Braze alloys for joining or repairing ceramic matrix composite (CMC) components

Information

  • Patent Grant
  • 10947162
  • Patent Number
    10,947,162
  • Date Filed
    Thursday, April 12, 2018
    6 years ago
  • Date Issued
    Tuesday, March 16, 2021
    3 years ago
Abstract
A braze alloy for joining or repairing ceramic matrix composite (CMC) components comprises a braze composition including silicon at a concentration from about 48 at. % to about 66 at. %, titanium at a concentration from about 1 at. % to about 35 at. %, and an additional element selected from aluminum, cobalt, vanadium, nickel, and chromium. The braze composition comprises a melting temperature of less than 1300° C.
Description
TECHNICAL FIELD

The present disclosure relates generally to a braze alloy, and more specifically to a braze alloy for joining or repairing components used in gas turbine engines.


BACKGROUND

Ceramic matrix composites (CMCs) may be used in aerospace engine applications because of their mechanical properties and chemical stability at high temperatures. Various components of gas turbine engines, such as blades and vanes, can be manufactured from CMCs, such as silicon carbide (SiC) fiber-reinforced SiC matrix (SiC/SiC) composites.


Coupling together two or more components made of CMCs can be challenging. Traditionally-used braze alloys based on nickel and/or gold may exhibit undesirably low melting temperatures and/or have a tendency to form low-melting point eutectic phases in braze joints and areas adjacent to the braze joints due reactions with free silicon in the CMC component. For example, a gold-based braze alloy may interact with free silicon during brazing to form a gold-silicon eutectic phase that has a melting temperature of about 360° C. The resulting braze joint and surrounding areas may then be susceptible to failure and oxidation at high temperatures in use. As a result, such braze joints may not be suitable in high temperature sections of gas turbine engines.


A challenge with brazing alloys designed for high temperature applications is that the brazing temperature may be close to the melting point of silicon in the CMC matrix. For example, the brazing temperature of a current high temperature braze alloy is about 1375° C., which is only 39° C. below the melting point of silicon. A brazing cycle at 1375° C. has the potential of jeopardizing the microstructural integrity and mechanical strength of the CMC.


It would advantageous to be able to carry out the brazing of CMC components at lower temperatures without sacrificing the mechanical properties and high temperature stability of the brazed joint.


BRIEF SUMMARY

A braze alloy for joining ceramic matrix composites comprises a braze composition including silicon at a concentration from about 48 at. % to about 66 at. %, titanium at a concentration from about 1 at. % to about 35 at. %, and an additional element selected from aluminum, cobalt, vanadium, nickel, and chromium. The braze composition has a melting temperature of less than 1300° C. Preferably, the melting temperature is at least about 1150° C. The braze alloy may be used to bond together ceramic matrix composite (CMC) components employed in gas turbine engines.


A method of joining ceramic matrix composites comprises placing a braze alloy having a melting temperature less than 1300° C. adjacent to and/or between first and second components, where at least one of the first and second components comprises a ceramic matrix composite, and heating the braze alloy to a predetermined brazing temperature, which is equal to or greater than a melting temperature thereof. After the heating, the braze alloy is cooled to form a brazed joint between the first component and the second component. The braze alloy has a braze composition comprising silicon at a concentration from about 48 at. % to about 66 at. %, titanium at a concentration from about 1 at. % to about 35 at. %, and an additional element selected from the group consisting of: aluminum, cobalt, vanadium, nickel, and chromium.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D are phase diagrams showing the impact of aluminum additions on the silicon-titanium alloy system.



FIGS. 2A-2C are phase diagrams showing the impact of vanadium additions on the silicon-cobalt alloy system.



FIGS. 3A-3C are phase diagrams showing the impact of titanium on the silicon-cobalt-vanadium alloy system.





DETAILED DESCRIPTION

Braze alloys designed for brazing high temperature components such as SiC/SiC ceramic matrix composites (CMC) have been developed. The new braze alloys melt at lower temperatures than previous generations of high temperature braze alloys, yet result in brazed joints with high joint strengths and good stability during elevated temperature use. In addition, the new braze alloys exhibit good flow properties and wettability with CMCs and may be useful with other materials, such as metals. Initial studies indicate that reactions between the braze alloy and the CMC during brazing lead to stable phases that do not detrimentally affect the mechanical properties of the brazed joint. For example, brazed joints fabricated using the new braze alloys exhibit high shear strengths.


