Breaking module comprising a vacuum cartridge and fixing means, and an electrical switchgear apparatus comprising such a module

Abstract
A breaking module for an electrical switchgear apparatus comprises a vacuum cartridge comprising a body and a support frame of the cartridge. The cartridge is provided with a metal rod movable in translation and driving a movable contact. A collar both performs radial positioning of the body of the cartridge with respect to the frame and constitutes a guide sheath of the rod. For fitting, the collar can be opened so as to insert the rod radially therein. Once the body of the cartridge has been encircled, the collar is inserted radially in guide grooves of the frame.
Description




BACKGROUND OF THE INVENTION




The invention relates to a module for an electrical switchgear apparatus, comprising a vacuum cartridge and means for fixing the cartridge to a support frame. It also relates to a switchgear apparatus comprising at least one such module.




Conventionally, a vacuum cartridge comprises a body forming a tight enclosure and housing a pair of separable contacts. with at least one movable contact. The movable contact is securedly affixed to a metal rod movable in translation parallel to its axis and protruding out from a first axial end of the cartridge. Tightness is achieved between the rod and a wall of the enclosure by means of a sealing bellows allowing translation movement of the rod. This rod is designed to be connected to a drive mechanism of the cartridge. The other contact is in general a stationary contact securedly affixed to a fixed rod passing through the body of the cartridge so as to be accessible from the outside at a second axial end of the cartridge, opposite the first end. The movable rod is guided in its axial movement with respect to the cartridge by means of a guide sleeve forming an integral part of the body of the cartridge and protruding towards the inside of the cartridge. Various embodiments of this architecture are illustrated in the documents DE 2,440,827, U.S. Pat. Nos. 4,403,124, 4,933,518, 4,983,793, 5,004,877 and 5,168,139.




A three-phase electrical switchgear apparatus is described in the document EP 0,058,519, each phase of which apparatus comprises a vacuum cartridge of the previously mentioned kind supported by a rigid frame made of insulating material. On the side where the first axial end is situated, the body of the cartridge is fixed to the frame by means of a support plate provided with a bore at the diameter of the first axial end and forming a seat for the body of the cartridge. On the side where the second axial end is situated, the body of the cartridge is fixed to the frame by means of a fixing nut of the rod fixed to an electrical connecting strip securedly affixed to the frame. There is no interaction between the support plate and the rod.




A flexible electrical connection is fixed to the free end of the rod by hooping. When the apparatus is assembled, the hooping operation of the connection necessarily takes place after the cartridge has been fitted on the support plate, as the hooped connection is too bulky to pass through the bored hole of the support plate. Moreover, positioning of the cartridge on its frame has to be performed with precision in order not to force the movable contact rod out of its translation axis determined by the guide sleeve internal to the cartridge. These points prove to be disadvantageous for industrialization of the apparatus.




OBJECT OF THE INVENTION




One object of the invention is to facilitate assembly of an electrical switchgear apparatus with a vacuum cartridge, and in particular assembly of the breaking module formed by the cartridge and its support frame.




For this purpose, the object of the invention is to provide a breaking module for an electrical switchgear apparatus, comprising:




at least one vacuum cartridge comprising a body forming an enclosure containing a pair of separable contacts, one of said contacts being securedly affixed to a movable metal rod, a part of the rod protruding out from the enclosure at a first axial end of the body of the cartridge;




a support frame of the cartridge;




a fixing and guiding collar comprising:




an aperture forming an axial guide sheath of the rod of the cartridge, performing guiding of the rod in translation with respect to the collar according to a geometric axis of the aperture;




radial positioning surfaces co-operating with the body of the cartridge and preventing any radial movement of the body of the cartridge with respect to the geometric axis of the aperture of the collar;




means for fixing to the support frame of the cartridge.




The collar enables both guiding of the rod with respect to the cartridge and fixing of the cartridge with respect to the frame. The chain of dimensions is thereby reduced, resulting in a greater guiding precision, achieved at low cost.




