The disclosure relates generally to an assembly for a gate system, and more particularly to a breakaway gate assembly, and related components, devices, and methods.
Many types of gate systems, particularly larger scale commercial and industrial gate systems, need to be extremely durable and endure the harshest weather elements. Many of these gate systems must also require minimal maintenance and be able to withstand frequent interaction with heavy equipment and/or vehicles operating in close proximity with the gate system. For example, a conventional gate system may be used to securely gate off an exterior structure, such as a commercial dumpster or similar installation. One common solution is an all-welded gate and hinge system.
One drawback of this type of all-welded gate and hinge system, however, is that whenever any component, including a gate post, hinge, and/or the gate itself becomes damaged, the damage sustained to this system is very costly to repair and disrupts normal use by the customer. This type of damage can also be very difficult to avoid in many applications. For example, in the commercial dumpster installation above, a commercial-grade garbage truck, which lifts and empties commercial dumpsters, will routinely be operating adjacent the gate system. As a result, it is common for the vehicle to accidentally damage the gate system, for example, by colliding with a portion of the gate. Thus, there is a need for a strong and durable gate system that is less expensive to repair in the event of damage.
The disclosure relates generally to an assembly for a gate system, and more particularly to a breakaway gate assembly, and related components, devices, and methods. In one embodiment, a breakaway gate assembly includes a hinge subassembly rotatably mounted to a vertical hinge post, and a gate subassembly removably mounted to the hinge subassembly. The gate subassembly comprises a gate body and a plurality of standoff features coupled thereto. Each standoff feature comprises a stem portion extending horizontally away from a vertical mounting surface of the gate body, and a head portion coupled to a distal end of the stem portion, the head portion having a bearing surface facing the vertical mounting surface. The hinge subassembly comprises a vertical mounting plate including a first plate surface and a second plate surface opposite the first plate surface, the vertical mounting plate forming a plurality of apertures configured to receive and secure the respective plurality of standoff features. Each of the plurality of apertures comprises a wide portion for receiving the head portion of one of the standoff features, and a narrow portion, below the wide portion, for receiving the stem portion of the respective standoff feature to position a portion of the vertical mounting plate between the vertical mounting surface and the respective bearing surface. The hinge subassembly also comprises a plurality of hinge rings coupled to the first plate surface, the plurality of hinge rings rotatably disposed around the vertical hinge post, the plurality of hinge rings having an internal diameter larger than the first diameter.
One advantage of this arrangement is that a force sufficient to damage the gate body, such as a vehicle collision with the gate, for example, may cause the standoff features to fail before the force is transmitted to the vertical hinge post. In many applications, the cost to repair or replace a vertical hinge post is very high because the hinge post may be permanently installed in a concrete foundation, while the cost to replace or repair the gate subassembly and/or hinge subassembly is significantly lower. By causing the gate subassembly to break away from the hinge subassembly, damage to the vertical hinge post may be prevented, thereby mitigating the total repair and replacement cost.
According to one embodiment, a breakaway gate assembly is disclosed. The breakaway gate assembly comprises a vertical hinge post having a first diameter. The breakaway gate assembly further comprises a gate subassembly. The gate subassembly comprises a gate body comprising a vertical mounting surface. The gate subassembly further comprises a plurality of standoff features coupled to the gate body. Each of the plurality of standoff features comprises a stem portion extending horizontally away from a vertical mounting surface, the stem portion having a first horizontal width. Each of the plurality of standoff features further comprises a head portion coupled to a distal end of the stem portion, the head portion having a second horizontal width greater than the first horizontal width, the head portion having a bearing surface facing the vertical mounting surface. The breakaway gate assembly further comprises a hinge subassembly configured to support the gate subassembly. The hinge subassembly comprises a vertical mounting plate comprising a first plate surface and a second plate surface opposite the first plate surface. The vertical mounting plate forms a plurality of apertures configured to receive and secure the respective plurality of standoff features. Each of the plurality of apertures comprises a wide portion having a third horizontal width larger than the first horizontal width. Each of the plurality of apertures further comprises a narrow portion having a fourth horizontal width smaller than the third horizontal width and equal to or greater than the second horizontal width, the narrow portion configured to receive and retain the respective stem portion to position a portion of the vertical mounting plate between the vertical mounting surface and the respective bearing surface. The hinge subassembly further comprises a plurality of hinge rings coupled to the first plate surface, the plurality of hinge rings rotatably disposed around the vertical hinge post, the plurality of hinge rings having an internal diameter larger than the first diameter.
