Information
-
Patent Grant
-
6503160
-
Patent Number
6,503,160
-
Date Filed
Friday, May 11, 200123 years ago
-
Date Issued
Tuesday, January 7, 200322 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Sewell; Paul T.
- Chambers; M.
-
CPC
-
US Classifications
Field of Search
US
- 473 486
- 473 485
- 473 479
- 473 488
- 248 548
- 248 549
- 248 573
- 248 574
- 248 583
- 248 900
-
International Classifications
-
Abstract
A breakaway basketball rim assembly in which the mounting bracket and rim are operably interconnected by a torsion rod which twists resiliently in response to an impact or other downward load on the rim. The torsion rod may extend parallel to the backboard, with one end being fixedly mounted to the mounting bracket and the other end being fixedly mounted to the rim, so that the torsion rod allows the rim to deflect downwardly about an axis that extends parallel to the backboard. The torsion rod may be mounted to overlapping flanges on the mounting bracket and the rim. There may also be a longitudinal torsion rod that extends perpendicular to the transverse torsion rod, so as to permit the rim to deflect downwardly about axes that extend both parallel and perpendicular to the backboard. Also provided is a structure for attaching the net to the rim member, in which there is a depending flange on the lower edge of the rim and a plurality of through openings having projections which receive and hold the attachment loops on the net.
Description
BACKGROUND
a. Field of the Invention
The present invention relates to basketball rim assemblies, and, in particular, to such assemblies which are designed to flex or give way to relieve excessive loads that are applied to the rim without transmitting the loads to the backboard.
b. Related Art
“Breakaway” basketball rims are intended to prevent damage to the rim assembly and/or the backboard when a player applies excessive downward force to the rim. This commonly occurs when a player slams the rim during a “dunk” shot, or when a player grabs the rim and hangs from it. Unless the resulting downward loads are absorbed and dissipated by the rim assembly, either the circular rim (hoop) may bend or the backboard (which is commonly made of glass) may break or shatter; in that case, the rim and/or backboard must be replaced, which is both expensive and causes a significant time delay before play can be resumed.
A number of breakaway rims have been developed in the prior art, with varying degrees of success. One particular example is that shown in U.S. Pat No. 6,080,071 (Childers et al.), in which there is a U-shaped channel that enables the rim to deflect downwardly in response to a downward load applied at any point along an arc at the front of the assembly. While successful in many respects, this device is comparatively complex and therefore expensive to manufacture. Also, like most of the prior art devices, the assembly includes various pivot points, springs, sliding surfaces and so on that are subject to wear and also require frequent adjustment and lubrication/maintenance. Moreover, because these components must be kept free of corrosion in order to function, most prior breakaway basketball rims are not suitable for use in outdoor installations.
Accordingly, there exists a need for a breakaway basketball rim assembly that is effective in absorbing downward loads that are applied to the rim, but which is also comparatively simple and inexpensive to manufacture. Furthermore, there exists a need for such a breakaway rim assembly that requires little or no adjustment or other maintenance. Still further, there exists a need for such a breakaway rim assembly that is durable and long lasting, and that is not adversely affected by corrosion or other damage when used in an outdoor installation.
Another deficiency of traditional basketball rims, shared by breakaway and fixed rims alike, relates to the manner of attaching the net to the metal hoop of the assembly. As can be seen in
FIG. 6
, a typical prior art rim
01
includes a series of loops or hooks
02
that are mounted along its lower edge for attachment on the net (not shown). The hooks or loops may be formed individually or as part of a continuous wire
03
, but in either case the wire must be bent to form the hooks/loops and must then be welded to the bottom edge of the steel hoop. In addition, a separate prop rod
04
or similar support is also often welded between the bottom of the hoop and the mounting bracket
05
to provide the assembly with sufficient strength and rigidity. These steps add significantly to the cost of manufacturing the rim assembly. Moreover, the “tacked on” wire hooks/loops are easily damaged and provide a foothold for corrosion in outdoor installations. Adding to these problems, the bent wire hooks/loops are not particularly easy to use when attaching a net to the assembly.