Advantageously, the frame is equipped with guiding slides and the collar is in the form of a slide-rack so as to slide in said guiding slides in a direction perpendicular to the geometric axis of the aperture. It is then possible to assemble the cartridge and its collar before inserting the assembly in the frame, by sliding the collar in the slides. According to one embodiment, the means for fixing comprise elastic clips forming a fixing means by clipping. This fixing mode by clips makes assembly particularly simple. The clips are preferably situated on the collar and co-operate with bearing surfaces situated on the frame.




Preferably, the collar is composed of two parts able to take an open position with respect to one another enabling radial insertion of the rod of the cartridge and a closed position wherein the radial positioning surfaces co-operate with the body of the cartridge and the aperture co-operates with the rod. This particularly advantageous arrangement enables fitting of the flexible conductor on the rod of the cartridge to be performed before the collar is fitted to fix the cartridge in its frame. According to a preferred embodiment, the two parts of the collar are articulated on one another by a hinge. The two parts of the collar in the closed position are secured to one another by fixing means. These arrangements make assembly easier.




Preferably, the collar is provided with axial positioning surfaces forming a seat for a section of axial end of the body of the cartridge. Positioning of the collar is thereby simplified.




According to one embodiment, the collar is made of plastic material, which may for example be a 6—6 polyamide.




Preferably, the module comprises a single vacuum cartridge.




According to another feature of the invention, the object of the invention is also to achieve an electrical switchgear apparatus comprising at least one module as described in the above, and a drive mechanism of the rod of said module.











BRIEF DESCRIPTION OF THE DRAWINGS




Other advantages and features will become more clearly apparent from the following description of a particular embodiment of the invention, given as a non-restrictive example only and represented in the accompanying drawings in which:





FIG. 1

represents a perspective view of a switchgear apparatus according to the invention, comprising a vacuum cartridge fitted in a support frame;





FIG. 2

represents an axial cross-sectional view of the switchgear apparatus of

FIG. 1

;





FIG. 3

represents a flexible electrical connector enabling an electrical connection to be made between the cartridge and a connecting strip;





FIG. 4

represents an exploded view of a part of the switchgear apparatus before assembly thereof;





FIG. 5

schematically represents a brazing operation making a junction between a rod of the cartridge and the flexible electrical connector.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




With reference to

FIGS. 1 and 2

, a switchgear apparatus comprises a vacuum cartridge


10


supported by a frame


12


and driven by a mechanism


13


of conventional type. Two connecting strips


14


and


16


, fixed to the frame


12


, are designed to connect the apparatus electrically to a busbar (not represented).




The generic expression vacuum cartridge is used here to designate an assembly of known type, comprising a cylindrical body


17


forming an enclosure


18


wherein a relative vacuum prevails and housing a pair of separable contacts


22


,


24


. The body


17


is itself divided into a middle insulating section


19


made of insulating material, a first metal end section


20


forming a first closing flange, and a second metal end section


21


forming a second closing flange. One of the contacts is a pad


22


brazed onto the end of a conducting cylinder


26


and forms a stationary contact means


28


with this cylinder. The cylinder


26


passes through the second flange


21


and is welded to the latter. The cylinder


26


is also welded onto a rigid metal coil


29


, itself welded to the connecting strip


14


. An electrical connection is thus achieved between the stationary contact means


28


and the connecting strip


14


, by means of the coil


29


. The coil


29


is designed to induce a magnetic field, in the separation zone of the contacts


22


,


24


, favorable to breaking of an electric arc arising between the contacts when separation of the latter takes place. Screws perform fixing of the coil


29


to the frame


12


, and therefore rigid fixing between the cylinder


26


, itself fixedly secured to the body


17


of the cartridge, and the frame


12


. Moreover, and as will be explained in detail further on, the first flange


20


is positioned and secured with respect to the frame


12


by means of a fixing collar


100


secured in a groove


130


of the frame.




The contact


24


is a pad brazed onto the end of a movable contact means


30


whose body is formed by a metal conducting rod


32


, in this instance a copper rod, passing through an orifice of the first flange


20


. This rod


32


is extended outside the enclosure, as can be seen more clearly in

FIG. 5

, by a part


36


of smaller diameter, thus defining an intermediate shoulder


38


. The end of the rod is provided with an axial tapped hole


39


. A sealing bellows


40


brazed onto the rod


32


and onto the internal wall of the first end section allows an axial translation movement of the movable contact means


30


with respect to the stationary contact means


28


, while preserving the vacuum prevailing in the enclosure


18


.




