or are difficult to replicate. In any case, the above-described factors (i.e., mostly every feature can be counterfeited with sufficient time and money, these devices/security features are expensive in both manufacturing and verification and not available to everyone, the public presence of verification devices is not desirable or justifiable for various above reasons) restrict their broad practical usage.
Therefore, it is highly desirable to construct such a protocol, where using on the products or packaging simple features that might even be insecure in nature and the devices available to everyone, potentially even without any special security equipment or software inside, to enable real time, cheap and reliable authentication of products and brands in any place and time with the elements of consumer stimulation of performing this action by proposing the various bonuses, prizes, stimulating cost reductions for the bought products or the services used in the authentication protocol.
To be fully compliant with the above requirements of the availability of authentication services to every consumer at any time, it is beneficial to consider the protocol based on portable devices. US Patent No 2003/0136837, filed Jun. 22, 2001 and published Jul. 24, 2003 [1] discloses a method and a system for the local and remote authentication of an item, in particular a security document, with the help of an authenticating device, comprised in, connected to, or linked to mobile communication equipment. The described item carries a marking exhibiting a characteristic physical behavior in response to interrogating energy, such as electromagnetic radiation and/or electric or magnetic fields. The idea behind usage of markers with the characteristic physical behavior that can be coded or not and are difficult to obtain or to produce is to confer the item resistance against counterfeiting. The authentication device should be equipped by a corresponding sensor that can perform the verification either locally, i.e., directly on the portable device, or remotely using on-line access to the remote server. In the case of local verification, the corresponding software and/or database should be either installed on a Java card or uploaded prior to the verification. Although, the basic idea is compliant with the above requirements, the described method of product authentication has some open issues. First, the portable device should be equipped with a special sensor capable to communicate with the above anti-copying security materials. This raises two serious concerns. The first one is related to the fact that the sensors should be mass-scale integrated into the portable devices of various manufacturers; this might raise various practical difficulties regarding standardization, price of portable devices, energy consumption, weight, and consumer's reluctance to have some not often used features in their equipment. Secondly, to perform the authentication according to the described local protocol one has either to download the corresponding software or to use specially prepared security cards. In most cases, the software installation on portable devices by ordinary consumers is not likely due to the infrequent need in product authentication. Moreover, there is an important diversity of portable devices, of their operating systems, programming and software. This makes the process of developing verification software quite complex, expensive and slow with respect to new updates. Additionally, consumers with frequent need in authentication will more likely prefer secure smart cards based solutions on their mobile devices. However, even in this case the device should have regular access to a database for updates of the new products. Moreover, the disclosed protocol does not address the important issue of the database update according to the information about performed product requests or the fact of product consumption. A serious threat is the duplication of the product IDs once the proprietary information carried by the physical material is discovered or decoded. This task is also facilitated for the counterfeiter by the availability of sensors in public portable devices.
An idea similar in spirit was disclosed in Patents No 2002/0146146 [2] and No 2005/0213790 [3], using either portable devices equipped with optical cameras or computers connected to the web-cameras capable to capture digital watermarks and connected via internet with the product ID database, where the watermark is considered to be a security feature difficult to copy. Although, Patent 2002/0146146 enables the connection with the product ID database, the need of stationary web-camera and regular Internet connection seriously restricts the usage of the disclosed invention. According to the second patent [3], one can benefit from wireless communications using portable devices in the protocol requiring the interaction between the product and database. Therefore, one can envision potential combination of techniques claimed in these two patents to achieve the desirable goal similarly to [1] with the only difference of using digital watermarks instead of secure physical materials. However, even in this case the above-mentioned shortcomings of the proposed protocol are not completely resolved. In particular, one is facing the same problem with the software installation to perform authentication and the issue with the database update with respect to the requested product information. Moreover, the main security load is put on the digital watermark instead of on materials with the special physical properties. It is assumed that the watermark cannot be reproduced from the printed data. However, it was demonstrated that most of spread spectrum-based digital watermarking techniques are vulnerable to the so-called copy attack [4]. The main idea behind the copy attack is a possibility to predict the watermark from an image (even without the knowledge of the used secret key), enhance it and copy to another product image or logo. New recent studies additionally revealed that quantization-based data-hiding techniques are even more vulnerable to such kind of attacks since they are characterized by higher security leakages [5, 6]. Moreover, the sensitivity attack can be efficiently used to reveal the secret information with the available detector/decoder, which is the case for the considered application, and then the copy attack can be successfully applied [7, 8]. Therefore, it is highly unlikely that solely current digital watermarking technology can resolve the issue of reliable document authentication.