Accordingly, there exists a need for a structure for attaching a net to a basketball rim that does not require the fabrication and mounting of separate wire loops or hooks. Furthermore, there exists a need for such a structure that is easy to use, so as to facilitate rapid detachment of nets to the rim. Still further, there exists a need for such a structure that enhances the strength of the rim assembly without requiring a separate support or supports. Still further, there exists a need for such a structure that has a clean and smooth overall configuration, both to present a clean appearance and to minimize opportunities for corrosion to gain a foothold.
SUMMARY OF THE INVENTION
The present invention has solved the problems cited above, and is a breakaway basketball rim assembly in which the mechanism for allowing the rim to deflect downwardly and then returning it to a horizontal position comprises at least one torsion rod that twists resiliently under the load.
Broadly, the assembly comprises a base member, a rim member having a hoop portion for extending in a generally horizontal plane, and at least one torsion rod operably interconnecting with the rim member and the base member, the torsion rod having a first end which is mounted to the base member and a second end which is mounted to the rim member so as to be pivotable relative to the base member, so that in response to a downward impact on the hoop portion the torsion rod twists resiliently to permit the rim member to deflect downwardly relative to the base member.
The base member may comprise a mounting bracket for attachment to a generally vertical backboard. The at least one torsion rod may comprise a transverse torsion rod for extending generally parallel to the backboard when the assembly is mounted thereto, the transverse torsion rod having a first end which is suitably mounted to the mounting bracket and a second end which is mounted to the rim member, so that the torsion rod permits the rim member to deflect downwardly about an axis which extends generally parallel to the backboard.
The first end of the transverse torsion rod may be fixedly mounted to a forwardly projection flange portion of the mounting bracket and may pass through a cooperating bore in a rearwardly projecting flange portion of the rim member, and the second end of the rod may be fixedly mounted to a rearwardly projecting flange portion of the rim member and may pass through a cooperating bore in a forwardly projecting flange portion of the mounting bracket. Each end of the torsion rod may comprise a cylindrical exterior portion for pivotably engaging the bore through which the end of the rod passes, so that the first end of the transverse torsion rod supports the flange portion on the rim member in pivoting engagement therewith, and the second end of the torsion rod is supported by the flange portion on the mounting bracket in pivoting engagement therewith.
The rim assembly may further comprise a longitudinal torsion rod for extending generally perpendicular to the backboard, the longitudinal torsion rod having a first end mounted to the mounting bracket and a second end mounted to the rim member, so that the longitudinal torsion rod permits the rim assembly to deflect downwardly about an axis extending generally perpendicular to the backboard. The transverse torsion rod may be mounted to the second, outer end of the longitudinal torsion rod. The mounting bracket may further comprise a support strut having an outer end in pivoting engagement with the longitudinal torsion rod, for supporting the longitudinal torsion rod against downward loads transmitted from the rim member.
The rim member may further comprise a depending flange portion mounted to the hoop portion and having a plurality of through openings with mounting structures for attachment of a basketball net thereto. The mounting structures may comprise first and second attachment members which extend upwardly from the bottom edge of the opening, the attachment members being spaced apart from one another and from first and second side edges of the opening so as to define the central gap and first and second receiving areas for receiving and holding an attachment loop of the net therein.
The attachment members may comprise first and second hook members that face outwardly in opposite directions so as to define the gap and receiving areas. The attachment members may also comprise first and second generally vertical post members which are spaced apart so as to define the central gap, and first and second generally horizontal post members which extend outwardly from the vertical post members so as to define the receiving areas.
In a first embodiment, the breakaway basketball rim assembly may comprise a support bracket for mounting to a generally vertical backboard, the support bracket having first and second parallel, forwardly extending flange portions; a rim member having a hoop portion for extending in a generally horizontal plane and first and second parallel, rearwardly extending flange portions; and a transverse torsion rod extending generally perpendicular to the flange portions in parallel to the backboard, the transverse torsion rod having first and second ends with cylindrical exteriors formed thereon, the first end of the torsion rod being fixedly mounted to a flange portion of the mounting bracket and passing through a cooperating bore in a flange portion of the rim member so that its cylindrical exterior is in pivotable engagement therewith, and the second end of the torsion rod being fixedly mounted to a flange portion of the rim member and passing through a cooperating bore in a flange portion of the mounting bracket so that its cylindrical exterior thereon is in pivotable engagement therewith, so that the pivotable engagement between the ends of the torsion rod and the flange portions supports the rim member and the mounting bracket for pivoting movement relative to one another, and so that in response to a downward impact on the rim member the torsion rod twists resiliently so as to permit the rim member to deflect downwardly relative the mounting bracket.