The rod


32


is connected to a lever


80


with two parallel arms


81


,


82


, by means of an insulating arm


42


. The insulating arm


42


comprises a body made of plastic material


43


overmolding on the one hand the head of a first threaded rod


44


, and on the other hand the head of a second threaded rod


45


situated in the axial extension of the first rod


44


. The first threaded rod


44


is screwed into the tapped blind hole


39


situated at the end of the rod


32


of the cartridge. A tubular adjusting nut


46


is screwed onto the second threaded rod


45


. The nut supports at one end a support seat


47


for the end of a contact pressure spring


48


. The other end of the spring


48


bears on a second support seat


49


, which rests on a bar


83


. The bar


83


comprises a bore


84


forming a guide sheath through which the tubular nut


46


passes. The bar


83


rotates freely in lateral spindles


85


supported by the arms


81


,


82


of the lever


80


. The guide sheath


84


allows both translation of the nut


46


parallel to its axis and free rotation of this nut. The nut


46


comprises a shoulder resting on the bar part


83


opposite the second support seat


49


. The two arms


81


,


82


of the lever


80


pivot around a spindle


86


supported by the frame


12


and are actuated jointly at their free end by a closing and opening mechanism (not represented), this mechanism being designed to drive the movable contact means


30


between a position in contact with the stationary contact means


28


and a separated position. When opening takes place, the lever


80


pivots counter-clockwise around the spindle


86


in

FIG. 2

, driving the bar


83


, the nut


46


, the arm


42


and the movable contact means


30


directly. When closing takes place, the lever


80


pivots clockwise around the spindle


86


, driving the bar


83


which compresses the spring


48


by means of the support seat


49


. The closing force is then transmitted by the spring


48


to the movable contact


30


by means of a transmission system comprising the support seat


47


, the nut


46


and the insulating arm


42


.




Electrical connection of the rod


32


to the busbar is performed by means of a flexible electrical connection


50


, represented schematically in

FIG. 3

, one end


56


of which connection constitutes the connecting strip


16


, whereas the other end


58


of the connection is brazed onto the body of the rod


32


. The flexible connection


50


is formed by a stack of metal blades


52


, in this instance copper blades. Each metal blade


52


comprises a curved middle part


54


extended at each end by one of the flat end parts


56


,


58


. The blades


52


have different lengths and shapes so as to form together a stack having the required curved shaped at the level of the middle part


54


. At the level of the ends


56


,


58


, the blades


52


are welded to one another by an atomic diffusion welding process, without any added material, so that each end constitutes a rigid monoblock part. In their middle part


54


, the blades


52


remain separated from one another, which gives the electrical connection


50


thus formed a good overall flexibility. As illustrated in

FIG. 4

, the end part


56


constituting the connecting strip comprises fixing means


60


, in the form of open tapped holes, for fixing of the connecting strip to the switchgear apparatus frame, and connection means


62


, in the form of other tapped holes, for connection to a busbar. The other end part


58


comprises a bore


64


corresponding to the diameter of the spindle of the rod


36


.




The collar


100


, which can be seen in detail in

FIG. 4

, is made of plastic material, in this instance a


6


-


6


polyamide, and comprises two parts


101


,


102


articulated on one another by a hinge


103


so as to be able to take an open assembly position represented in

FIG. 4

, and a closed position represented in

FIG. 2

, in which elastic hooks


104


clip into corresponding apertures


106


. The closed collar forms a flange having a flat bottom


107


and a cylindrical peripheral wall


108


enabling the end of the first flange


20


of the cartridge


10


to be engaged therein. The center part of the flat bottom comprises an aperture


120


for the rod


32


of the cartridge to pass through. This aperture, of general cylindrical shape, performs guiding of the rod


32


. The collar


100


is provided with two main side rails


109


, connected to the flat bottom


107


by two side flanges


110


, and two auxiliary side rails


112


connected to the flat bottom


107


by two other side flanges


114


. Each auxiliary rail


112


is located in the extension of one of the main rails


109


. Each main rail


109


forms a staggered stop


116


in a front part and an elastic clip


118


in a rear part.




