The present invention relates to a miniaturized breaker or the like that is incorporated in a secondary battery and the like of electrical machines.
Conventionally, breakers have heretofore been used as protecting devices for a secondary battery, a motor, and the like of various kinds of electrical machines. When a temperature of the secondary battery increases in excess during charging and discharging, or when abnormality occurs such as a case where excessive current flows through motors mounted in machines such as automotive vehicles and home electric appliances, the breaker shuts down electric current for protecting the secondary battery, the motors, and the like. To reliably ensure safety for machines, the breaker, which is used as such a protecting device, is required to precisely operate conjunction with a change in temperature.
Further, the breaker is likely to be used as the protecting device for the secondary battery and the like equipped in electrical machines such as a notebook personal computer, a tablet portable terminal device, and a compact multi-functional mobile phone called a smart phone. In such likelihood, in addition to enhanced safety mentioned above, the breaker is required to be miniaturized. In particular, there is a strong inclination for down-sized (thinner) portable information terminals on the part of users, and machines newly released by manufacturers have a remarkable tendency to be designed in miniaturization for enhanced superiority in design. Under such a background, there is a strong demand for further miniaturization of the breaker, which is mounted with the secondary battery as one component part of the portable information terminal device.
The breaker includes a thermally responsive element operating depending on a change in temperature for conducting or shutting off the flow of current. Patent document 1 discloses a breaker to which bimetal is applied as a thermally responsive element. Bimetal is an element composed of a stack of plate-shaped metallic materials of two kinds with different thermal expansion rates, which alters in shape depending on a change in temperature for controlling a conducting state of contacts. The breaker disclosed in the same document has component parts, such as a fixed piece (base terminal), a movable piece (movable arm), a thermally responsive element, and a PTC thermistor. These parts are accommodated in a resin case with terminals of the fixed piece and the movable piece being connected to an electric circuit of electrical machines in use.
A resin material to be formed into the resin case 7 is supplied through a gate of a molding die provided in an area that forms the bottom surface of the resin case 7. Resin hardened in the gate is cut out during demolding or in subsequent treatment such that the bottom surface of the resin case 7 has a partial area left as a gate cut mark 76.
As the gate cut mark 76 protrudes from the bottom surface of the resin case 7, it is likely for troubles to occur when the breaker 100 is installed onto the secondary battery or the like. As shown in
Further, it is likely for the bottom surface of the resin case 7 to have a engraved mark 78 indicating a part number and a production lot number of the breaker 100, similarly to the gate cut mark 76 mentioned above, a structure has been proposed for the engraved mark 78 to be accommodated in a recessed portion 77, which is formed on the bottom surface of the resin case 7. In the structure, the engraved mark 78 does not protrude from the bottom surface of the resin case 7.
However, if an end edge of the fixed piece 2, which is exposed at the bottom surface of the resin case 7, becomes closer in distance (that is, in a distance between a protruding portion provided on a wall defining a cavity space of the molding die for forming the resin case, and the fixed piece 2) to side walls of the recessed portions 75, 77, a failure occurs when the resin material is filled into the cavity space of the molding die. That is, the flow of the resin material is locally blocked with the occurrence of filling defect. Further, the resin case 7 has a localized area with an insufficient wall thickness, causing a risk to occur with deterioration of strength of the resin case 7. Likewise, when a portion of the movable piece 4 and the recessed portions 75, 77 become excessively closer in distance, there are risks of causing the occurrence of filling defect of the resin material and deterioration of strength of the resin case 7.
To minimize such filling defect of the resin material, the present inventor has studied a layout for the fixed piece 2, the movable piece 4, and the recessed portions 75, 77 to be spaced from each other by equal to or longer than a preset distance. However, such a placement brings about the enlargement of the resin case 7, resulting in a cause of preventing the miniaturization of the breaker.
The present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide a breaker that can realize miniaturization without causing the filling defect of the resin material and deterioration of strength of the resin case.
To achieve the above object, the present invention provides a breaker including: a fixed piece having a fixed contact; a movable piece having a movable contact at a front end portion and configured to cause the movable contact to be held in pressured contact with the fixed contact; a thermally responsive element configured to actuate the movable piece upon deformation in response to a change in temperature such that the movable contact is separated away from the fixed contact; and a resin case accommodating the fixed piece, the movable piece, and the thermally responsive element. The resin case includes a recessed portion depressed from a peripheral portion. The fixed piece includes a withdrawal portion withdrawing from the recessed portion of the resin case and embedded in the resin case.
