The present invention relates to a coupling device for tubing connections and method for connecting tubes using such coupling devices. More specifically, the present invention relates to the connection of a metal fluid transfer tubing to other metallic connections without having to braze or weld the two pieces together.
Hose coupling devices are known. For example, U.S. Pat No. 3,653,692 to Henson describes an elastomeric hose connected to a nipple having a circumferential barb. The hose is stretched allowing a ring member to slide down the hose and over the barbed nipple where it creates a compression of the hose when the hose is no longer stretched. U.S. Pat. No. 3,477,750 to Powell discloses a pipe section joined by a sleeve, which includes annular teeth. The pipe is made of iron and the sleeve is preferably made of the same material. The design requires an additional sealing means in the form of a thin elastomeric membrane and further requires that the teeth be formed onto the pipe one at a time. U.S. Pat No. 3,689,111 to Osmun; U.S. Pat. No. 5,707,087 to Ridenour et al.; U.S. Pat. No. 4,114,930 to Perkins et al.; and U.S. Pat. No. 5,423,581 to Salyers all teach coupling devices for connecting tubing to a fitting assembly to prevent leaks.
Current practice in the tube connector art requires that a heavy clamping or crimping force be applied about a collar around the tube and the fitting to provide a fluid-tight seal and to provide pull-off resistance to the assembly. In such cases, the tube is compressed radially inward to make a seal. However, it is difficult to make a permanent leak-tight seal, because the tube, even though malleable, tends to have sufficient elasticity to relax somewhat and deform, upon release of the clamping or crimping pressure just enough to compromise the fluid-tight seal, particularly, when the fluid is under high pressure for an extended period of time.
End connections on fluid transfer assemblies such as on power steering pressure and return lines require tight tolerances and high strength to prevent the fluid from leaking from the assembly. Conventional connectors are not able to achieve the required tolerances or the strength required to prevent such leaks, Typically, these connectors are brazed or welded to the fluid transfer tubing. When an assembly is brazed, it undergoes high temperatures which are generally detrimental to any coating or plating on the assembly or on the tubing. When steel or other low corrosion tolerance material is used as the assembly material, the assembly must be treated in order to protect it from the environment. Typical methods of treatment include electroplating and painting. Such methods are generally not desirable because the coating often flakes during bending which leads to high scrap rates.
Another common coupling includes a metal housing which receives a metal male fitting having a circumferential flange. The housing typically includes an 0-ring for sealing the male fitting therein. The male fitting is secured within the housing by a plurality of spring-loaded detents which spring open to allow the insertion of the male fitting and then spring closed to prevent withdrawal of the fitting from the tube. However, this type of assembly is susceptible to “end play” of the fitting which leads to failure of the seal.
Therefore, it would be advantageous to have a connector for fluid transfer assemblies which eliminate the drawbacks of previously known connector assemblies.
It is an object of the present invention to provide a pre-coated metal tube and metal connector assembly, and method for providing such assembly which is leak- free at high pressure for extended periods of time.
In accordance with the present invention, a tube connector is used to connect a fluid transfer tubing to other metallic connections in a manner to provide a leak-free fluid transfer assembly. The tube connector comprising a rigid tubular member having an annular channel exhibiting a uniform inner diameter extending along its longitudinal axis for transporting a fluid therethrough. The rigid tubular member comprises a first end portion, a second end portion and a tubular body portion. The tube connector further includes an axial bore which is adapted to convey a fluid therethrough. The first end portion includes a stem portion having a uniform outer surface diameter adapted to be inserted into an inner channel of a metal tubular structure, the stem portion having at least one sealing means extending uniformly outward from the outer surface diameter of the stem portion.
The second end portion includes a forward tubular structure which may or may not have a uniform outer diameter. The tubular body portion intermediate the first and second ends has an outer diameter larger than the second end. Typically, the rearward end of the tubular body portion has a surface perpendicular to the tubular portion of the second end forming a perpendicular shoulder against which the end of the metal tubular structure abuts upon insertion of the tube connector into the channel of the metal tubular structure, wherein the second end of the rigid tubular member is sealably secured to the metal connector by permanently and uniformly deforming the metal tubular structure under high pressure onto the sealing members.
In one embodiment of the present invention, a metal fitting pre-coated with a thin metallic coating such as zinc-nickel or zinc-cobalt is provided with one or more concentric annular metal barbs on the outer diameter of the metal fitting. The metal fitting is then loosely inserted into the end of the metal tube where the fitting is joined to the tube in a fluid-tight seal created by crimping, swaging, rolling or other means of permanently deforming the metal tube uniformly around the metal barbed fitting. The fluid-tight seal is created by the high pressure of the metal annular barbs pressed against the inner diameter of the metal tube, wherein the inner surface of the pre-coated metallic tube is permanently deformed corresponding to the configuration of the metal annular barbs on the metallic filling. The sealing is further enhanced by the permanent deformation of the inner diameter of the metal tube as it molds itself around the metal barbs, providing an intimate surface- to- surface relationship created between the two surfaces. In this respect, it is important that both the metal tube and the metal barbs on the fitting exhibit similar hardness and thermal expansion rate characteristics in order to create a leak free seal. Similar characteristics allow for the materials to flow and fill any voids or leak paths which may tend to form. The similar metallic materials also provide good leak resistance with respect to temperature and pressure variations.
In accordance with the present invention, a metal tube connector is permanently coupled to a metal fluid transfer tube to provide a leak-free metal tube assembly, such as those used in automotive power steering assemblies, air conditioning assemblies, etc., without having to weld or braze the two pieces together. Since the present invention does not require the high temperatures associated with prior methods of coupling a metal connector to a metal tubing, the metal tubing may be pre-coated prior to making the assembly.