In another embodiment, the breakaway basketball rim assembly may comprise a mounting bracket for attachment to a generally vertical backboard; a rim member having a hoop portion for extending in a generally horizontal plane and further having first and second substantially parallel, rearwardly extending flange portions; a first, longitudinal torsion rod for extending generally perpendicular to the backboard, the longitudinal torsion rod having a first end fixedly mounted to the mounting bracket and a second end extending forwardly therefrom and having a cylindrical exterior surface formed thereon; a support strut having a first end mounted to the mounting bracket and a second end having a bore in which the cylindrical surface on the second end of the torsion rod is received in pivoting engagement, so that the strut supports the second end of the longitudinal torsion rod against downward loads transferred from the rim member; a transverse support tube mounted to the second end of the longitudinal torsion rod so as to extend at substantially right angles thereto, the support tube having a generally cylindrical internal bore; and a second, transverse torsion rod mounted in the support tube so as to extend generally parallel to the backboard, the transverse torsion rod having a first end which is fixedly mounted to a first end of the support tube and a second end which is fixedly mounted to the rim member; so that in response to a downward impact received on the hoop portion of the rim member the longitudinal and transverse torsion rods twist resiliently so as to permit the rim member to deflect downwardly about axes extending both parallel and perpendicular to the backboard.
These and other features and advantages of the present invention will be apparent from a reading of the following detailed description with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of a breakaway basketball rim assembly in accordance with the present invention, showing the manner in which the rim deflects downwardly in response to a downward load received along the edge thereof;
FIG. 2
is a top, plan view of the breakaway rim assembly of
FIG. 1
, partially cut away to show the torsion bar mechanism that supports the rim and permits it to deflect downwardly in response to downward loads;
FIG. 3
is a perspective view of the torsion bar used in the breakaway rim assembly of
FIGS. 1-2
, showing the manner in which one end of the bar remains stationary while the other rotates with the rim, so that the middle section of the torsion rod twists resiliently to absorb the load;
FIG. 4
is a top, plan view, similar to
FIG. 2
, showing the mechanism of a breakaway rim assembly in accordance with an embodiment of the present invention in which there are first and second torsion bars extending at right angles to permit the rim to bend downwardly about first and second axes;
FIG. 5
is a top, plan view of a circular basketball rim as mounted to the two-axis torsion rod mechanism of
FIG. 4
, showing the first and second axes about which the rim is able to deflect in response to downward loads;
FIG. 6
is a side, elevational view of a prior art basketball rim assembly, showing the conventional loops for attachment of the net thereto, the conventional loops being formed of bent wire and welded or otherwise mounted along the lower edge of the hoop;
FIG. 7
is a side, elevational view, similar to
FIG. 6
, showing a rim assembly in accordance with an embodiment of the present invention in which the net attachment structure is formed by a series of openings in a depending flange that is mounted along the bottom of the hoop and also provides support for the hoop;
FIG. 8
is a perspective view of an exemplary, conventional basketball net, showing the arrangement of cords which form the loops for attaching the net to a rim assembly;
FIG. 9A
is an enlarged, elevational view of one of the net attachment openings of the rim assembly of
FIG. 7
, showing the manner in which first and second opposite facing hooks are formed therein for attachment of one of the loops of the net thereto;
FIG. 9B
is a top, plan view of the net attachment opening of
FIG. 9A
, showing the manner in which the cords of the net are routed through the attachment structure in greater detail;
FIG. 10A
is an enlarged, elevational view, similar to
FIG. 8
, showing a net attachment opening of a structure in accordance with another embodiment of the present invention, in which oppositely facing pegs are provided for attachment of the net rather than the first and second hooks that are shown in
FIGS. 9A-9B
; and
FIG
10
B is a perspective view of the net attachment opening of
FIG. 10A
, showing the manner in which the cords of the net are routed through the attachment structure in greater detail.