With the breaker according to the present invention, the fixed piece is provided with the withdrawal portion to allow the fixed piece embedded in the resin case to withdraw from the withdrawal portion of the resin case. This increases the degree of freedom in position, shape, and size of the recessed portion without causing the filling defect of the resin material between the fixed piece and the recessed portion and deterioration of strength of the resin case. This realizes the miniaturization of the breaker.
A breaker of one embodiment according to the present invention will be described below with reference to the accompanying drawings.
The fixed piece 2 is made of a metallic plate mainly made of, for example, phosphor bronze (other examples including a metallic plate made of copper-titanium alloy, nickel silver, or brass). The metallic plate is press formed and embedded in the case body 71 by insert forming. The fixed piece 22 has one end provided with a terminal 22 to be electrically connected to an external part and the other end 23 having a peripheral area on which the PTC thermistor 6 located. The PTC thermistor 6 is placed on convex-shaped joggles (small protrusions) 24 (see
The movable piece 4 is formed in an arm shape by press forming a metallic plate similar to that of the fixed piece 2. The movable piece 4 has a longitudinal one end provided with a terminal 41 to be electrically connected to an external part, and protrudes outward from the case body 71. With the present embodiment, to align the terminal 22 of the fixed piece 2 and the terminal 41 of the movable piece 4 with each other in height, the movable piece 4 is bent in a crank-shape at a stepped bent portion 46 in an area within an inner part of the resin case 7. The movable piece 4 has the other end (correspond to a front end of the arm-shaped movable piece 4) provided with a movable contact 3. The movable contact 3 is made of a material similar to that of the fixed contact 21, and is jointed to a front end of the movable piece 4 by a technique such as welding. The movable piece 4 has a stationary portion 42 (corresponds to a base end of the arm-shaped movable piece 4) and a resilient portion 43, which are formed between the movable contact 3 and the terminal 41. The stationary portion 42 is sandwiched between the case body 71 and the lid member 72 to fixedly retain the movable piece 4. Permitting the resilient portion 43 to resiliently deform causes the movable contact 3, which is formed at the front end of the resilient portion, to be pressed against and brought into contact with the fixed contact 21, thereby enabling the fixed piece 2 and the movable piece 4 to be electrically connected with each other.
Further, the resilient portion 43 has a lower surface provided with a pair of small projections formed facing to the thermally responsive element 5. The small projections 44 and the thermally responsive element 5 are held in contact with each other, causing the deformation of the thermally responsive element 5 to be transferred to the resilient portion 43 via the small projections 44 (see
The thermally responsive element 5 has an initial shape that is curved in a circular arc, and is made of composite materials such as bimetal and trimetal when overheating takes place to reach an actuating temperature, the curved shape is warped in an opposite direction with the occurrence of a snap motion. Whereas, when the temperature exceeds below a restoring temperature due to a cooling effect, the curved shape is restored. The initial shape of the thermally responsive element 5 can be formed by press working. The material and the shape of the thermally responsive element 5 are not particularly limited insofar as the thermally responsive element 5 is subject to a reverse warping motion at an initial temperature to cause the resilient portion 43 of the movable piece 4 to move upward while the resilient portion 43 is restored due to its resilient force. However, the thermally responsive element 5 may be preferably formed in a rectangular shape in view of productivity and efficiency of the reverse warping motion, and a rectangular shape may be preferably formed in an oblong shape closer to a square shape in order for the resilient portion 43, even in a miniaturized shape, to be efficiently moved upward. Examples of the material constituting the thermally responsive element 5 include a stack of two kinds of materials with different thermal expansion coefficients such as various alloys of nickel silver, brass, and stainless steel, and the like. For example, a copper-nickel-manganese alloy or a nickel-chrome-iron alloy may be placed on the high expansion side, while an iron-nickel alloy may be placed on the low expansion side. The combination of the alloys may be set depending on required conditions.
When the current between the fixed piece 2 and the movable piece 4 is shut off due to the reverse warping motion of the thermally responsive element 5, the current flowing through the PTC thermistor 6 increases. Kinds of the PTC thermistor 6 may be selected depending on needs such as operating current, operating voltage, operating temperature, and a restoring temperature, provided that the PTC thermistor 6 includes a positive characteristic thermistor configured to limit the current with resistance value increasing with a temperature rise. The PTC thermistor 6 may have a shape that is not particularly limited unless various characteristics are sacrificed.