As illustrated in
The stem portion 12 includes an annular rim 40 defining an annular opening 46, and one or more annular serrations or barbs 20 circumferentially disposed around the outer circumference of the stem portion 12. The stem portion 12 containing the serrations or barbs 20 is loosely inserted into the end 22 of the metal tubular structure 18 and subjected to crimping, swaging, rolling or other method of permanently deforming the metal tubing 18 uniformly onto the stem portion 12. The leak-free seal is created by the high pressure exerted upon the metal tubular structure 18 wherein the annular serrations or barbs 20 are pressed against and into the inner surface 44 of the metal tubular structure 18. The sealing is further enhanced by the permanent deformation of the inner diameter of the metal tubing 18 as it molds around the annular serrations or barbs 20, creating an intimate mating of both surfaces. It is essential that the metal tubular structure 18 and the serrations or barbs 20 have the same or similar characteristics such as hardness and thermal expansion rates in order for the seal to be leak-free. Similar hardness of the metal materials used in the metal tubular structure 18 and in the serrations or barbs 20 allow both metal materials to exhibit similar flow characteristics and, therefore, fill any potential voids or leak paths. Furthermore, both materials should have similar thermal expansion rates, otherwise, they may be prone to leaks upon being exposed to temperature variations. Typically, the metal tubular structure is constructed of a low corrosion tolerance material, such as steel or the like which is pre-coated to prevent corrosion. Other materials having properties similar to the material used in forming the barbs may be employed to form the tubular structure.
The material used in manufacturing the tubular structure 18, the stem portion 12 and the serrations or barbs 20 of the present invention should be high quality and free of voids, pits, laps, cracks, folds, seams, slivers and other defects. When using these metal materials in the assemblies, they must be treated to protect the metal from the environment. Typical methods of treatment include electro plating and painting. Since the electro plated or similar treated connectors usually cannot withstand the high temperatures associated with brazing or welding, it has been very difficult to achieve a leak-free connection between a metal fluid transfer tube and other metallic connections using conventional techniques. Connections made in accordance with the present invention do not require high temperature; therefore, pre-treated metal tubes can be connected to an end fitting without the disadvantages associated with the prior art. See, for example,
The serrations or barbs 20 on the stem portion 12 should be as sharp as the machining operation can make them to provide an adequate seal. It is also important that the serrations or barbs 20 be concentric to insure an even and constant penetration of the serrations or barbs 20 into the metal tubular structure 18 upon being crimped, swaged, rolled, etc under high pressure. The pressure needed to deform the tubular structure may be applied by suitable compression means 46′ such as hydraulics, air-over-hydraulics, pneumatic or any other suitable method (see
The shape of the serrations or barbs 20 is also important in providing the leak-free seal. The serrations or barbs 20 are tapered to extend outwardly from the outer surface 34 providing a forward rim defining a circumferential apex of an annular shoulder surface of the rim to provide a leak-free seal.
The number of serrations or barbs 20 present on the stem portion 12 is not critical. One serration or barb is sufficient in most applications; however, one may want to employ a plurality of serrations or barbs to provide backup seals in the assembly. Typically, 2 or 3 serrations or barbs are preferred.
The metal coupling portion 14 of the metal end fitting 10 includes a connecting portion 24 extending longitudinally outward from the stem portion 12. The connecting portion 24 connects the coupling portion 14 to a mated fitting (not shown). Typically, the connecting portion 14 includes flanged portion 26 adapted to receive a tool, such as a wrench, to hold the coupling portion 14 as the end fitting 10 is being connected to the mated fitting. The flanged portion 26 defines a rear shoulder surface 28. The connecting portion 24 can further include a threaded portion (not shown) extending longitudinally outward from the flanged portion 24. The threaded portion can comprise a male threaded portion or a female threaded portion. Additionally, the metal coupling portion 14 can include any suitable coupling mechanism, such as a quick disconnect type fitting, or other types of conventional coupling mechanisms known in the art.
When the metal end fitting 10 is inserted into the metal tubular structure 18, the metal tubular structure 18 is compressed radially inward around the stem portion 12 of the end fitting 10 such that the inner channel 16 of the tubular structure 18 engages the serrations or barbs 20 providing a leak-free seal at each of the serrations or barbs 20. The serrations or barbs 20 not only provide leak-free seals but the also increase the pull-off resistance of the end fitting assembly 10.
Another embodiment of the invention is shown ion
When the stem portion 12′ is inserted into an open end of a metal tubular structure 18′ and then subjected to high pressure means to clamp the metal tubular structure 18′ around the stem 12′, the resilient O-rings 36′ are compressed to form an intimate contact with the inner surface 44′ of the tubular structure 18′ as well as the annular trough 32′ providing a leak-free seal therein. This second embodiment of the invention allows one to use materials for the metal connector and the metal tubular structure which are not required to be similar in hardness or in thermal expansion rate. For example, in this embodiment the metal connector may be made of steel and the metal tubular structure may be aluminum.
It is to be understood that any reference to metal materials employed herein includes metal alloys and/or mixtures of metals.
Although the present invention has been fully described in connection with a preferred embodiment thereof and with reference to the accompanying drawings, various changes and modifications will occur to those skilled in the art. Accordingly, such changes and modifications are to be understood as being within the scope of the present invention as defined by the appended claims.
This application is continuation-in-part of U.S. patent application Ser. No. 11/331,295, filed Jan. 12, 2006, which is a division of U.S. patent application Ser. No. 10/170,749, filed Jun. 13, 2002, now abandoned.
Number | Date | Country | |
---|---|---|---|
Parent | 10170749 | Jun 2002 | US |
Child | 11331295 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11331295 | Jan 2006 | US |
Child | 11712457 | Feb 2007 | US |