According to another embodiment, a breakaway hinge subassembly for a gate assembly is disclosed. The breakaway hinge subassembly comprises a vertical mounting plate comprising a first plate surface and a second plate surface opposite the first plate surface. The vertical mounting plate forms a plurality of apertures configured to receive and secure a respective plurality of standoff features extending from a vertical mounting surface of a gate body. Each of the plurality of apertures comprises a wide portion wider than a head portion of a respective standoff feature. Each of the plurality of apertures further comprises a narrow portion narrower than the head portion and wider than a stem portion of the respective standoff feature, the narrow portion configured to retain the head portion of the respective standoff feature on the first plate surface and the vertical mounting surface of the gate body on the second plate surface. The hinge subassembly further comprises a plurality of hinge rings coupled to the first plate surface, the plurality of hinge rings configured to be rotatably disposed around a vertical hinge post.
According to another embodiment, a method of mounting a breakaway gate assembly is disclosed. The method comprises disposing a plurality of hinge rings around a vertical hinge post, the plurality of hinge rings coupled to a vertical mounting plate, wherein the vertical mounting plate is rotatable with respect to the vertical hinge post. The method further comprises inserting a plurality of standoff features extending from a gate body of a gate subassembly through a respective plurality of wide portions of a plurality of apertures in the vertical hinge post to contact a vertical mounting surface of the gate body with a first plate surface of the vertical mounting plate. The method further comprises moving the gate body downwardly with respect to the vertical mounting plate to move the plurality of standoff features downwardly from the wide portions of the plurality of apertures into respective narrow portions of the plurality of apertures.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.
The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the description serve to explain principles and operation of the various embodiments.
The embodiments set forth below represent the information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
Any flowcharts discussed herein are necessarily discussed in some sequence for purposes of illustration, but unless otherwise explicitly indicated, the embodiments are not limited to any particular sequence of steps. The use herein of ordinals in conjunction with an element is solely for distinguishing what might otherwise be similar or identical labels, such as “first plate surface” and “second plate surface,” and does not imply a priority, a type, an importance, or other attribute, unless otherwise stated herein. The term “substantially” used herein in conjunction with a numeric value means any value that is within a range of five percent greater than or five percent less than the numeric value.
As used herein and in the claims, the articles “a” and “an” in reference to an element refers to “one or more” of the element unless otherwise explicitly specified. Various embodiments will be further clarified by the following examples.
The disclosure relates generally to an assembly for a gate system, and more particularly to a breakaway gate assembly, and related components, devices, and methods. In one embodiment, a breakaway gate assembly includes a hinge subassembly rotatably mounted to a vertical hinge post, and a gate subassembly removably mounted to the hinge subassembly. The gate subassembly comprises a gate body and a plurality of standoff features coupled thereto. Each standoff feature comprises a stem portion extending horizontally away from a vertical mounting surface of the gate body, and a head portion coupled to a distal end of the stem portion, the head portion having a bearing surface facing the vertical mounting surface. The hinge subassembly comprises a vertical mounting plate including a first plate surface and a second plate surface opposite the first plate surface, the vertical mounting plate forming a plurality of apertures configured to receive and secure the respective plurality of standoff features. Each of the plurality of apertures comprises a wide portion for receiving the head portion of one of the standoff features, and a narrow portion below the wide portion for receiving the stem portion of the respective standoff feature to position a portion of the vertical mounting plate between the vertical mounting surface and the respective bearing surface. The hinge subassembly also comprises a plurality of hinge rings coupled to the first plate surface, the plurality of hinge rings rotatably disposed around the vertical hinge post, the plurality of hinge rings having an internal diameter larger than the first diameter.
One advantage of this arrangement is that a force sufficient to damage the gate body, such as a vehicle collision with the gate, for example, may cause the standoff features to fail before the force is transmitted to the vertical hinge post. In many applications, the cost to repair or replace a vertical hinge post is very high because the hinge post may be permanently installed in a concrete foundation, while the cost to replace or repair the gate subassembly and/or hinge subassembly is significantly lower. By causing the gate subassembly to break away from the hinge subassembly, damage to the vertical hinge post may be prevented, thereby mitigating the total repair and replacement cost.
Before discussing the features of the breakaway gate system disclosed herein, a discussion of a conventional unitary gate system will be discussed. In this regard,
The unitary gate subassembly 14 includes a gate body 22 and two or more hinge rings 24 coupled to a vertical surface 26 of the gate body 22. In this example, each hinge rings 24 is welded to a standoff member 28, which is welded to the vertical surface 26. In other conventional examples, the hinge rings 24 may be welded directly to the vertical surface 26, or otherwise rigidly and permanently attached to the gate body 22. The unitary gate subassembly 14 can be rotatably coupled to the vertical hinge post 12 in one of two ways. One option is to install the hinge rings 24 over the vertical hinge post 12 prior to coupling the hinge rings 24 to the gate body 22, and welding the rings to the gate body 22 on site. This is labor intensive, however, and it may be difficult to keep the heavy gate body 22 plumb during installation. Another option is to pre-install the hinge rings 24 on the gate body 22 and lift the entire unitary gate subassembly 14 vertically and to lower the hinge rings 24 around the vertical hinge post 12. This requires additional machinery to lift and position the heavy unitary gate subassembly 14, however, and increases the risk of accident and injury. Thus, there is a need for a gate assembly that is safe and inexpensive to install.