DETAILED DESCRIPTION
FIG. 1
shows a breakaway basketball rim assembly
10
in accordance with the present invention. This embodiment is a single axis assembly, so that the rim
12
bends downwardly about a single axis in response to a downward force, as indicated by arrow
14
.
As can be seen, the assembly includes a base bracket
16
that is mounted to the backboard
18
by bolts or other suitable means. The stationary bracket is U-shaped and has first and second forwardly projecting flanges
20
a,
20
b
that extend on either side of a pivoting bracket
22
that is mounted and extended variably from the rim
12
. The stationary and pivoting brackets
16
,
22
are interconnected by a torsion rod pivot mechanism
24
, as will be described in greater detail below. This arrangement of overlapping flanges/brackets provides a particularly strong and easily fabricated structure, however, it will be understood that any other suitable structure may be used to connect the ends of the torsion rod or rods to the rim and the stationary support in accordance with the present invention.
The torsion bar pivot mechanism can be more clearly seen in FIG.
2
. This includes a torsion rod
26
having first and second cylindrical end portions
28
a,
28
b,
and a “necked down” cylindrical middle portion
30
. The torsion rod is suitably formed of heat-treated steel, such as heat-treated 4130-alloy steel, for example. Furthermore, as used herein and in the appended claims, the term “torsion rod” includes all rods, bars, plates and similar members that deflect torsionally and resiliently in response to a twisting or turning force, whether having an elongate, cylindrical shape as shown in the drawings or some other configuration.
As can be seen, the cylindrical end portions
28
a,
28
b
of the torsion rod are somewhat elongate and pass through bore in first and second flanges or plates on either side of the assembly. The outer plates
32
a,
32
b
are formed by the forwardly projecting flanges of the stationary bracket
16
, and the inner plates
34
a,
34
b
are formed by the rearwardly projecting flanges of the pivoting bracket
22
. The first end
28
a
of the torsion rod is fixedly mounted to the flange
32
a
of the stationary bracket by a weld
36
or other suitable means, while the opposite end of the torsion rod is free to rotate within a cooperating bore
38
in the opposite stationary flange
32
b.
This end of the rod, however, is fixedly attached to the inner flange
34
b
of the pivoting bracket, by a weld
40
or other suitable means, while the other end
28
a
of the rod is free to pivot within the cooperating bore
42
formed in the opposite rearward flange
34
a.
Thus, as the rim
12
deflects downwardly as shown in
FIG. 1
, the second end
28
b
of the torsion rod pivots with the rim while its first end
28
a
remains stationary, so that the center portion
30
of the torsion rod is resiliently twisted by the load thereon.
The torsional loading of the rod
26
is illustrated in FIG.
3
. As can be seen, the angle θ of rotation between the fixed and rotating rods is preferably confined to no more than about 15° (approximately 4½%) to avoid exceeding the yield stress of the rod, so that the rod returns resiliently to its initial orientation upon release. As was noted above, the suitable material for use in the rod is 4130 heat-treated alloy steel, which provides a suitable degree of resilience while still being able to be welded with comparative ease, although it will be understood that other suitable metallic and nonmetallic materials will occur to those skilled in the art. The sizing of the rod itself will depend on anticipated loads and other factors; exemplary dimensions may be in the range from about 4-10″ long and about ⅜-1″ in diameter (in the middle portion
30
), however it will be understood that a torsion rod or rods having any dimensions that yield suitable torsion characteristics may be used. In the embodiment which is illustrated, the middle portion
30
of the rod is configured to provide the desired torsional characteristics, while the ends
28
a,
28
b
of the rod are somewhat larger in diameter: The enlarged ends form larger, longer-wearing bearing surfaces where these engage the cooperating bores in the plates, and also provide an enlarged area/circumference for welding at the fixed mounting points.