It should also be pointed out that once the security features of physical materials are disclosed, one could reproduce the product, packaging or label in any desired quantity. This threat can be over passed providing the possibility to a consumer to consult the database according to the described protocols and obtain the confirmative or negative answer concerning product authenticity.
A similar idea is also described in RU Patent number RU 2181503, filed Jul. 30, 2001 and published Apr. 20, 2002 [9] where the index generated from a random numbers generator is assigned to every product that is stored in the database and printed on the product, packaging or label. Additionally, the telephone number or Internet address are indicated on the product or label. An opaque erasable film covers the index. After purchase the consumer removes the opaque layer and sends the index to the control service. The product authenticity is decided based on the comparison of the communicated index and the index stored in the database. A similar idea with coded information in the form of barcodes is described in the RU patent No RU 2132569, filled Nov. 11, 1998 and published Jun. 27, 1999 [10]. The described way of product ID communication to the server in the case of telephone call described in [9] consists in establishing the communication with the database via phone call and dialing the product ID after opaque film removal during the call. The result of the verification of the dialed number with the database is pronounced to the caller. Thus, the number is introduced manually only after removing opaque film, i.e., after damaging the integrity of the product, and the spelled confirmation is not stored by the consumer. Moreover, the database is not updated according to the request and the caller information is not registered and stored (for various security and promotion reasons that will be disclosed below). This interaction protocol represents a number of serious security concerns regarding the protocol in general as well as the way a particular product index is communicated. First, once the product ID is disclosed for any reason it is publicly available and nothing prevents counterfeiters to copy on the other products covering it with the opaque film. Every authentication request generated based on the faked product that is sent to the indicated telephone number or Internet address would then confirmative. Secondly, the product can only be authenticated after purchase, which complicates the procedure of the product return, replacement or even compensation. Moreover, the consumer has no confirmation that he has checked the claimed product from a given mobile device since he/she does not receive any sort of certificate message or proof. Thirdly, since some products are manufactured in quantities in the order of millions, the product index can be quite lengthy for the manual input/communication. This raises two serious concerns: the motivation of consumer to input such lengthy indices especially in cases when several items are bought will be low, and the probability that the typed/dialed index be correctly retyped from the product or packaging is not 100%. It should be pointed out that no form of coding was assumed to tackle with these issues.
The invention described here concerns both a method and an apparatus for the protection of products and packaging against counterfeiting using a dedicated authentication protocol coupled with portable devices. In this disclosure, the product identification number (PIN) is generated by the product manufacturer, stored in the product database and added to product, packaging or label in open and/or hidden form. The open part is directly available to the consumer before the purchase, opening or consumption of the product or package or the damaging of its integrity while the hidden part can be revealed after. The hidden information can also be disappearing after a defined interval of time or number of trials or usages. Both parts are communicated to an authentication server in the defined order to verify the product or package authenticity. The fact of presence, absence, or multiple requests for the same PIN, confirms or rejects product authenticity and allows detect attempts to attack the system or to use counterfeited products.
Therefore the major advantages of the proposed invention can be summarized as follows:
1) The request for the product authentication is performed from a portable device (mobile phone, PDA, Palm, Pocket PC, Smartphone, or any other equipment with communications and computing facilities) before and after product purchase based on open and/or hidden parts of a PIN with the registration of the authentication request data (phone number, IP address, email, time as well as PIN open and hidden parts) in the request database. This avoids the possibility of reusing the disclosed PIN for faked products or packaging. Requests based on the open part of the PIN can be performed before the pay desk thus preserving product integrity and avoiding any complication in the case of non-confirmative reply, or if the consumer has finally decided not to buy the product.sctn. The authentication based on the hidden PIN part can be performed after product purchase and will inform the database about the fact that the product has been bought or used.
