The present disclosure generally relates to a filler neck closure assembly for a vehicle fuel tank, and particularly to a filler neck closure for use in a capless fuel tank filler neck. More particularly, the present disclosure relates to a breakaway closure for a capless tank filler neck.
U.S. Pat. No. 6,315,144 to Dean C. Foltz, entitled “Containment Cover for Tank filler Neck Closure” is hereby incorporated by reference herein. U.S. Pat. No. 1,978,314 to Lancaster and U.S. Pat. No. 2,054,145 to Tandy are also incorporated by reference herein.
A removable fuel cap with a sealing gasket typically is used to close the open end of a fuel tank filler neck. After an attendant fills the fuel tank and withdraws the pump nozzle from the filler neck, the fuel cap is attached to the filler neck so that the sealing gasket forms a seal between the fuel cap and the filler neck. Thus, the fuel cap closes the open end of the filler neck to block discharge of liquid fuel and fuel vapor from the fuel tank through the filler neck. Some fuel caps are provided with pressure-relief and vacuum-relief valves to permit some controlled venting of fuel vapors in the filler neck, while the fuel cap is mounted on the filler neck.
It has been observed that fuel caps are often lost or damaged over time and, as a result, the open end of the filler neck might not be closed and sealed in accordance with original equipment specifications during operation of the vehicle. Accordingly, a filler neck configured to “open” automatically as a fuel-dispensing pump nozzle is inserted into the filler neck during refueling and “close” automatically once the pump nozzle is withdrawn from the filler neck without requiring an attendant to reattach a fuel cap to the filler neck would be an improvement over many conventional capped filler neck systems. Although conventional fuel caps function to close filler necks in a satisfactory manner, it is thought that a capless filler neck could make vehicle refueling more convenient for consumers because no action other than inserting a pump nozzle into the outer end of the filler neck would be required to begin refueling a vehicle.
According to the present disclosure, a capless filler neck closure unit is associated with a vehicle fuel tank filler neck. In illustrative embodiments, the closure unit is formed to include a frangible, breakaway groove that is configured to fracture when the closure unit is impacted by a strong force during a vehicle accident. Following such a fracture, an outer portion of the closure unit separates from an inner portion of the closure unit that is retained in a mounted position closing an outer end of the capless filler neck to block discharge of liquid fuel from the fuel tank through the outer end of the capless filler neck.
In illustrative embodiments, the outer portion of the closure unit includes a pivotable outer appearance door and the inner portion of the closure unit includes a pivotable inner flapper door. The inner flapper door is biased to a normally closed position to block discharge of fuel and fuel vapor from the filler neck. The inner flapper door remains in its normally closed position even after separation of the outer portion from the inner portion caused by fracture of the frangible, breakaway groove in the closure unit.
Also in illustrative embodiments, the closure unit includes grounded electrically conductive components. These components are arranged to “ground” a positively charged fuel-dispensing pump nozzle to dissipate an electrostatic charge associated with the pump nozzle once the pump nozzle contacts an exterior portion of the closure unit and before a sealed normally closed inner flapper door included in the closure unit is opened.
Additional features of the disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A fuel tank filler apparatus 10 includes a fuel tank filler neck 12 and a capless filler neck closure unit 14 coupled to an outer end of filler neck 12 as suggested in
As suggested in
Each of capless filler neck closure units 14, 114 is arranged normally to close an open mouth of filler neck 12 or 112 as suggested, for example, in
As suggested in
Barrier unit 32 is coupled to filler neck 12 to close open mouth 13. Barrier unit 32 includes a foundation 38 that is coupled to filler neck 12 and formed to include an inner nozzle-receiving aperture 40. Barrier unit 32 also includes a flapper door 42 mounted for movement relative to foundation 38 to open and close inner nozzle-receiving aperture 40.