A breakaway rim assembly constructed in accordance with the embodiment described above has been found to absorb impact loads exerted by a 250-lb+ player, and exhibits excellent deflection and return characteristics. Moreover, as compared with the prior art devices described above, the assembly is comparatively simple and inexpensive to construct, and requires little or no maintenance. Moreover, the assembly is virtually unaffected by corrosion and is therefore suitable for outdoor installations; in the event that corrosion develops between the pivot points at the ends of the torsion rod during an extended period of nonuse, this is immediately broken free with very little resistance the first time that the assembly is impacted or struck during play.
FIG. 4
shows a pivot assembly
50
is accordance with another embodiment of the present invention, in which there are first and second torsion rods
52
,
54
arranged at right angles so as to allow deflection along first and second axes. Each of the torsion rods
52
,
54
is substantially similar to the torsion rod
26
described above in overall configuration, although it will be understood that these are preferably sized to provide suitable resistance when working in concert. The first, longitudinal torsion rod
52
extends perpendicular to the backboard, with its first end
56
a
being fixedly mounted to a stationary base plate
58
, as by weld
59
. A support strut
60
is also mounted to the stationary base plate and extends forwardly to the outer end of the longitudinal torsion rod. Bores
62
a,
62
b
are formed in upwardly extending flanges
64
a,
64
b
on the end of the strut for receiving and supporting the outer end
56
b
of the rod in pivoting engagement therewith, with the result that the strut
60
supports the outer end of the first torsion rod
52
against downward loads transmitted from the rim.
The outer end
56
b
of the first torsion rod
52
, in the area between the supporting flanges
64
a,
64
b,
is mounted (e.g., by welds
68
) to the central portion of a transverse tube member
66
, so that the tube member is able to pivot about the axis of the longitudinal rod by twisting the it in one direction or the other. The second torsion rod
54
resides inside the transverse tube, with its enlarged, cylindrical end portions
72
a,
72
b
engaging the interior of the tube and projecting outwardly from the ends thereof. The ends of the tube members are flanked by first and second flange plates
70
a,
70
b
that are mounted to the rim
12
, and the projecting ends
72
a,
72
b
of the transverse torsion rod pass through corresponding openings in the plates.
As can be seen in
FIG. 4
, the first end
72
a
of the transverse torsion rod is fixedly mounted to the first flange bracket
70
a
(by weld
74
), but is in pivotable engagement with the bore
76
of the tube member. The opposite end
72
b
of the rod, in turn, is fixedly mounted to its end of the tube member (by weld
76
), but is received rotatably in the bore
78
of the second flange plate
70
b.
Thus, in response to downward pressure received at the front of the rim, the fixed end
72
b
of the transverse torsion rod
54
remains stationary while the opposite end
72
a
rotates downwardly under the load. As this occurs, the first flange plate
70
a
pivots downwardly with the rotating end of the rod while the opposite flange plate
70
pivots on bore
78
.
Consequently, as is shown in
FIG. 5
, the assembly
50
is able to deflect downwardly in response to downward loading of the rim
12
, about a first axis
80
that is defined by the longitudinal torsion rod
52
, and about a secondary axis
82
that is defined by the transverse torsion rod
54
. The torsion rods are preferably sized proportionately so that the resistance (i.e., the amount of force needed to cause the rim to deflect) is roughly equal at any point along the rim, so as to provide a fairly uniform response to ball impacts and other loading.
It will be understood that, in addition to the right-angle arrangement described above, the torsion bars may be arranged at other angles, e.g., at various other angles to the backboard and/or to each other; for example, it may be found preferable for certain applications to have the axis or axes extend at angles other than parallel or perpendicular to the backboard. Furthermore, there may be additional (e.g., three or more) torsion rods in some embodiments, or there may be a rod that is bent or built-up into a configuration that permits torsional deflection to develop around more than one axis using a single unit. Still further, in some embodiments the ends of the rod or rods may have shapes or configurations other than the cylindrical shape of the examples described above; for example, the end of the rod (if it is not to be used as a pivoting bearing surface) may be angular or provided with other features for mounting it to the associated components of the assembly, or in some embodiments may have or be attached to a crank or another rod or an extension for transmitting/transferring the loads thereto.
