Filler material 8 is a foil preferably having a thickness of less than ten-thousandths (0.010) of an inch and more preferably approximately 0.001 inches. Filler material 8 is selected from the group of materials that are compatible with the stainless steel chosen for stainless steel part 6 in that they wet the surface during the bonding process and enter into a diffusion process with the stainless steel part 6 thereby creating a strong bond during processing. Filler material 8 is selected from the group of materials that are compatible with the titanium part 4. Filler material 8 forms a bond with a titanium part 4 by virtue of developing a eutectic alloy at the bonding temperature and pressure utilized during processing. The eutectic alloy formed during processing is predominantly composed of the titanium from titanium part 4. The group of filler materials includes substantially pure nickel, i.e., pure nickel and nickel containing approximately two percent or less by weight of alloy metals. In a preferred embodiment, filler material 8 is preferably commercially pure nickel foil having at least 99.0% nickel and less than 1.0% of other elements with a thickness of approximately 0.001 inches.
Titanium part 4 may be a biocompatible material such as a titanium alloy, and is Ti—6Al—4V in a preferred embodiment. Stainless steel part 6 may be a 200, 300, or 400 series stainless steel, and in a preferred embodiment stainless steel part 6 is 316 stainless steel. In alternative embodiments, rather than using filler material 8 as a foil, filler material 8 may be a thin coating that is applied to either the titanium part 4 or stainless steel part 6 surface to be bonded by any of a variety of chemical processes such as electroless plating and electroplating, or by any of a variety of thermal processes such as sputtering, evaporating, or ion beam enhanced deposition. Filler material 8 may also be applied as a thin coating of metallic beads or metallic powder.
The process steps that are employed to create assembly 2 with a strong bond between titanium part 4 and stainless steel part 6 are schematically represented in
In step 22, component assembly 2 is prepared with filler material 8 between titanium part 4 and stainless steel part 6. In step 24, force 10 is applied to compress filler material 8 between titanium part 4 and stainless steel part 6. Force 10 is sufficient to create intimate contact between the parts. Force 10 is applied to assure that a strong and hermetic bond is formed between titanium part 4 and stainless steel part 6.
In step 26 the assembly to be heat processed is placed in a furnace in a non-reactive atmosphere, which is preferably vacuum, but which, in an alternative embodiment, can be any of several atmospheres that are known to one skilled in the art, such as argon or nitrogen. A vacuum is applied before the furnace is heated to the processing temperature in step 28. A preliminary holding temperature, which is lower than the process temperature, may be utilized to allow the thermal mass of the parts to achieve equilibrium before proceeding with heating. The process temperature is lower than the melting point of titanium part 4, but greater than the temperature of the eutectic formed between titanium 4 and filler material 8. In a preferred embodiment, the vacuum is 10−5 to 10−7 torr, to assure that the filler material 8 and titanium part 4 do not oxidize. Component assembly 2 is held at the selected temperature, which is between approximately 940° and 1260° C., for approximately 5 to 10 minutes, while force 10 continues to be exerted on filler material 8. The exact time, temperature and pressure are variable with each other so as to achieve a hermetic and strong bond of titanium part 4 with stainless steel part 6. For example, in a preferred embodiment, a 316 stainless steel part is bonded to a Ti—6Al—4V part in vacuum at 10−6 torr at approximately 1000° C. for 10 minutes with a pressure of about 5 to 20 psi on a commercially pure nickel foil of approximately 0.001 inches thickness.
The furnace is cooled and component assembly 2 is cooled to room temperature in step 30. In optional step 32, component assembly 2 is cleaned by being placed in a bath, after thermal processing is complete, to assure removal of all nickel and nickel salts. This bath is preferably an acid bath that etches the exposed surfaces of component assembly 2. In a preferred embodiment, the bath is nitric acid. Removal of nickel and nickel salts in the bath etch insures that component assembly 2 is biocompatible. Nickel and nickel salts are detrimental to living animal tissue. In the preferred embodiment, however, all of the nickel that is introduced as filler material 8 is combined with the titanium and is chemically tied up by thermal processing to be unavailable as free nickel or as a nickel salt.
Component assembly 2 is biocompatible after bonding and processing. Titanium part 4, stainless steel part 6, and filler material 8 are selected so as to be compatible with the environment in a living body. Hence, titanium part 4 is preferably a Ti—6Al—4V alloy and stainless steel part 6 is preferably a 316 stainless steel.
In a preferred embodiment, component assembly 2 is either an electrical sensor or an electrical stimulator that is implanted in a human body, although it could equally well be implanted in any animal. It must survive long periods in the hostile environment of a living body, which is basically a warm saline solution. In a preferred embodiment, component assembly 2 is either a sensor or stimulator comprised of a hollow stainless steel tube that contains various electronic components that is bonded to a titanium electrode end. The component assembly must be watertight; hence, the bond is hermetic, resisting salt-water intrusion as well as growth of living tissue into the titanium-to-stainless steel bond joint.
Further, component assembly 2 does not corrode while implanted in the body. The materials are chosen such that they are not susceptible to corrosion either individually or in the as-bonded state. Component assembly 2 resists electrolytic corrosion as well as crevice corrosion, because of the materials selected for component assembly 2.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
The application is a divisional of U.S. patent application Ser. No. 10/793,536, filed on Mar. 3, 2004.
Number | Date | Country | |
---|---|---|---|
Parent | 10793536 | Mar 2004 | US |
Child | 11357280 | Feb 2006 | US |