The insulating section


19


of the body


17


of the cartridge is covered by an insulating sleeve


90


(

FIG. 2

) equipped with fins designed to increase the creepage distance between the live metal parts of the apparatus. The sleeve


90


widens out in its upper part and forms a lip


92


which overlaps a part of the coil


29


, so as to increase the distance between the live metal parts. An intermediate padding


94


, whose internal surface is covered with semiconducting paint, smoothes the field lines close to the edges of the coil


29


.




The body made of plastic material


43


of the insulating arm


42


forms a cylindrical skirt which protects the spring


48


and the threaded rod


45


and which thus performs the electrical insulation between the rod


32


and the flexible connection


50


on the one hand, and the mechanism on the other hand.




Fitting of the cartridge


10


in the frame


12


is performed in the following manner. In a first step, the cylinder


26


is welded to the sub-assembly formed by the coil


29


and the connecting strip


14


. The insulating sleeve


90


is then engaged forcibly onto the body


17


of the cartridge and onto the coil


29


.




The cartridge


10


then has to be equipped with its electrical connection


50


. The spindle


36


of the rod


32


is inserted in the bore


64


, with an interposed washer made of metallic filler compound


68


, according to the exploded drawing of FIG.


3


. The metallic filler compound must have a relatively low melting temperature, preferably less than 700° C., so as not to damage the internal brazings of the cartridge. The compound involved in this instance is for example 56% silver, 22% copper, 17% zinc and 5% tin, having a melting point of about 650° C. A heat source


70


, represented schematically in

FIG. 5

, is provided at the free end of the bore until melting of the washer


68


and axial infiltration by capillarity of a part of the metallic filler compound into the cylindrical space at the interface between the bore and the spindle is achieved. In a manner well known to a brazing specialist. the initial clearance between the parts, i.e. between the bore and the spindle, must be suitably chosen on the one hand to foster wetting of the surfaces to be assembled, when brazing takes place, and on the other hand to ensure the mechanical strength of the brazed joint under subsequent conditions of use. The brazed joint


72


obtained reveals on the one hand a cylindrical interface zone


74


between the bore and the spindle, and on the other hand an annular interface zone


76


between the top edge of the bore


64


and the shoulder


38


of the rod.




When this assembly has been completed, the rod


32


is inserted radially into the open collar


100


, and the collar


100


is then closed so as to encircle the end of the first flange


20


of the body


17


of the cartridge and the rod


32


, the elastic hooks


104


clipping into corresponding apertures


106


. The assembly thus formed is then inserted laterally into the frame


12


, the rails


109


being inserted in the lateral grooves


130


and forming a sliding guide with these grooves. The collar then forms a slide rack which slides in the grooves


130


until the stops


116


encounter corresponding surfaces of the frame, the clips


118


then closing on corresponding bearing surfaces


132


of the frame.




It then simply remains to secure the connecting strips


14


,


16


and the coil


29


to the frame


12


, to screw the insulating arm into the tapped hole of the rod and to adjust the contact pressure by means of the adjusting nut.




Strictly speaking, the movement transmitted to the rod


32


of the cartridge


10


by the lever


80


in the absence of clearance between the moving parts would not be perfectly straight with respect to the frame


12


. However, the angle between the lever


80


and the rod


32


is always very close to a right angle, and the travel of the rod


32


of the cartridge between its open position and its closed position does not exceed a few millimeters, which corresponds to an angle of rotation of the lever


80


not exceeding a few degrees, so that in the absence of clearance, the radial movement of the rod


32


would be about one hundredth of its axial travel. In the described embodiment, this movement is absorbed by the clearances existing between the various elements of the transmission system, in particular at the level of the gudgeons


85


and the spindle


86


. However, if a greater travel was required, it would be possible to guide the bar


126


in an oblong of the lever


90


,


92


,


94


.




The sub-assembly thus constituted forms a module which can be assembled and tested in the plant before being stored independently from the mechanism


13


. Final assembly of the switchgear apparatus can be deferred. The modules enable switchgear apparatuses to be constituted differing from one another by the number of poles arranged side by side.




Various variations are naturally possible.