As noted above, the present invention also provides an improved structure for attachment of the net to the rim, which overcomes the deficiencies of conventional wire loops/hooks. Accordingly,
FIG. 7
shows a basketball rim assembly
90
in accordance with the present invention, in which the hoop or rim
92
is provided with a depending flange
94
having a plurality of tie openings
96
formed therein. In the preferred embodiment that is illustrated, the depending flange is cylindrical and extends around the entire circumference of the rim, although it may extend only partway along the rim in some embodiments. Furthermore, the depending flange preferably tapers outwardly from the base of the assembly, so as to be comparatively deep in the area
98
adjacent the mounting bracket
100
, and relatively shallow in the area
102
at the front of the rim; for example, the flange may suitably taper from about 2⅛ inches at the base to about ⅝ inch at the front lip. Consequently, the depending flange serves the added purpose of supporting the rim and providing a broad mounting area
104
for attachment to the bracket, thus obviating the need for a separate support strut or arm (see FIG.
6
), while minimizing interference with the path of the ball at the front of the assembly.
The depending flange
94
is suitably formed of a steel plate, welded to the lower edge of rim
92
; because the flange
94
is rigid and extends in substantially continuous contact with the lower edge of the rim (as compared with the bent wire arrangement described above), this not only reduces discontinuities that would otherwise encourage corrosion, but also imparts greater strength to the rim and renders the assembly easier to align and weld during fabrication.
The tie openings
96
are formed in the upper lip of the flange
94
, so that their upper edges are defined by the rim
92
itself. This arrangement facilitates economical fabrication of the openings, which are suitably formed by laser cutting or similar techniques. In most embodiments there will be twelve of the openings, spaced more or less evenly about the perimeter of the rim, due to this being the number of tie loops on most regulation nets.
FIGS. 9A-9B
show the configuration of the tie openings
96
in greater detail. As can be seen, each of the openings includes a generally rectangular cutout having side edges
106
a,
106
b
and a bottom edge
108
. First and second, oppositely facing hook members
110
a,
110
b
extend upwardly and outwardly on opposite sides of a central gap
112
. The outer ends
114
of the hook members are separated from the sidewalls
106
a,
106
b
of the opening by end gaps
116
, and are down-turned so as to define first and second, semi-enclosed receiving areas
118
.
Attachment of the net is effected by routing the cords of the attachment loop through the hooks and openings in the manner shown. As can be seen in
FIG. 8
, a conventional basketball net
120
has a series of such loops
122
for attachment to the rim, each loop including first and seconds legs
124
a,
124
b.
For attachment to the mounting structure of the present invention, each loop is inserted through an opening so that its two legs
124
a,
124
b
lie in the gap between the hook members. The loop is then bent back upon itself and slipped over the ends of the hook members so that the legs of the loop enter the receiving areas
118
, as indicated at
126
a,
126
b.
In this manner, each loop is conveniently and securely attached to the rim assembly.
Suitable dimensions for an attachment structure in accordance with the embodiment of the invention shown in
FIGS. 9A-9B
are set forth in the following Table A:
TABLE A
|
|
DESCRIPTION
SIZE (inches)
|
|
Overall height of attachment opening
½″
|
Overall width of attachment opening
1⅝″
|
Height of hook members
⅜″
|
Width of central gap between hook
⅜″
|
members
|
Width of hook end gaps
{fraction (3/16)}″
|
Height of receiving area of the hook
{fraction (3/16)}″
|
members
|
|
FIGS. 10A-10B
shows a tie structure
130
in accordance with another embodiment of the present invention. This is somewhat similar to the structure shown in
FIGS. 9A-9B
, in that this has a generally rectangular opening with side edges
132
a,
132
b
and a bottom edge
134
. In this embodiment, however, the areas for receiving and engaging the cords of the net are defined by right-angle, outwardly facing post members, rather than the hook shaped members shown in
FIGS. 9A-9B
. Thus, as can be seen, there are first and second vertically extending post members
136
a,
136
b
which again define a central gap
138
for receiving the legs
124
a,
124
b
of the attachment loop, with the bottom edge
140
of the gap being raised somewhat above the level of the bottom edge
134
of the main opening.