2) Contrarily to approaches for anti-copying protection based on materials with special physical properties or digital watermarks caring information about the PIN, no such properties are required in the proposed invention due to the above protocol of requesting PIN registration in the special database. At the same time, no proprietary information is required and the protocol is solely based on cryptographic principles.
3) Due to the inherently passive nature of physical materials or watermarks, which can be scanned from the package or product multiple times, we appositively propose to use “active” materials or means to encode the PIN, which can reveal the encoded or stored information only certain predefined number of times thus avoiding the re-usage of the product or packaging for various counterfeiting purposes. It can be also considered that either materials/means are losing their properties after revealing or disclosing information or are self-destructive under certain conditions. Additionally, it can be considered that the devices can reproduce the signal only certain number of times due to the limited life-time of built in power source or discharge of the capacitor or any corresponding means.
4) Contrarily to the previous inventions where the information about the PIN should be acquired using either special sensors (case of physical materials) or corresponding digital cameras with high resolution and low level of geometrical aberration and linear contrast (anti-copying digital watermarks) or dialed/typed from a portable device with potential errors that might cause wrong authentication result, we propose to use ordinary portable communication devices equipped either with microphone, habitual input means for alphanumeric information or low-resolution cameras that one can find in the majority of currently available mobile phones or PDAs. The enhancement of performance and reduced requirements to the acquisition equipment in our case (it might be manual by means of a keyboard, oral using an internal microphone or performed by a camera with consecutive optical character recognition (OCR)) are due to the use of encoded alphanumeric symbolism using error correction codes. Another advantage comes from the usage of encoded audio signals reproduced by various means in front of the microphone of the portable device as well as from the combination of visual or audio encoded information considered to be the host data with digital watermarks. All these allow faster data input, reliable communication of essentially longer amount of information, higher security with respect to the regeneration of PINs by exhaustive search attacks as well as more natural and attractive form of interaction between the product and portable devices via habitual communications channels. At the same time, the devices, which are not equipped by the cameras, or even traditional fixed phone network communications can be used by the consumers, who for some reason do not possess the portable devices at the moment of authentication.
5) By registering the device identifier from which the authentication request is performed, one obtains the advantage of controlling and preventing attempts to attack the system at the product and/or server levels, track the information about the requests performed based on the open and hidden PINs thus providing system confirmation about the initial and final product checking, opening or consumption. By registering the number of successful checks of different product items from a given portable device, one can award the device holder with special product price reductions, sales, participation in the various lotteries or granting the portable device owner some extra free services, e.g., some extra free call time or messaging or other possibilities to motivate the authentication demands.
6) Contrarily to the previously considered state-of-the-art approaches, we also propose to send the consumer the authentication report in the form of encoded and/or encrypted information (text message, audio signal, encoded symbologies including barcodes or text, image or audio with some hidden information), containing information about requesting device, PINs and time/date stamp, for various confirmation purposes for both the consumer and manufacturer in order to enhance the protection of both parties against counterfeiting attacks at various protocol levels.
7) The proposed approach does not require any special software installation or device reconfiguration for switching from its normal operating mode to the authentication one and can be performed on essentially any device using standardized communication protocols. In the case of authorized auditors performing authentication verification, the proposed technique is easily applicable either on solely portable devices without the need to contact any authentication server in general or just sending the result of preliminary data processing or extraction via standardized communication protocol.