The case body 71 and the lid member 72, which constitute the resin case 7, are formed of resins such as flame retardant polyamide, polyphenylene sulfide (PPS) having excellent heat resistance, liquid crystal polymer (LCP), and polybutylene terephthalate (PBT). The case body 71 is opened to define an accommodating portion 73 for accommodating the fixed piece 2, the movable piece 4, the thermally responsive element 5, the PTC thermistor 6, and other elements. Moreover, the accommodating portion 73 of the case body 71 is internally provided with frames 73a, 73b, 73c and 73d to be held in abutting engagement with end edges of the movable piece 4, the thermally responsive element 5, and the PTC thermistor 6. The case body 71 is formed in a stepwise pattern with the respective frames 73a, 73b, 73c and 73d at inner and outer sides thereof. Moreover, the fixed piece 2 and the case body 71 are formed in a stepwise pattern at the inside and the outside of the frame 73. The movable piece 4, the thermally responsive element 5, and the PTC thermistor 6 are brought into abutting engagement with and guided by the frames 73a, 73b, 73c and 73d, respectively, during the step of assembly to the case body 71. Furthermore, the end edges of the movable piece 4 and the thermally responsive element 5 assembled to the case body 71 are brought into abutting engagement with the frames 73a, 73b and 73c, and guided by the frames 73a, 73b and 73c during reverse warping motion of the thermally responsive element 5. Also, the end edges of the PTC thermistor 6 have sidewalls which are brought into abutting engagement with the frame 73d formed on the side wall in opposed relation such that the PTC thermistor 6 is positioned in place.
A cover piece 8 is embedded in the lid member 72 by insert forming. The cover piece 8, made of a metallic plate mainly made of phosphor bronze or a metallic plate such as stainless steel or the like, is formed by press work. As shown in
As shown in
When the overcharging status is released or when the failure is addressed, the heat generation of the PTC thermistor 6 is stopped, causing the thermally responsive element 5 to return to the restoring temperature for restoring the original initial shape. In addition, due to the resilient force of the resilient portion 43 of the movable piece 4, the movable contact 3 and the fixed contact 21 are brought into contact with each other again. This releases the shutoff state of the circuit to restore the conducting state as shown in
The recessed portion 75 accommodates therein a gate cut mark 76. The gate cut mark 76 represents a mark of the resin material hardened within a gate of the molding die and cut out during demolding or in a subsequent step. The gate cut mark 76 protrudes from a bottom wall of the recessed portion 75 by a slight extent. The recessed portion 75 is set to have a depth that prevents a front end of the gate cut mark 76 from protruding from the bottom wall of the case body 71. Also, the recessed portion 75 may have a diameter that is set depending on a diameter of the gate.
The recessed portion 77 is formed around a convex-shaped engraved mark 78. In
The breaker 1 of the present embodiment differs from that shown in
Providing the withdrawal portions 25 makes the distance between an actual end edge of the fixed piece 2 and the recessed portions 75, 77 longer than the distance between the virtual end edge of the fixed piece 2 and the recessed portions 75, 77. With the distance between the actual end edge of the fixed piece 2 and the recessed portions 75, 77 being longer than the first distance D1, the distance between the virtual end edge of the fixed piece 2 and the recessed portions 75, 77 may be shorter than the first distance D1. In addition, as shown in
As shown in
At the withdrawal portions 25, the metallic material of the fixed piece 2 is removed; instead, the resin material that is to be formed into the case body 71 during insert molding of the case body 71 fills the withdrawal portions 25. The withdrawal portions 25 are formed by press working. Since the areas from which the metallic material is removed are filled with the resin material, the case body 71 can be formed at low cost using a molding die similar to that of the related art. The presence of the withdrawal portions 25 enables the distance D between the end edge of the fixed piece 2 and the recessed portions 75, 77 to be equal to or longer than the first distance D1. This prevents the cavity of the molding die in which to form the case body 71 from being locally diminished. As a result, this prevents the filling defect of the resin material between the end edge of the fixed piece 2 and the recessed portions 75, 77 and deterioration of strength of the resin case 7.
Providing the withdrawal portions 25 at the end edge of the fixed piece 2 enlarges the distance D between the end edge of the fixed piece 2 and the recessed portions 75, 77 to be equal to or longer than the first distance D1, while increasing the degree of freedom in layout of the recessed portions 75, 77. This ensures to collectively locate the recessed portions 75, 77 in the vicinity of the joggles 24 of the fixed piece 2, that is, in the vicinity of the PTC thermistor 6. With the present embodiment, in particular, the end edge of the fixed piece 2 withdrawn by the withdrawal portions 25 are formed along the end edge of the PTC thermistor 6. This further ensures to collectively locate the recessed portions 75, 77 in the vicinity of the PTC thermistor 6. This ensures to miniaturize the resin case 7 and, accordingly, the breaker 1.