Suitable braze alloys may have a braze composition including silicon at a concentration from about 48 atomic percent (at. %) to about 66 at. %, titanium at a concentration from about 1 at. % to about 35 at. %, and one or more additional elements selected from among aluminum, cobalt, vanadium, nickel, and chromium. The additional element(s) may account for the balance of the braze composition, except for any incidental impurities. The melting temperature of the braze composition is less than 1300° C. Preferably, the melting temperature is at least about 1150° C.


The braze composition may be a silicon-rich alloy that includes either aluminum, cobalt or titanium in an amount ranging from about 27 at. % to about 36 at. %. Generally speaking, the braze composition may comprise silicon as the primary constituent in terms of concentration, with either aluminum, cobalt or titanium as the secondary constituent. Three exemplary braze compositions having reduced melting temperatures are identified in Table 1. Suitable brazing temperature ranges for the braze compositions are also proposed. Typically, brazing is carried out at a temperature (“brazing temperature”) higher than the melting temperature of the braze composition. For example, the brazing temperature may be at least 40° C. higher than the melting temperature, or at least 80° C. higher than the melting temperature. The brazing temperature may also be up to 100° C. higher than the melting temperature, or up to 140° C. higher than the melting temperature.









TABLE 1







Braze Compositions with Reducing Melting Temperatures













Compo-






sition
Melting
Brazing




Range
Temperature
Temperature


Braze Composition
Element
(at. %)
(° C.)
(° C.)





(1) Si—Al—Ti
Si
60-66
1150-1185
1210-1310



Al
32-36



Ti
2-4


(2) Si—Co—V—Ti
Si
59-63
1225-1260
1280-1335



Co
27-30



V
 7-10



Ti
1-3


(3) Si—Ti—Ni—Co—Cr
Si
48-52
1270-1295
1310-1350



Ti
29-35



Ni
 7-11



Co
4-6



Cr
3-6









Referring to Table 1, the braze composition may include silicon, titanium and aluminum. Alternatively, the braze composition may include silicon, titanium, cobalt and vanadium, or the braze composition may include silicon, titanium, nickel, cobalt and chromium.


In a first example, the braze composition may include aluminum at a concentration from about 32 at. % to about 36 at. %. The concentration of silicon may be from about 60 at. % to about 66 at. %, and the concentration of titanium may be from about 2 at. % to about 4 at. %. The melting temperature may lie in a range from about 1150° C. to about 1185° C. In one particular example, the braze composition may comprise 63 at. % Si, 34 at. % Al and 3 at. % Ti.


In a second example, the braze composition may include cobalt at a concentration from about 27 at. % to about 30 at. %. The concentration of silicon may be from about 59 at. % to about 63 at. %, and the concentration of titanium may be from about 1 at. % to about 3 at. %. The braze composition may further comprise vanadium at a concentration of from about 7 at. % to about 10 at. %. The melting temperature may lie in a range from about 1225° C. to about 1260° C. In one particular example, the braze composition may comprise 61 at. % Si, 29 at. % Co, 8 at. % V and 2 at. % Ti.


In a third example, the braze composition may include titanium at a concentration from about 29 at. % to about 35 at. %, and the concentration of silicon may be from about 48 at. % to about 52 at. %. The braze composition may further comprise nickel at a concentration from 7 at. % to about 11 at. %, cobalt at a concentration from about 4 at. % to about 6 at. %, and chromium at a concentration of from about 3 at. % to about 6 at. %. The melting temperature may lie in a range from about 1270° C. to about 1295° C. In one particular example, the braze composition may comprise 50 at. % Si, 32 at. % Ti, 9 at. % Ni, 5 at. % Co and 4 at. % Cr.