The present invention principally targets any goods, physical objects or materials, needed to be protected against counterfeiting. The invention can be applied to (but is not limited to) the following applications: anti-counterfeiting, brand protection, tracking, tracing, quality and integrity control, market study, product promotion and lotteries. Targeted products and goods include (but are not limited to) various luxury goods (watches, jewelry, cigarettes, alcohol, closing and footwear etc.), pharmaceutical products, consumer or household products, various electronic and mechanic equipment or some of their components, as well as labels, tags, packaging, boxes, shipping invoices and various printed documents associated with the product that are used for the product authentication or certification. The authentication information can be reproduced by various printing technologies such as ink jet, solid-ink, laser-, intaglio-, letterpress-, offset-, screen-, gravure-flexo-graphic printing or coating techniques. The audio information coded or random can be reproduced by various transducers that convert electrical energy to audible vibrations, mechanical, electromechanical, piezoelectric or magnetic buzzers, tweeters, dynamic speakers, piezo-elements without oscillator (implemented in CMOS and TTL logic, GPIO pin toggled in an audio rate) or direct digital synthesizer, non-uniform coded surfaces producing sounds using various on/off, amplitude, phase or frequency modulation or combination of them. Portable devices can be any user device equipped by some computational facility with sufficient memory and data storage and/or communications facilities enabling communications with the authentication server as well as equipped with the sensors such as microphone, optical camera operating in the visible spectrum and potentially working in IR/UV mode, barcode reader, character scanner in the form of any hand-held device, RFID reader, and other peripheral input/output devices (key board, voice dial, touch screen and tablet, stroke counting, pressure sensitive digitizer, tactile input, kinesthetic input).
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings.
The invention proposes a novel brand protection protocol based on portable devices that might be applied to various kinds of goods and products and targets verification of their authenticity. The authentication verification is performed based on the two kinds of secure information, two parts of a PIN, uniquely identifying the product, i.e., open and hidden parts of PIN stored on the product surface, packaging, label etc. and reproduced either by analog or digital printing, laser engraving or audio reproduction devices using audio modulation of speech, vibro, piezoelectric sounds or any other suitable principles of sound generation. The hidden part of the code might be encoded and encrypted in order to enhance the security of the proposed protocol. Accordingly to the structure of the authentication information, the authenticity verification undergoes two main stages referred to as inside shopping area verification and outside shopping area verification. At the inside shopping area verification stage the open part of the security code is directly retrieved from a storage location by any input means available on the portable device (keyboard, microphone, video camera, etc.) and will be compared on the authentication server to the corresponding data stored in the database. There are three kinds of databases involved in the protocol, a database of open parts of secure codes, a database of hidden parts of secure codes and a database of user requests. The databases of secure information have such a structure that every field in a database of the open secure codes has a unique correspondent in the database of hidden secure PINs and vice-versa.
System Architecture
Depending on the particular implementation of the protocol, three scenarios of authenticity verification are possible (
Generalized Authentication Protocol
In the general case, the authentication procedure can be considered according to the protocol presented in
Pin Enrollment, Acquisition and Verification
Depending on the authentication information storage and acquisition, there exist several possible scenarios of PIN data enrollment proposed in the present authentication protocol. We consider a common protocol for both open and hidden parts of the PIN. We assume that the PIN can be communicated either directly from the product to the acquisition device. The possible ways of communication include but are not limited to: communication in the form that can be perceived using visual or audio modalities or using special inks or frequencies, and indirect secure part that is communicated via special steganographic protocol using tools of digital watermarking that can include images (natural, synthetic, bar codes, etc.), text or audio signals.
For example according to
In the second foreseen way of authentication information enrollment, the audio channel is exploited. In this case, the information is used to modulate an audio signal produced using spelling based on the visual data yP, mechanical, vibro, piezoelectric or any other appropriate principles of sound generation mentioned in the previous part of the invention. The PIN is stored on a storage and reproduction device attached to the product or its package. Modulation might be performed in an insecure way as well as using corresponding encryption and encoding based on the random coding principle [13].
At the outside restricted shopping area verification stage the stored information is directly acquired from the product, package, label, etc. by removing a protection cover or layer, opening a product package, de-attaching a removable part of a product label, or reproducing a sound and is acquired by existing acquisition/input means integrated into a consumer portable device (like digital camera, keyboard, microphone or any other available means).
The acquired information in the form of a typed text, digital photo in one of available graphic formats or audio sequence is used to generate a request transferred to the authentication server.
The information describing the user request is processed on the secure authentication server depending on a particular channel used for its transmission (visual, audio or steganographic) and the encryption/encoding involved in the protocol.
