The present exemplary embodiment relates to vehicles. It finds particular application in conjunction with a bracket or mounting associated with a winch mounted on the vehicle and a method of mounting the bracket to the vehicle, and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiment is also amenable to other like applications.
It is common in certain types of vehicles, such as off-road or all-terrain vehicles (ATV), to provide a winch assembly that is mounted on the vehicle. The winch assembly includes a line such as a cable, wire, rope, etc., that is wound on a spool or drum and let out or wound in by rotating the drum. Electric, hydraulic, internal combustion drive, or manual actuation of the drum can be provided. The winch assembly is normally received on a bracket, mounting plate, or platform (referred to hereafter as a bracket) that is secured to the vehicle. One common area for mounting the bracket is adjacent the front bumper, and oftentimes the bracket is structurally interconnected with the front bumper and/or frame. Protective tubing or bars are provided as a part of the bracket to provide protection to the winch assembly received on the bracket.
Currently, winch assemblies are installed to the front of the vehicle via a mounting structure that is rigid in all directions. The rigidity is desirable with regard to strength and durability, however, the rigid mount affects deformation of the vehicle in a collision event. Specifically, the rigid mounting of the bracket generally does not allow deformation in the mounting area during a collision event and thus input loads transferred to the vehicle remain high. Prior arrangements triangulate the front bumper structure and remain very stiff in a collision event, i.e. the bracket does not collapse or absorb energy as desired. As a result of this rigid mounting arrangement of the winch bracket, a force or load can stay above lower frame tubes causing a large moment/torque to affect the bracket. The winch bracket is too rigidly attached to the bumper and affects the collapse of the bumper.
Accordingly, a need exists for a bracket that retains the advantages of mounting a winch to an associated vehicle, and overcomes the above noted problems and others in a manner that is simple, easy to manufacture, economical, and effective.
The present disclosure is directed to a breakaway winch bracket for mounting a winch to an associated vehicle, and a method of mounting a bracket to the vehicle.
The winch bracket assembly includes a winch bracket extending from an end of the associated vehicle frame. A mounting arrangement secures the winch bracket to the frame and is configured to allow the winch bracket to have high rigidity relative to the frame in a first direction and a different, low rigidity relative to the frame in a second direction.
The bracket includes first and second flanges disposed in spaced relation, and secured to the associated frame member with respective fasteners.
The flanges each include a hook-shaped member for operative engagement by the fastener.
The first and second hook-shaped members are oriented in the same direction so that a predetermined force imposed thereon toward an interior bight portion of the hook-shaped members separates the first and second hook-shaped members from the associated frame member in a collision event.
A method of mounting a winch bracket assembly to a vehicle includes providing a frame of the associated vehicle, providing a winch bracket, and securing the winch bracket to the frame at one end of the associated vehicle so that the winch bracket has a high rigidity relative to the frame in a first direction and a different, low rigidity relative to the frame in a second direction.
The method further includes using a fastener to secure a portion of the winch bracket to the frame, including orienting a hook-shaped member such that an open portion of the hook shape is disposed forwardly of the closed end of the hook shape.
The new winch bracket advantageously allows the winch bracket to have high rigidity relative to the frame in a first direction and a different, low rigidity relative to the frame in a second direction.
The winch bracket slips between vertical frame pipes which support the front bumper during a collision event.
The new winch bracket has a high rigidity relative to the frame in a first direction and a different, low rigidity relative to the frame in a second direction.
Still other benefits and advantages of the present disclosure will become more apparent from reading and understanding the following detailed description.
Turning first to
An improved mounting arrangement of winch bracket 210 is shown in
As perhaps best illustrated in
Use of the hook-shaped members 250, 252 secured by respective fasteners 258 to the vehicle frame, specifically the bumper mounts 230, 232, allows large forces to be transferred to the winch assembly such as when the winch is pulling a load toward the vehicle or in turn if the vehicle is being towed via the winch line. On the other hand, the opening 256 provided in each of the hook-shaped members 250, 252 (which hook-shaped members both face in the same direction) provides for a different, lower rigidity in a second direction (i.e., a force that urges the fastener 258 outwardly through the opening 256). For example, in a front end collision event large forces can be imposed on the protective tubing 214 as a result of the collision. These forces are transferred to the remainder of the winch bracket 210, including the flanges 224, 226 and the hook-shaped members 250, 252 formed in the flanges. If the forces imposed on the front of the vehicle toward the rear of the vehicle are above a predetermined value, the fastener 258 will no longer be able to hold the winch bracket planar surface 212 in position. That is, the hook-shaped members 250, 252 will separate from the respective fasteners 258. This allows the planar portion 212 of the winch bracket to rotate around the lower end 216 and improve force dissipation. Likewise, this mounting arrangement still allows the winch to be effectively used in the pulling direction, i.e. forces imposed on the winch bracket in the same direction (rear- to-front) of the vehicle are transferred into the bight portion of the hook-shaped members. The winch bracket is thus able to operate in its intended manner and convey the forces therethrough. As a result of this exemplary configuration, forces and rigidity in this direction (rear-to-front) are substantially larger than the forces and rigidity in the opposite direction (front-to-rear) encountered in a front end collision event.
In summary, the winch bracket 210 of the present disclosure is allowed to break away and rotate between the vertical frame pipes. This allows the bumper carry pipes to crush axially and absorb energy as desired. The winch bracket 210 is designed to allow the bracket to slip between the vertical frame pipes which support the front bumper. The upper bracket mounts are changed to a hook-style which is very strong in the forward (forces are transferred into the bight region of the hook shape) or the pulling direction, but the upper bracket mounts break away toward the rear in a collision event (i.e., the fastener moves away from engagement with the bight portion of the hook shape) and separates from the upper bracket mounts through the opening in the hook shape. Upon initial impact, the upper winch bracket mounts are able to break loose and rotate rearward. After the bumper pipes collapse, the impact load is transferred to the lower frame, resulting in improved force dissipation over a conventional or standard bracket. The breaking loose of the winch bracket 210 and collapse of the bumper pipes also contribute to energy absorption and aid in mitigating the deceleration of the vehicle.
This written description uses examples to describe the disclosure, including the best mode, and also to enable any person skilled in the art to make and use the disclosure. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims. Moreover, this disclosure is intended to seek protection for a combination of components and/or steps and a combination of claims as originally presented for examination, as well as seek potential protection for other combinations of components and/or steps and combinations of claims during prosecution.