Breakaway unit 34 of closure unit 14 is arranged to lie apart from filler neck 12 as suggested in
Frangible portion 36 of closure unit 14 is arranged to interconnect barrier and breakaway units 32, 34. Frangible portion 36 is formed to fracture along fracture line 18 in response to an external impact 20 to breakaway unit 34 to allow separation of breakaway unit 34 from barrier unit 32 without separating barrier unit 32 from filler neck 12 so that barrier unit 32 remains in place to block unwanted discharge of liquid fuel and fuel vapor from filler neck 12 through mouth 13.
Capless filler neck closure unit 14 is adapted to be coupled to a filler neck 12 to close an inlet into a fluid-conducting passageway 62 formed in filler neck 12 and to receive a fuel-dispensing pump nozzle 16 during fuel tank refueling. In the illustrated embodiment, capless filler neck closure unit 14 includes a base 52 configured to provide a portion of barrier unit 32 and also a portion of breakaway unit 34. Base 52 includes a bottom wall 54 and flapper door 42 coupled to bottom wall 54 as shown in
Fuel tank filler apparatus 10 further includes a filler neck 12 including an outer end 60 and a fluid-conducting passageway 62 having an inlet opening 13 in outer end 60. As suggested in
In an illustrative embodiment, a monolithic member 53 made of a plastics material is formed to include bottom wall 54, axially inner and outer portions 58, 44 of side wall 56, and frangible portion 36 as shown best in
In illustrative embodiments, filler neck mount 78 is spin-welded onto filler neck 12. However, it is within the scope of this disclosure to include any suitable structure or apparatus such as, for example, annular beads, threads, cams, or flanges for coupling base 52 of closure unit 14 to filler neck 12.
Cover 46 further includes an outer sleeve 88 coupled to top wall 64 and arranged to surround and lie in spaced-apart relation to inner sleeve 66. Inner sleeve 66 is arranged to surround outer portion 44 of axially extending side wall 56 and frangible portion 36. Inner sleeve 66 is formed to include one or more tab-receiving notch 86 opening toward outer portion 44 of axially extending side wall 56.
A pump nozzle 16 is adapted for insertion into nozzle-receiving opening 40 formed in base 52 so that fuel can be pumped into fuel tank 24 through filler neck 12. Bottom wall 54 of base 52 has an inner, funnel-shaped, nozzle-guiding surface 51 formed to define nozzle-receiving opening 40. Nozzle-guiding surface 51 facilitates insertion of pump nozzle 16 into filler neck 12 for refueling. Reference is hereby made to U.S. Pat. No. 6,446,826, which is incorporated by reference herein, for a more detailed description of a filler neck closure assembly. Reference is also made to U.S. Pat. No. 6,189,581, which is incorporated by reference herein, for a description of another suitable filler neck closure assembly.
Appearance door 50 is movable between a normally closed position, as shown in
Base 52 includes four tabs 86 and dust cover 46 includes four respective notches 86 for receiving tabs 84 therein in order to snap-fit cover 46 onto base 52. In order to snap-fit cover 46 to base 52, a user must first place cover 46 over base 52 and then turn cover 46 approximately 90 degrees in order to lock tabs 84 within notches 86. Although four tabs 84 are provided, it is within the scope of this disclosure to include a base having any number of tabs and a cover having any number of respective notches. Further, it is within the scope of this disclosure to couple cover 46 to base 52 in any number of ways.
As mentioned above, appearance door 50 normally is positioned to lie in the closed position. In order to insert pump nozzle 16 into filler neck 12 so that fuel may be pumped into fuel tank 24, pressure or a downward force must be applied by pump nozzle 16 to door 50 in order to move door 50 from the closed to the opened position, as shown in
As suggested in
Barrier unit 132 is coupled to filler neck 112 to close open mouth 113. Barrier unit 132 includes a foundation 138 that is coupled to filler neck 112 and arranged to extend through open mouth 113 and terminate in a location outside of filler neck 112. Barrier unit 132 also includes a support post 101 coupled to foundation 138 and located outside of filler neck 112 and a flapper door 142 mounted for movement relative to foundation 138 to open and close an inner nozzle-receiving aperture 140 formed in foundation 138.