In case when the optical channel is exploited for the information acquisition, direct decoding (17) of data from the barcodes with any modulation ĉ is performed. In case of symbolic data representation, OCR (13) is used in order to extract un-encoded or encoded/encrypted PIN from its analogue form ĉ′. When a manual input is exploited, the typed coded data ĉ″ are directly sent to the decoder. In case the encryption/decryption is organized in an asymmetric manner, a pair of a private/public keys are exploited to encrypt and decrypt authentication information, accordingly.
In case, when the audio channel is exploited to communicate the PIN, the processing main steps vary depending on which authentication information transmission channel was used or the enrollment stage. When the information is transferred via an optical channel but communicated to the authentication server via audio channel by its spelling it is processed by a speech recognizer resulting in ĉ′″ and either directly passes to the verification stage or goes through the key-dependent decryption and decoding if necessary.
When the authentication information is modulated as the audio signal at the enrollment stage, the processing might involve a demodulation stage if necessary.
Being decoded as the estimate of PIN {circumflex over (m)}, the authentication information is passed to the verification stage where it is compared to the content of the database (5) after corresponding processing. Depending on the result of the verification stage (18), the corresponding authenticity confirmation/rejection message containing customer account information is generated (19) as well as the database update is performed accordingly. This stage output is then transferred to the message activation (20) stage where it is finally communicated to the customer via display (21), vibro (22) or audio (23) signal or any other available information transmission form that might be perceived by a consumer.
Authentication Based on the Printed Data
The authentication protocol based on printed data can be constructed based on either direct or steganographic channels. The basic direct communication protocol was already discussed in
The encoding is based on a secret PIN m extracted from the database (5). To provide an additional level of freedom that will increase the security of the proposed protocol the PIN m is split into two parts m1 and m2. The first part m1 jointly with the key K1 produce the codeword c in (7) using either host selection from the database (7a), or by generation of a random codeword where the pair m1 and K1 are used as a seed for the random generator (7b), or encryption, encoding and modulation of m1 (7c). In the case of (7c), m1 is encoded using turbo, low-density parity check, Reed-Solomon or any other suitable encoding principle based on the secret key K1. In all cases, the resulted data c can be represented in the form of text structures, dots, lines, any symbologies, etc., vector graphics components (1D, 2D or 3D objects).
The generated output c is passed to a Gel'fand-Pinsker (GP) encoder (24) with input m2 based on key K2 to produce the watermark w that is converted to the stego data y at the embedder (25) and printed/engraved by the printer (9) in the form yP on the product surface, packaging, adhesive label or any document certifying the product origin.
At the extraction stage, depending on the particular protocol implementation, several possibilities exist for the stored information yP acquisition. The product authenticity verification can be performed solely based on the direct part of yP without taking into account watermark data similarly to
Authentication Based on the Audio Data
The authentication protocol based on the audio data is similar to one based on the printed data and can be constructed based on either direct or steganographic channels. The basic direct authentication protocol can be organized based on the random waveforms (
According to the random waveforms approach (
According to the coded waveforms approach (
In the case when the steganographic channel is used for the secure authentication, the protocol is constructed similarly to those used for printed data (
Practical Aspects of Robust Data Encoding and Verification
In the case of both printed and audio data based authentication there is a need to provide reliable decoding and verification of the product data. The problems of product authentication based on printed data using text, images or any graphical symbologies are caused by the printing/scanning, defocusing (blurring), resolution constraints of portable device imaging camera, geometrical distortions, nonlinear contrast transformation as well as restrictions of messaging protocol that might cause additional resizing and/or compression. Similar corresponding distortions can occur for the audio-based authentication. Therefore, proper techniques should be applied to enable errorless communication of PIN to the verification module (18).
We propose three main practical approaches to overcome the above problems based on:
Correcting errors that might occur at the acquisition stage by introducing proper redundancy using coding and synchronization;
Taking into account the above hypothetical distortions in the design of proper representation of encoded features/hashes in the database of PINS;
Designing robust verification procedures invariant to the defined types of distortions.