The braze alloy may include one or more of the three exemplary braze compositions described above and in Table 1. When the braze alloy includes two or more of the exemplary braze compositions, a suitable braze temperature may be selected based on the braze temperature ranges provided in the table in view of the proportion of each braze composition included in the braze alloy. Suitable proportions in the braze alloy may be, for example, at least about 30 wt. % or at least 50 wt. % of one of the braze compositions, and no more than about 70 wt. % or no more than about 50 wt. % of another of the braze compositions. In some cases, the braze alloy may also or alternatively include added constituents, such as silicon or another element or alloy in combination with the first, second and/or third exemplary braze composition(s). For example, the braze alloy may include at least about 50 wt. % or at least about 70 wt. % of the one or more of the exemplary braze compositions described in this disclosure, with the balance of the braze alloy (e.g., about 50 wt. % or less, or about 30 wt. % or less) being the added constituent, such as silicon.


The braze composition may include, particularly once brazing has been carried out, at least one silicide phase, such as, for example, TiSi2, CoSi2, VSi2, (Ni,Co)Si2, (Ti,Cr)Si2, and/or Ti4Ni4Si7. Such phases may be thermally stable and nonreactive with the CMC and may lead to good mechanical properties of the brazed joint. For example, a braze alloy comprising 63 at. % Si, 34 at. % Al and 3 at. % Ti as described above may include TiSi2 in the form of a small, cellular phase. Based on initial testing, the apparent shear strength of a brazed joint comprising this braze alloy is 35 MPa, nearly six times higher than that measured for a previously developed 75 wt. % Si-25 wt. % Ti alloy (85.3 at. % Si-14.7 at. % Ti alloy).


As an example of a method of using the braze alloy, the braze alloy may be employed to join a first component to a second component, where each component comprises a ceramic matrix composite, such as a SiC/SiC composite, or another material, such as a metal. Thus, the braze alloy may be employed to bond a CMC to a CMC, or a CMC to another material, such as a metal. The braze alloy may be used in the form of a rod, ribbon, wire, powder, paste or slurry. The braze alloy, which comprises a braze composition having any of the characteristics described in this disclosure, may be placed adjacent to and/or between the first and second components, either prior to heating or during the heating process. The braze alloy is then heated to the desired brazing temperature, which, as explained above, is typically higher than the melting temperature of the braze composition. Typically, the brazing temperature lies in a range from about 1210° C. to about 1350° C. The braze alloy may be maintained at the desired brazing temperature for a predetermined amount of time, followed by cooling, typically to room temperature, in order to form a solidified brazed joint between the first component and the second component. The brazed joint may include any of the silicide phases set forth above. In some cases, after brazing, the brazed joint may be subjected to a diffusion heat treatment at a suitable temperature, such as between about 1090° C. and about 1315° C.


A thermodynamic and microstructural analysis of the exemplary braze alloy systems proposed in this disclosure (Si—Al—Ti, Si—Co—V—Ti, and Si—Ti—Ni—Co—Cr) is carried out using thermodynamic modeling software (Thermo-Calc), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The braze alloys can be fabricated by melting raw material stock (e.g., metal powders or chunks) in the appropriate composition ratios in an arc button melter or other melting apparatus. Liquidus (melting) and brazing temperatures are determined from the thermodynamic analysis as well as actual melting and brazing experiments, and are summarized in Table 1 above.


Thermodynamic modeling results for the Si—Al—Ti system are shown in FIGS. 1A-1D, with Al additions to the Si—Ti system of 10 at. %, 20 at. %, 30 at. %, and 35 at. %, respectively. As the Al content increases in the Ti—Si system, the liquidus temperature (or melting point) decreases from 1285° C. to 1163° C., as indicated in the phase diagrams. As temperature decreases, the Ti—Si eutectic structure forms in the system once the temperature reaches the eutectic temperature (dashed line). After that, the Ti—Si eutectic continues to form until the temperature reaches 577° C. A suitable braze composition determined by thermodynamic modelling is 3 Ti-35 Al-62 Si (in at. %) or 5.08 Ti-33.39 Al-61.53 Si (in wt. %). According to the thermodynamic analysis, phases present in the braze composition include silicon (diamond structure), aluminum and TiSi2. The presence of silicon, aluminum, TiSi2 and Al—Si eutectic is verified by EDS and SEM. Silicon is found to take the form of a coarse columnar phase, TiSi2 is present as a small cellular phase, and the Al—Si eutectic structure can be found between the coarse silicon phases.