Breakaway unit 134 of closure unit 114 is arranged to lie apart from filler neck 112. Breakaway unit 134 includes a cover support 102, a cover 146 formed to include an outer nozzle-receiving aperture 148 and coupled to cover support 102, and an appearance door 150 mounted for movement relative to cover 146 to open and close outer nozzle-receiving aperture 148. A spring 151 is provided for yieldably urging appearance door 150 to assume a position closing aperture 148 as shown in
Frangible portion 136 of closure unit 114 is arranged to interconnect support post 101 and cover support 102. Frangible portion 136 is formed to fracture in response to an external impact 20 to breakaway unit 134 to allow separation of breakaway unit 134 from barrier unit 132 without separating barrier unit 132 from filler neck 112 so that barrier unit 132 remains in place to block unwanted discharge of liquid fuel and fuel vapor from filler neck 112 through mouth 113. In the illustrated embodiment of
Apparatus 110 further includes a filler neck 112 including an outer end 160 and a fluid-conducting passageway 162 having an inlet opening 113 in outer end 160. As suggested in
Outer end 102 of tube 163 defines an axially outer portion of an axially extending side wall included in base 152. Upstanding pipe 155 of barrier unit 132 and inner end 101 of tube 163 cooperate to define an axially inner portion of the axially extending side wall included in base 152. As suggested in
A monolithic member 153 made of a plastics material is formed to include bottom wall 154 and upstanding pipe 155. Tube 163 is also monolithic and made of a plastics material and inner end 101 of tube 163 is fixed rigidly to upstanding pipe 155. Upstanding pipe 155 includes a top edge 157 and an interior wall 159 extending downwardly from top edge 157 as shown in
Cover 146 includes a top wall 164 formed to include outer nozzle-receiving aperture 148, an appearance door 150 mounted for movement relative to top wall 164 to open and close outer nozzle-receiving aperture 148, and a cover sleeve 165 arranged to extend downwardly from top wall 164 to surround a portion of outer end 102 of tube 163. Cover sleeve 165 includes a bottom edge 167 and an interior wall 169 extending upwardly from bottom edge toward top wall 164. Outer end 102 of tube 163 includes an external wall mating with interior wall 169 of cover sleeve 165 and a radially outwardly extending flange 171 positioned to lie between exterior wall and frangible portion 136 and mate with bottom edge 167 of cover sleeve 165.
Each of cover 146 and tube 163 comprises an electrically conductive material (or coating) that is grounded to dissipate any electrostatic charge carried on a fuel-dispensing pump nozzle 16 moved to contact cover 146. During refueling, fuel-dispensing pump nozzle 16 will be moved to open appearance door 150 and flapper door 142 and extend into passageway 162 in filler neck 12 in a manner similar to that shown, for example, in
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/610,670, filed Sep. 17, 2004, which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4177931 | Evans | Dec 1979 | A |
4678097 | Crute | Jul 1987 | A |
4830058 | Harris | May 1989 | A |
5975328 | Hagano et al. | Nov 1999 | A |
6179148 | Harris | Jan 2001 | B1 |
6189581 | Harris et al. | Feb 2001 | B1 |
6315144 | Foltz | Nov 2001 | B1 |
6679396 | Foltz et al. | Jan 2004 | B1 |
6691750 | Foltz | Feb 2004 | B1 |
6755057 | Foltz | Jun 2004 | B2 |
6923224 | McClung et al. | Aug 2005 | B1 |
Number | Date | Country |
---|---|---|
4106864 | May 1992 | DE |
20309800 | Jul 2004 | DE |
Number | Date | Country | |
---|---|---|---|
20060060581 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60610670 | Sep 2004 | US |