The first approach attempts to design reliable coding strategies capable to provide errorless decoding of the PIN index m after data acquisition in portable device and its communication to the verification stage. We will exemplify this approach based on the text data assuming that without loss of generality the same strategy can be extended to images, symbologies and audio. For the high flexibility of the PIN communication protocol, we assume that the data can be entered either manually by the human being, who is in some sense the best OCR, or acquired automatically by the camera. For this reason, the proposed construction of robust coding includes such an encoder (7) (
The protocol presented in
The PIN communication protocol presented in
The second approach attempts at predicting hypothetical channel distortions at the encoding stage to avoid a possible mismatch after decoding or hashing at the verification stage due to the channel degradations. Obviously, one can try to build the robust hash for this purpose. However, since the channel degradations are predictable at the encoder the benefit from this sort of side information can be significant, which simplifies the requirements regarding the robustness of the hash or error correction code. The block-diagram of this approach is shown in
The third approach is based on the usage of robust verification procedures such as for example Levenshtein distance that measures the similarity between two vectors even with different lengths. The change of the hash length might result from the channel degradations and the failure of the demodulator, the feature extractor or the OCR modules.
[1]. M. A. Amon, A. Bleikolm, O. Rozumek, E. Muller, O. Bremond, “Use of communication equipment and method for authenticating an item, unit and system for authenticating items, and authenticating device”, US Patent number No 2003/0136837, filled Jun. 22, 2001 and published Jul. 24, 2003.
[2]. R. S. Miolla, M. R. Mehall, N. E. Lofgren, “Using digital watermarks to facilitate counterfeit inspection and inventory management”, US Patent number No 2002/0146146, filled Aug. 7, 2001 and published Oct. 10, 2002.
[3]. G. B. Rhoads, T. F. Rodriguez, M. I. Livermore, “Methods for using wireless phones having optical capabilities”, US Patent number No 2005/0213790, filled May 17, 2005 and published Sep. 29, 2005.
[4]. M. Kutter, S. Voloshynovskiy, A. Herrigel, “The Watermark Copy Attack”. Proceedings of the SPIE, Security and Watermarking of Multimedia Contents II, Volume 3971, pages 371-379. San Jose, Calif., 2000.
[5]. L. Perez-Freire, F. Perez-Gonzalez, P. Comesania, “Secret dither estimation in lattice-quantization data hiding: a set-membership approach”. In Edward J. Delp III and Ping W. Wong, editors, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, Calif., USA, January 2006.
[6]. P. Comesana, L. Perez-Freire, F. Perez-Gonzalez, “An information-theoretic framework for assessing security in practical watermarking and data hiding scenarios”. In 6th International Workshop on Image Analysis for Multimedia Interactive Services, Montreux, Switzerland, April 2005.
[7]. P. Comesana, L. Perez-Freire, F. Perez-Gonzalez, “The blind Newton sensitivity attack”. In Edward J. Delp III and Ping W. Wong, editors, Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, Calif., USA, January 2006.
[8]. M. El Choubassi and P. Moulin, “A New Sensitivity Analysis Attack”, In Edward J. Delp III and Ping W. Wong, editors, Security, Steganography, and Watermarking of Multimedia Contents VII, San Jose, Calif., USA, January 2005.
[9]. V. N. Bogdanov, D. V. Zheleznov, E. M. Kirillina, A. A. Savitskij, A. A. Subbotin, S. V. Teleljushkin, E. A. Fedkov, “Method for identification of authenticity of object”, RU Patent number No RU 2132569, filled Nov. 11, 1998 and published Jun. 27, 1999.
[10]. E. V. Belov, “Procedure of identification of product”, RU Patent number No RU 2181503, filled Jul. 30, 2001 and published Apr. 20, 2002.
[11]. T. Liebman, “Sound-generating containment structure”, U.S. Pat. No. 5,130,696, filled Feb. 25, 1991 and published Jul. 14, 1992.
[12]. M. Gel'fand and M. S. Pinsker, “Coding for channel with random parameters”, Problems of Control and Information Theory, vol. 9, no. 1, pp. 19-31, 1980.
[13]. T. Cover and J. Thomas “Elements of Information Theory”, Wiley & Sons, NY, 1991.
This application is a continuation of application Ser. No. 11/477,486 filed Jun. 30, 2006, which is hereby fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11477486 | Jun 2006 | US |
Child | 13570396 | US |