Further, the end edge of the fixed piece 2 withdrawn by the withdrawal portion 25 is embedded in the resin constituting the case body 71 outside the frame 73d. This enables the end edge of the fixed piece 2 to be firmly jointed to the case body 71. Furthermore, the end edge of the fixed piece 2 withdrawn by the withdrawal portion 25 is formed along the frame 73d in the similarity shape in plan view. This enables the fixed piece 2 to be uniformly distributed over the area embedded in the case body 71 outside the frame 73d. This prevents stress from concentrating on the fixed piece 2 and the case body 71, thereby enabling the breaker 1 to have increased strength. The frame 73d is formed facing to the sidewall of the end edge of the PTC thermistor 6, thereby properly sustaining the position and the attitude of the PTC thermistor 6. This stabilizes the contact state between the PTC thermistor 6 and the joggles 24 of the fixed piece 2, thereby enabling the self-holding circuit of the PTC thermistor 6 to effectively function.
Increasing the degree of freedom in layout of the recessed portions 75, 77 to collectively locate the recessed portions 75, 77 in the vicinity of the PTC thermistor 6 elongates the distance D between the portion (particularly the bent portion 46 of the movable piece 4) of the movable piece 4 and the recessed portions 75, 77. This ensures the distance D between the movable piece 4 and the recessed portions 75, 77 to be equal to or longer than a second distance D2 (see
Thus, the shape of the withdrawal portion 25 is not limited to the shape based on the circle or the rectangle insofar as the withdrawal portion 25 is spaced from the recessed portions 75, 77 by a distance equal to or longer than the first distance D1. For example, the withdrawal portion 25 may take a shape based on a polygon or arbitrary curves such as an ellipse and a parabola.
Further, the positions of the recessed portions 75, 77 are not particularly limited provided that the recessed portions 75, 77 are placed in the vicinity (the vicinity of the end edge of the fixed piece 2 at which the withdrawal portion 25 is provided) of an area in which the gate cut mark 6 and the fixed piece 2 are close to each other with the intervening withdrawal portion 25 and that the withdrawal portion 25 and the recessed portions 75, 77 are spaced from each other by the first distance D1 so that the breaker 1 is miniaturized. For example, although
As set forth above, with the breaker 1 of the present embodiment, the fixed piece 2 is provided with the withdrawal portions 25 such that the fixed piece 2, buried in the case body 71 of the resin case 7, withdraws from the recessed portions 75, 77 of the case body 71. This increases the degree of freedom in positions, shapes, and size of the recessed portions 75, 77 without causing the filling defect of the resin material between the fixed piece 2 and the recessed portions 75, 77 and deterioration of strength of the resin case 7. This realizes the miniaturization of the breaker 1.
In particular, the presence of the withdrawal portions 25 withdrawing from the recessed portion of the case body 71 by equal to or longer than the first distance D1 enables a further suppression of the filling defect of the resin material and deterioration of strength of the resin case.
Providing the recessed portions 75, 77 in the positions spaced from the movable piece 4 by equal to or longer than the second distance D2 further realizes the miniaturization of the breaker 1 without causing the filling defect of the resin material between the fixed piece 2 and the recessed portions 75, 77 and deterioration of strength of the resin case 7.
Further, the recessed portion 75 accommodates the gate cut mark 76 with an increase in the degree of freedom in layout of the gate in the molding die. This realizes the miniaturization of the breaker 1 while suppressing the filling defect of the resin material. Furthermore, the recessed portion 77 is provided around the convex-shaped engraved mark 78 formed on a surface of a product. This realizes the miniaturization of the breaker 1 while increasing the degree of freedom in layout of the engraved mark 78 and suppressing the filling defect of the resin material. Moreover, the engraved mark 78, if suitably selected, becomes a tracking index for identifying the molding die and the cavity used for manufacturing respective solids of the breaker 1. This is useful for quality management.
With the embodiment in which the withdrawal portions 25 are formed along the outer edges of the recessed portions 75, 77, it becomes possible to further increase the degree of freedom in position, shape, and size of the recessed portions 75, 77. This further realizes the miniaturization of the breaker 1 while achieving the improvement in space efficiency of the resin case 7. Moreover, this can sufficiently increase the first distance D1 and the second distance D2, thereby making it possible to maintain the mechanical strength of the resin case 7 even if the breaker 1 is miniaturized.