First and second horizontal post members
142
a,
142
b,
in turn, extend outwardly at right angles and in opposite directions from the vertical post members
136
a,
136
b.
The outer ends
144
a,
144
b
of the horizontal post members are flared somewhat to help prevent the cords of the attachment loop from sliding thereover, and are spaced inwardly from the edges
132
a,
132
b
and
134
of the opening to define semi-enclosed areas
146
a,
146
b
for receiving and holding the cords, as indicated at
126
a,
126
b.
Attachment of the loop is accomplished by inserting this through the central gap and then bending it back over the outwardly extending posts
144
a,
144
b,
in a manner similar to that described above. In the embodiment which is shown in
FIGS. 10A-10B
, however, and additional turn can be made about the vertical posts
136
a,
136
b,
as indicated at
148
a,
148
b,
making for an even more secure attachment.
Suitable dimensions for an attachment structure in accordance with the embodiment of the invention which is shown in
FIGS. 10A and 10B
are set forth in the following Table B:
TABLE B
|
|
DESCRIPTION
SIZE (inches)
|
|
Overall height of attachment opening
½″
|
Overall width of opening
1⅝″
|
Width of central gap between posts
⅜″
|
Height of floor of gap above bottom
⅛″
|
of opening
|
Total included width of first and second
{fraction (11/16)}″
|
upright post members
|
Vertical width of horizontal post
⅛″
|
members
|
End gap between horizontal post
{fraction (3/16)}″
|
members and sidewalls of opening
|
Height of receiving area at horizontal
{fraction (3/16)}″
|
post members
|
|
It will be understood that the above dimensions are provided for the purpose of illustrating examples of two preferred embodiments of the present invention, and that other structures in accordance with the present invention may have somewhat different dimensions, and may also differ somewhat in the configuration of the projections and other features from the examples which have been described herein.
It is therefore to be recognized that various alterations, modifications, and/or additions may be introduced into the constructions and arrangements of parts described above without departing from the spirit or ambit of the present invention.
Claims
- 1. A breakaway basketball rim assembly, comprising;a base member: a rim member having a hoop portion for extending in a generally horizontal plane; and at least one torsion rod operably interconnecting said rim member and said base member, said torsion rod comprising a generally straight, elongate member and having a first end mounted to said base member and a second end mounted to said rim member so as to be rotatable relative to said base member; so that in response to a downward impact on said hoop portion said torsion rod twists resiliently so as to permit said rim member to deflect downwardly relative to said base member.
- 2. The basketball rim assembly of claim 1, wherein said base member comprises:a mounting bracket for attachment to a generally vertical backboard.
- 3. The basketball rim assembly of claim 2, wherein said at least one torsion rod comprises:a transverse torsion rod for extending generally parallel to said backboard, said transverse torsion rod having a first end mounted to said mounting bracket and a second end mounted to said rim member, so that said torsion rod permits said rim member to deflect downwardly about an axis extending generally parallel to said backboard.
- 4. The basketball rim assembly of claim 3, wherein said first end of said transverse torsion rod is fixedly mounted to a forwardly projecting flange portion of said mounting bracket and passes through a cooperating bore in a rearwardly projecting flange portion of said rim member, and said second end of said transverse torsion rod is fixedly mounted to a rearwardly projecting flange portion of said rim member and passes through a cooperating bore in a forwardly projecting flange portion of said mounting bracket.
- 5. The basketball rim assembly of claim 4, wherein each said end of said transverse torsion rod comprises:a cylindrical exterior portion for a pivotably engaging said bore in said flange portion which said end of said rod passes through, so that said first end of said transverse torsion rod supports said flange portion of said rim member in pivoting engagement therewith, and said second end of said torsion rod is supported by said flange portion of said mounting bracket in pivoting engagement therewith.
- 6. The basketball rim assembly of claim 3, further comprising:a longitudinal torsion rod for extending generally perpendicular to said backboard, said longitudinal torsion rod having a first end mounted to said mounting bracket and a second end mounted to said rim member, so that said longitudinal torsion rod permits said rim assembly to deflect downwardly about an axis extending generally perpendicular to said backboard.