The guiding by slides can be reversed, so that rails formed on the frame co-operate with grooves formed at the periphery of the collar. The fixing mode by elastic clips can be replaced by any other suitable fixing mode. The hinge can be omitted, so that the collar is made up of two parts completely separated from one another in the open position. Other modifications are possible. For example, the sleeve can be omitted if the voltage applied permits. The transmission lever can be arranged so that its pivot is between the free end moved by the mechanism and the bar.




As has already been said, the apparatus can be single-pole or multi-pole. In the latter case, the frame can be common to the different poles arranged side by side. However, it is advantageous to arrange single-pole modules each having an independent frame, which favors a very great modularity. The mechanism can be of any known type enabling the lever


80


to be driven: electromagnet, pole shaft mechanism. The switchgear apparatus can be of any type, for example: a switch, or circuit breaker, with or without disconnection features. The vacuum cartridge can comprises two movable contact means.



Claims
  • 1. A breaking module for an electrical switchgear apparatus, comprising:at least one vacuum cartridge including a body containing a pair of separable contacts, one of said contacts being securely affixed to a movable metal rod, a part of the rod protruding outwardly from an axial end of the body; a support frame provided with guiding slides; a fixing and guiding collar having an aperture having a geometric axis and forming an axial guide sheath for guiding the rod in translation with respect to the collar along the geometric axis, the collar having slide portions that slide in said guiding slides in a direction perpendicular to the geometric axis of the aperture, and radial positioning surfaces cooperating with the body and preventing radial movement of the body with respect to the geometric axis; and elastic clips operable for fixing the collar to the support frame.
  • 2. A breaking module for an electrical switchgear apparatus, comprising:at least one vacuum cartridge including a body containing a pair of separable contacts, one of said contacts being securedly affixed to a movable metal rod, a part of the rod protruding outwardly from a first axial end of the body; a support frame; a fixing and guiding collar made of plastic material located between the support frame and the cartridge, said collar having: an aperture having a geometric axis and forming an axial guide sheath for guiding the rod in translation with respect to the collar along the geometric axis, and radial positioning surfaces cooperating with the body and preventing radial movement of the body with respect to the geometric axis; and elastic clips operable for fixing the collar to the support frame.
  • 3. A breaking module for an electrical switchgear apparatus, comprising:at least one vacuum cartridge including a body containing a pair of separable contacts, one of said contacts being securedly affixed to a movable metal rod, a part of the rod protruding outwardly from a first axial end of the body; a support frame; a fixing and guiding collar made of plastic material located between the support frame and the cartridge, said collar being composed of two parts movable with respect to one another between an open position and a closed position, said collar having: guiding surfaces which, in the closed position, form an aperture having a geometric axis and guide movement of the rod with respect to the collar along the geometric axis, and in the open position enable radial insertion of the rod between said guiding surfaces, and radial positioning surfaces which, in the closed position, co-operare with the body and prevent radial movement of the body with respect to the geometric axis; and means for fixing the collar to the support frame.
  • 4. The breaking module according to claim 3, wherein the two parts of the collar are articulated on one another by a hinge.
  • 5. The breaking module according to claim 3, further including a fixing means, wherein the two parts of the collar are secured to one another in the closed position by said fixing means.
  • 6. The breaking module according to claim 1, wherein the collar has axial positioning surfaces forming a seat for receiving a section of the axial end of the body.
  • 7. The breaking module according to claim 1, wherein the collar is made of plastic material.
  • 8. The breaking module according to claim 1, comprising a single vacuum cartridge.
  • 9. The breaking module according to claim 1, comprising:an electrical switchgear apparatus, wherein at least one said breaking module is adapted to be part of said switchgear apparatus; and a drive mechanism attached to the rod of said at least one breaking module.
Priority Claims (1)
Number Date Country Kind
00 04166 Mar 2000 FR
US Referenced Citations (4)
Number Name Date Kind
4434331 Sakuma et al. Feb 1984 A
4527028 Luehring Jul 1985 A
4933518 Yin Jun 1990 A
5864108 Rohling et al. Jan 1999 A
Foreign Referenced Citations (2)
Number Date Country
0 054 671 Oct 1981 EP
0 058 519 Feb 1982 EP