Thermodynamic modeling results for the Si—Co—V system are shown in FIGS. 2A-2C, and for the Si—Co—V—Ti system in FIGS. 3A-3C. By adding 10 wt. %, 30 wt. % and 50 wt. % V into the Co—Si binary system where Co:Si=1:1 (wt. %), the liquidus temperature changes from 1061° C. (10 wt. % V) to 1144° C. (30 wt. % V), and finally reaches 1168° C. (50 wt. % V), as indicated in the phase diagrams of FIGS. 2A-2C, respectively. Thus, a low V concentration (e.g., Co:Si:V=4:4:1) is selected for thermodynamic analysis of a quaternary system including silicon, cobalt, vanadium and titanium. In the Si—Co—V—Ti analysis, Ti is added into the system in amounts of 1 wt. %, 5 wt. % and 10 wt. % as a minor ingredient, and the liquidus changes to 1194° C., 1209° C. and 1425° C., respectively, as shown in the phase diagrams of FIGS. 3A-3C, respectively. Thus, a suitable braze composition is selected to be Si=61 at. %, with Co:Si:V=4:4:1 in wt. %; that is, 43.7Co-43.7Si-10.92V-1.68Ti (in wt. %) or 29Co-61Si-8V-2Ti (in at. %). The thermodynamic analysis shows the presence of Si (diamond), TiSi2, Co—Si solid solution (at low V content) and V—Si solid solution (at low Co content). EDS mapping reveals three main phases in the braze alloy, including VSi2, CoSi2, and silicon. Some Ti-rich areas are also detected using EDS mapping; according to the thermodynamic analysis, the Ti-rich phase may be TiSi2.


SEM and EDS analyses reveal details about the microstructure of the Si—Ti—Ni—Co—Cr system. Several silicides, including (Ni,Co)Si2, (Ti,Cr)Si2 and Ti4Ni4Si7, as well as silicon are identified in the braze alloy. At the interface between the braze alloy and the SiC substrate, the (Ti,Cr)5Si3 phase is found, which has much higher Cr concentration than that of the (Ti,Cr)Si2 phase found in the braze alloy. In the reaction zone, the (Ni,Co)Si2 and (Ti,Cr)Si2 phases are also detected.


To clarify the use of and to hereby provide notice to the public, the phrases “at least one of <A>, <B>, . . . and <N>” or “at least one of <A>, <B>, . . . <N>, or combinations thereof” or “<A>, <B>, . . . and/or <N>” are defined by the Applicant in the broadest sense, superseding any other implied definitions hereinbefore or hereinafter unless expressly asserted by the Applicant to the contrary, to mean one or more elements selected from the group comprising A, B, . . . and N. In other words, the phrases mean any combination of one or more of the elements A, B, . . . or N including any one element alone or the one element in combination with one or more of the other elements which may also include, in combination, additional elements not listed.


Although considerable detail with reference to certain embodiments has been described, other embodiments are possible. The spirit and scope of the appended claims should not be limited, therefore, to the description of the preferred embodiments contained herein. All embodiments that come within the meaning of the claims, either literally or by equivalence, are intended to be embraced therein.


Furthermore, the advantages described above are not necessarily the only advantages, and it is not necessarily expected that all of the described advantages will be achieved with every embodiment.