Another drawback for the conventional unitary gate assembly 10 of
The permanent installation of the vertical hinge post 12 in the concrete foundation 20 is generally advantageous for providing structural support for the vertical hinge post 12 and allows the vertical hinge post 12 to support very heavy cantilevered loads, such as the unitary gate subassembly 14. If the vertical hinge post 12 is bent or otherwise damaged, however, the vertical hinge post 12 must often be replaced entirely. This is expensive and time consuming, typically requiring excavation and re-pouring of the concrete foundation 20. For example, in many applications, when the conventional unitary gate assembly 10 is damaged, the owner must hire a contractor to come on site and cut the hinge rings 24 away from the gate body 22, make repairs to the gate body 22, and fabricate new hinge rings 24. The contractor must then return to the site with a welder and weld the hinge rings 24 back to the gate body 22 in the field. This is a very labor intensive and, in many cases, dangerous task. Additionally, if the gate body 22 was originally painted or powder coated black (or any other color) as many typically are, field welding the unitary gate subassembly 14 necessarily compromises the painted or powder coated finish, requiring the paint or powder coating to be reapplied. Thus, there is a need for a gate assembly that is less expensive and time consuming to repair.
In this regard, according to one embodiment of the disclosure,
In this embodiment, the breakaway features 36 have sufficient strength to securely couple the gate subassembly 34 to the hinge subassembly 32 against the force of gravity and during normal operation, i.e., rotating the gate subassembly 34 about the vertical hinge post 12 to open or close the breakaway gate assembly 30. In this embodiment, however, if the gate subassembly 34 is subjected to a force beyond a certain threshold, e.g., a force significantly larger than the force of gravity, such as from a collision with a vehicle or heavy equipment, the breakaway features 36 are configured to fail before this larger force is transferred to the vertical hinge post 12. In this regard,
As discussed above, one advantage of this arrangement is that, in many applications, the cost to repair or replace the hinge subassembly 32 and/or gate subassembly 34 is significantly lower than the cost to repair the vertical hinge post 12. In this manner, by causing the gate subassembly 34 to break away from the hinge subassembly 32, damage to the vertical hinge post 12 may be prevented, thereby mitigating the total repair and replacement cost of the breakaway gate assembly 30 components.
Referring now to
In this regard,
When the gate subassembly 34 is mounted on the hinge subassembly 32 in this embodiment, the vertical mounting surface 44 of the gate subassembly 34 is configured to engage the vertical mounting plate 40 parallel to the vertical mounting surface 40, and the gate assembly is able to rotate about the vertical hinge post 12 about an axis of rotation defined by the hinge rings 38. In this regard,
The diameter, shape, and number of the keyed apertures 48 and standoff members 54 can also vary to accommodate different sized gates and gate materials. In this regard,
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications, combinations, sub-combinations, and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.
This application claims priority to provisional patent application Ser. No. 62/217,458, filed Sep. 11, 2015, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
188402 | Palm | Mar 1877 | A |
749015 | Bailey | Jan 1904 | A |
1835042 | Hammer | Dec 1931 | A |
2074759 | Richards | Mar 1937 | A |
3332182 | Mark | Jul 1967 | A |
5044588 | Gunter | Sep 1991 | A |
5103658 | McQuade | Apr 1992 | A |
5593141 | Cain | Jan 1997 | A |
5624170 | Hasty | Apr 1997 | A |
7155779 | Watkins | Jan 2007 | B2 |
7461489 | Herbertsson | Dec 2008 | B2 |
7887029 | Flannery | Feb 2011 | B2 |
9371642 | Herbertsson | Jun 2016 | B2 |
9458645 | King | Oct 2016 | B1 |
9777520 | Volin | Oct 2017 | B2 |
20030009945 | Cheng | Jan 2003 | A1 |
20050028947 | Waldman | Feb 2005 | A1 |
20120261632 | Bertucat | Oct 2012 | A1 |
20130086840 | Marsden | Apr 2013 | A1 |
20150191955 | Dudley | Jul 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170074015 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62217458 | Sep 2015 | US |