Further, the present invention is not limited the structure of the embodiment set forth above, and at least the resin case 7 of the breaker may suffice to have the recessed portion depressed from a circumferential area with the fixed piece 2 embedded in the resin case 7 such that the withdrawal portion 25 withdraws from the recessed portion of the resin case 7 by equal to or longer than the first distance D1. In such a case, the embodiment of the recessed portion may not be limited to the recessed portion 75 for accommodating the gate cut mark 76 and the recessed portion 77 provided around the engraved mark 78. For example, the embodiment of the recessed portion includes all portions depressed from the circumferential areas, such as a convex-shaped engraved mark formed on the surface of the product. In addition, the resin case 7 may preferably include not only the case body 71 but also an embodiment in which the lid member 72 is provided with the recessed portion 75, 77 or an embodiment in which the fixed piece 2 is embedded.
Further, the present invention may be implemented in various modifications. For example, the movable piece 4 is formed of a stacked metal such as bimetal and trimetal, and the movable piece 4 and the thermally responsive element 5 are integrally formed. In such a case, the breaker 1 can be simplified in structure, achieving further miniaturization and reduced wall thickness.
Furthermore, the movable piece 4 may not be limited to the embodiment having the stepped bent portion 46 and may include an embodiment in which the resilient portion 43 and the terminal 41 are formed in a flat shape.
The fixed piece 2 withdrawn by the withdrawal portion 25 may suffice to have an end edge that, in a general shape, is formed along the FTC thermistor 6 and the frame 73d in a similarity shape in plan view in correspondence to the PTC thermistor 6 and the frame 73d. The fixed piece 2 may preferably have an end edge in shape that departs from shapes corresponding to the PTC thermistor 6 and the frame 73d. For example, the handling on the similarity shape may be incomplete in part in the presence of a small protuberance or a cutout to insofar as no filling defect occurs for the resin material to be formed into the case body 7 and no unfavorable clearance occurs created between the case body 71 and the fixed piece 2.
Further, although with the present embodiment the PTC thermistor 6 includes a self-holding circuit, such a structure may be omitted in structure. Even in such a case, providing the withdrawal portion 25 in the end edge of the fixed piece 2 results in an increase in the degree of freedom in layout of the recessed portions 75, 77, realizing the miniaturization of the breaker 1. Furthermore, the movable piece 4 may be formed of bimetal, trimetal, or the like such that the movable piece 4 and the thermally responsive element 5 are formed in an integrated structure. In this case, the breaker is simplified in structure, achieving further miniaturization.
Moreover, the present invention may be applied to a structure in which, as disclosed in Japanese unexamined Patent Application Publication No. 2005-203277, a fixed piece 42 and its associated vicinity are separated into a side for a terminal 41 and another side for a movable contact 3. In such application, it may suffice for the distance between the recessed portions 75, 77 and an arm terminal 6 disclosed in the patent document to be equal to or longer than the second distance D2.
In addition, the present invention may be applied to an embodiment, as disclosed in Japanese unexamined Patent Application Publication No. 2006-331705, which has two contacts (a first external connection terminal 123-1 and a second external connection terminal 123-2 in the same patent document). In such application, it may suffice for the withdrawal portion 25 to be formed such that the distances between the recessed portions 75, 77 and the first external connection terminal 123-1 and the second external connection terminal 123-2 in the same patent document to be equal to or longer than the first distance D1.
Further, the breaker 1 of the present invention may be widely applied to a safety circuit or the like for a secondary battery package and electrical machines.
As set forth above, the present invention may include a breaker including: a fixed piece having a fixed contact; movable piece having a front end provided with a movable contact and causing the movable contact to be brought into contact with the fixed contact; a thermally responsive element deforming due to a change in temperature to actuate the movable contact so as to move the movable contact away from the fixed contact; and a resin case accommodating the fixed contact, the movable contact, and the thermally responsive element. In such a breaker, the resin case may suffice to have the recessed portions depressed from the circumferential areas, and the fixed piece may suffice to have the withdrawal portions withdrawing from the recessed portions of the resin case and embedded in the resin case.
With such a breaker, the withdrawal portions are provided in the fixed piece such that the fixed piece embedded in the resin case withdraws from the recessed portions. This enables an increase in the degree of freedom in position, shape, and size of the recessed portions without causing the filling defect of the resin material between the fixed piece and the recessed portion and without causing deterioration of strength of the resin case. This realizes the miniaturization of the breaker.