- 7. The basketball rim assembly of claim 6, wherein said transverse torsion rod is mounted to said second end of said longitudinal torsion rod, so that said transverse torsion rod operably interconnects said rim member and said second end of said longitudinal torsion rod.
- 8. The basketball rim assembly of claim 7, wherein said mounting bracket further comprises:a forwardly extending support strut having an outer end in pivoting engagement with said longitudinal torsion rod, for supporting said longitudinal torsion rod against downward loads transmitted from said rim member.
- 9. The basketball rim assembly of claim 1, wherein said rim member further comprises:a depending flange portion mounted on said hoop portion and having a plurality of through openings formed therein for attachment of a basketball net thereto.
- 10. The basketball rim assembly of claim 9, wherein each of said through openings comprises:first and second attachment members which extend upwardly from a bottom edge of said through opening, said attachment members being spaced apart from one another and from first and second side edges of said opening so as to define a central gap and first and second receiving areas for receiving and holding an attachment loop of said net therein.
- 11. The basketball rim assembly of claim 10, wherein said attachment members comprise:first and second hook members which face outwardly in opposite directions so as to define said gap and receiving areas.
- 12. The basketball rim assembly of claim 10, wherein said attachment members comprise:first and second generally vertical post members which are spaced apart to as to define said central gap; and first and second generally horizontal post member which extend outwardly from said vertical post members so as to define said receiving areas.
- 13. A breakaway basketball rim assembly, comprising:a mounting bracket for attachment to a generally vertical backboard, said support bracket having first and second parallel, forwardly extending flange portions; a rim member having a hoop portion for extending in a generally horizontal plane and first and second parallel, rearwardly extending flange portions; and a transverse torsion rod extending generally perpendicular to said flange portions and parallel to said backboard, said transverse torsion rod having first and second ends with cylindrical exteriors formed thereon, said first end of said torsion rod being fixedly mounted to a forwardly projecting flange portion of said mounting bracket and passing through a cooperating bore in a rearwardly projecting flange portion of said rim member so that said cylindrical exterior thereon is in pivotable engagement therewith, and said second end of said torsion rod being fixedly mounted to a rearwardly extending flange portion of said rim member and passing through a cooperating bore in a forwardly projecting flange portion of said mounting bracket so that said cylindrical exterior thereon is in pivotable engagement therewith; so that said pivotable engagement between said ends of said torsion rod and said bores in said flange portions supports said rim member and said mounting bracket for pivoting movement relative to one another, and so that in response to a downward impact on said hoop portion said torsion rod twists resiliently so as to permit said rim member to deflect downwardly relative to said mounting bracket.
- 14. A breakaway basketball rim assembly, comprising:a mounting bracket for attachment to a generally vertical backboard; a rim member having a hoop portion for extending in a generally horizontal plane and first and second generally parallel, rearwardly extending flange portions; a first, longitudinal torsion rod for extending generally perpendicular to said backboard, said longitudinal torsion rod having a first end fixedly mounted to said mounting bracket and a second end extending forwardly from said mounting bracket, said second end of said longitudinal torsion rod having a cylindrical exterior surface formed thereon; a support strut having a first end mounted to said mounting bracket, and a second end having a bore in which said second end of said torsion rod is received in pivoting engagement, so that said strut supports said second end of said longitudinal torsion rod against downward loads thereon; a transverse support tube mounted to said second end of said longitudinal torsion rod so as to extend at substantially right angles thereto, said support tube having a generally cylindrical internal bore; and a second, transverse torsion rod mounted within said support tube so as to extend generally parallel to said backboard, said transverse torsion rod having a first end which is fixedly mounted to a first end of said support tube and which projects beyond said first end of said tube so that a cylindrical surface thereon is received in rotating engagement with a cooperating bore in the first flange portion of said rim member, and a second end which is fixedly mounted to the second flange portion of said rim member and which extends into said support tube so that a cylindrical surface thereon is received in rotating engagement with said bore in said tube; so that in response to a downward impact received on said hoop portion said longitudinal and transverse torsion rods twist resiliently so as to permit said rim member to deflect downwardly about axes extending both parallel and perpendicular to said backboard.
US Referenced Citations (12)