Claims
  • 1. A braze alloy for joining or repairing ceramic matrix composite (CMC) components, the braze alloy comprising: a braze composition comprising: silicon at a concentration from about 48 at. % to about 66 at. %;titanium at a concentration from about 1 at. % to about 35 at. %, andan additional element selected from the group consisting of: aluminum, cobalt, vanadium, nickel, and chromium,wherein the braze composition comprises a melting temperature of less than 1300° C.
  • 2. The braze alloy of claim 1, wherein the melting temperature is less than 1250° C.
  • 3. The braze alloy of claim 1, wherein the braze composition comprises an alloy system selected from the group consisting of: (a) silicon, aluminum and titanium, (b) silicon, cobalt, vanadium and titanium, and (c) silicon, titanium, nickel, cobalt and chromium.
  • 4. The braze alloy of claim 1, wherein the braze composition includes aluminum at a concentration from about 32 at. % to about 36 at. %.
  • 5. The braze alloy of claim 4, wherein the concentration of silicon is from about 60 at. % to about 66 at. % and the concentration of titanium is from about 2 at. % to about 4 at. %.
  • 6. The braze alloy of claim 4, wherein the melting temperature lies in a range from about 1150° C. to about 1185° C.
  • 7. The braze alloy of claim 1, wherein the braze composition includes cobalt at a concentration from about 27 at. % to about 30 at. %.
  • 8. The braze alloy of claim 7, wherein the concentration of silicon is from about 59 at. % to about 63 at. %, and the concentration of titanium is from about 1 at. % to about 3 at. %.
  • 9. The braze alloy of claim 7, wherein the braze composition further comprises vanadium at a concentration of from about 7 at. % to about 10 at. %.
  • 10. The braze alloy of claim 7, wherein the melting temperature lies in a range from about 1225° C. to about 1260° C.
  • 11. The braze alloy of claim 1, wherein the braze composition includes titanium at a concentration from about 29 at. % to about 35 at. %.
  • 12. The braze alloy of claim 11, wherein the braze composition further comprises nickel at a concentration of from 7 at. % to about 11 at. %, cobalt at a concentration of from about 4 at. % to about 6 at. %, and chromium at a concentration of from about 3 at. % to about 6 at. %.
  • 13. The braze alloy of claim 11, wherein the concentration of silicon is from about 48 at. % to about 52 at. %.
  • 14. The braze alloy of claim 11, wherein the melting temperature lies in a range from about 1270° C. to about 1295° C.
  • 15. The braze alloy of claim 1, wherein the braze composition includes, upon brazing, at least one silicide phase.
  • 16. The braze alloy of claim 1, wherein the at least one silicide phase is selected from the group consisting of: TiSi2, CoSi2, VSi2, (Ni,Co)Si2, (Ti,Cr)Si2, and Ti4Ni4Si7.
RELATED APPLICATION

The present disclosure claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 62/485,163, filed on Apr. 13, 2017, which is hereby incorporated by reference in its entirety.

US Referenced Citations (42)
Number Name Date Kind
3813759 Heap et al. Jun 1974 A
4499360 Rottenbacher Feb 1985 A
4711971 Duncan et al. Dec 1987 A
4784313 Godziemba Nov 1988 A
4830820 Itoh et al. May 1989 A
4851299 Godziemba-Maliszewski Jul 1989 A
4961529 Gottselig et al. Oct 1990 A
5203488 Wang et al. Apr 1993 A
5447683 Montgomery et al. Sep 1995 A
5705280 Doty Jan 1998 A
5732468 Galley et al. Mar 1998 A
5836505 Chaumat et al. Nov 1998 A
5975407 Gasse et al. Nov 1999 A
6221499 Gasse et al. Apr 2001 B1
6397581 Vidal et al. Jun 2002 B1
6692586 Xu et al. Feb 2004 B2
6884030 Darkins et al. Apr 2005 B2
7115319 Raybould et al. Oct 2006 B2
7222775 Chaumat et al. May 2007 B2
7318547 Gasse Jan 2008 B2
7360988 Lee et al. Apr 2008 B2
7478742 Beyer et al. Jan 2009 B2
7748956 Paulino et al. Jul 2010 B2
7794201 Burton et al. Sep 2010 B2
7874059 Morrison et al. Jan 2011 B2
8047771 Tucker et al. Nov 2011 B2
9056369 Chaumat Jun 2015 B2
9624786 Xu et al. Apr 2017 B2
20030049154 Xu Mar 2003 A1
20040120813 Couture et al. Jun 2004 A1
20070084051 Tomoko et al. Apr 2007 A1
20080087710 Glaeser Apr 2008 A1
20080190552 Bouillon et al. Aug 2008 A1
20090266870 Yousefiani et al. Oct 2009 A1
20100126018 Headley et al. May 2010 A1
20120177488 Corman Jul 2012 A1
20130004235 Chaumat Jan 2013 A1
20130075039 Herderick et al. Mar 2013 A1
20140030076 Nunez Jan 2014 A1
20140271144 Landwehr et al. Sep 2014 A1
20150165536 Chaumat Jun 2015 A1
20160145159 Landwehr May 2016 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2013089869 Jun 2013 WO
Related Publications (1)
Number Date Country
20190031570 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62485163 Apr 2017 US