The breaker may further include a positive characteristic thermistor configured to enable the movable piece and the fixed piece to be electrically connected by the thermally responsive element when the movable contact is spaced away from the fixed contact. The end edge of the fixed piece withdrawn by the withdrawal portions may suffice to be formed along the end edge of the positive characteristic thermistor.
This breaker ensures to allow the recessed portions to be further collectively located in the vicinity of the positive characteristic thermistor. This enables the resin case and, accordingly, the breaker to be miniaturized.
With such a breaker, the resin case has an accommodating portion for accommodating the positive characteristic thermistor, and the accommodating portion has a frame placed facing to a sidewall of the end edge of the positive characteristic thermistor. The end edge of the fixed piece withdrawn by the withdrawal portions may be formed along the frame.
With such a breaker, the fixed piece may have a region buried in the resin case outside the frame, which can be uniformly distributed. This ensures to avoid a stress from concentrating on the fixed piece and the resin case, enabling an increase in strength of the breaker.
With such a breaker, the withdrawal portion may be withdrawn from the recessed portion of the resin case to be spaced apart at the first distance or longer.
With the embodiment in which the withdrawal portion withdraws from the recessed portion of the resin case at the first distance or longer, it becomes possible to further suppress the filling defect of the resin material and deterioration of strength of the resin case.
With such a breaker, the recessed portion may be provided in a position spaced apart from the movable piece at the second distance or longer.
With the embodiment in which the recessed portion is provided in a position spaced apart from the movable piece at the second distance or longer, the miniaturization of the breaker can be realized without causing the filling defect of the resin material between the movable piece and the recessed portions and deterioration of strength of the resin case.
With such a breaker, the recessed portion may accommodate the gate cut mark.
With the embodiment in which the recessed portion accommodates the gate cut mark, it becomes possible to increase the degree of freedom in layout of the gate in the molding die for molding the resin case and realize the miniaturization of the breaker while suppressing the filling defect of the resin material.
With such a breaker, the recessed portion may include a recessed portion provided around a concave-shaped engraved mark formed on a surface of a product or a concave-shaped engraved mark formed on the surface of the product.
With the embodiment in which the recessed portion includes the engraved mark formed on the surface of the product, it becomes possible to increase the degree of freedom in layout of the engraved mark and to realize the miniaturization of the breaker while suppressing the filling defect of the resin material. In addition, this similarly applies to the embodiment in which the recessed portion is provided around the engraved mark formed on the surface of the product.
With such a breaker, the withdrawal portion may take the form of a shape extending along an outer edge of the recessed portion.
With the embodiment in which the withdrawal portion takes the form of the shape extending along the outer edge of the recessed portion, it becomes possible to further increase the degree of freedom in position, shape, and size of the recessed portion, thereby realizing the miniaturization of the breaker while achieving improvement in space efficiency of the resin case.
Further, the present invention is a safety circuit for an electric machine characterized by the provision of the breaker.
Furthermore, the present invention is a secondary battery characterized by the provision of the breaker.
Number | Date | Country | Kind |
---|---|---|---|
2011-227389 | Oct 2011 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2012/076540 | 10/12/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/054927 | 4/18/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5145057 | Hirota | Sep 1992 | A |
5607610 | Furukawa | Mar 1997 | A |
5936510 | Wehl | Aug 1999 | A |
6300860 | Hofsass | Oct 2001 | B1 |
6396381 | Takeda | May 2002 | B1 |
20020060898 | Nagai | May 2002 | A1 |
20070269997 | Eldridge | Nov 2007 | A1 |
20110035763 | Nakanishi | Feb 2011 | A1 |
20110168919 | Yoder | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
2 541 576 | Jan 2013 | EP |
7-125021 | May 1995 | JP |
2005-174816 | Jun 2005 | JP |
2005-203277 | Jul 2005 | JP |
2006-31956 | Feb 2006 | JP |
2007-36026 | Feb 2007 | JP |
WO 2011105175 | Sep 2011 | WO |
Entry |
---|
Yagi (WO 2011105175), Machine Translation. |
Shibuya, JP2005203277, EPO machine translation. |
International Search Report issued in PCT/JP2012/076540 mailed Dec. 4, 2012. |
Number | Date | Country | |
---|---|---|---|
20140285308 A1 | Sep 2014 | US |