This application is based on Provisional Patent Application Ser. No. 61/744,435, filed Sep. 26, 2012, priority of which is claimed and which is incorporated herein by reference.
This invention relates to a technique for breaking a frangible isolation tool of a type run in a well to isolate a section of the well above the isolation tool from a section of the well below the tool.
Isolation tools are used in hydrocarbon wells for a variety of purposes. They are commonly run in a well near the end of a tubing string and below a hydraulically set packer to isolate the packer from formation pressure and allow hydraulic operations above the isolation tool. They are run on the end of tubing strings or in order to pressure test the made up string. They are occasionally run on the bottom of casing strings before cementing the string in a well bore. Other uses will be apparent to those skilled in the art.
One type isolation tool comprises a pair of oppositely facing curved ceramic discs shown in U.S. Pat. No. 5,924,696. These discs have a strong side and a weak side, i.e. the convex side can resist considerably higher pressures than the concave side. These discs are arranged with the convex side facing toward the pressure to be resisted, i.e. the upper disc has its convex side facing upwardly and the lower disc has its convex side facing downwardly.
The upper ceramic disc disclosed in this patent is broken by dropping a weight or go-devil into the tubing string so this device is mainly usable in vertical wells.
It is desirable to provide an isolation tool comprising one or more ceramic domes which are usable in the horizontal or vertical leg of a hydrocarbon well. Such devices are shown in U.S. Pat. No. 7,806,189 and U.S. Printed Patent Application 20110017471 and application Ser. No. 12/800,622 which are incorporated herein by reference.
Other disclosures of interest are found in U.S. Pat. Nos. 3,831,680; 4,510,994; 4,658,902; 5,511,617; 6,155,350; 6,672,389; 7,044,230; 7,210,533 and 7,350,582 and U.S. Printed Patent Applications 20070074873; 20080271898; 20090056955; 20090020290 and 20120125631.
As used herein, upper refers to that end of the tool that is nearest the earth's surface, which is a vertical well would be the upper end but which in a horizontal well might be no more elevated than the other end. Similar, lower refers to that end of the tool that is furthest from earth's surface.
Three embodiments are disclosed. In two embodiments, the upper dome or disc is restrained by a shear device to withstand pressure to some value. When pressure from above exceeds the shear value, the upper dome or disc moves toward the lower disc and, in the process, disintegrates and causes the lower disc to shatter, either from shrapnel from the upper disc or from hydrostatic or dynamic pressure acting on the weak or concave side of the lower ceramic disc.
In the third embodiment, a sleeve mounted around the upper disc includes at least one spur on its upper end. When a shear device is broken by pressure from above, the sleeve moves downwardly around the upper disc so the spurs strike the convex side of the upper disc thereby fracturing it. This destroys the integrity of the upper disc which thereby fails. The lower disc shatters either from shrapnel from the upper disc or from the application of hydrostatic or dynamic pressure to the concave or weak side of the lower disc.
It is an object to provide an improved technique for removing frangible discs providing an isolating feature in a down hole well tool.
A further object is to provide an improved hydraulic technique for removing frangible discs in an isolation tool.
These and other objects and advantages will be apparent to those skilled in the art as this description proceeds.
Referring to
The discs 18, 22 may be ceramic discs of the type shown in U.S. Pat. No. 5,924,696 or in application Ser. No. 12/800,622 or of any other suitable type frangible members that have the property of being stronger in one direction than in another. Preferably, the upper disc 18 may include an elongate skirt 32 allowing multiple seals 26 on the exterior and preferably is of an O.D. that is receivable in the I.D. of the lower disc 22.
The shear plate 20 may include a lip 34 receiving the outside diameter of the upper disc 18 and a shoulder 36 abutting the bottom of the upper disc 18. A circumferential notch or other weakened portion 38 shears off when pressure from above, as suggested by the arrow 40, is sufficient. This allows the upper disc 18 to move toward the lower disc 22 as suggested in
In operation, the packer (not shown) may be set by pumping into the tubing string (not shown) until the pressure reaches a value sufficient to expand and set the packer against the inside of the casing string. Later, or immediately, pumping into the tubing string at an increased pressure reaches the shear value of the plate 20 whereupon the shear plate 20 fails releasing the upper disc 18 so the shear plate 20 and upper disc 18 move downardly into the lower disc 22 causing it to fail thereby providing communication across the tool 10 in preparation for additional operations. It is not completely clear whether the lower disc 22 is pulverized by the shear plate 20, shrapnel from the upper disc 18, the hydrostatic weight of liquid above the tool or the dynamic pressure resulting from pumping into the tool 10. In any event, the lower disc 22 fails more-or-less immediately upon failure of the shear plate 20 providing an unobstructed passage through the tool 10.
Referring to
The discs 52, 58 may be ceramic discs of the type shown in U.S. Pat. No. 5,924,696 or in application Ser. No. 12/800,622 or of any other suitable type frangible members that have the property of being stronger in one direction than in another. Preferably, the upper and lower discs 52, 58 may include an elongate skirt 68, 70 allowing multiple seals 62 on the exterior thereof.
The upper disc 52 is mounted for movement inside a sleeve 72 having a passage 74 therein. The sleeve 72 may comprise part of the central body 46 or may be captivated thereto. The passage 74 may be configured to disintegrate the upper disc 52 upon movement of the upper disc 52. This may be accomplished in a variety of ways, such as tapering the passage slightly from an oversized upper end 76 to an internal diameter 78 that is substantially the same as or slightly smaller than the O.D. of the skirt 68. In the alternative, the sleeve 74 may include a protrusion or point or otherwise be of smaller dimension than the skirt 68 to stress the skirt 68 during movement of the upper disc 52. The lower edge of the disc 52 may rest on the upper edge. of the ring 54 so the shear pin 56 may initially constrain the upper disc 52 against movement downwardly. The ring 54 and shear pin 56 may preferably be of metal so the shear pin 56 operates in a conventional manner, i.e. it fails upon the application of a more-or-less predetermined or design force to free the ring 54 for downward movement. The concept is that when pressure applied as suggested by the arrow 80 is sufficient to shear the pin 56, the plate 54 moves allowing the upper disc 52 to move downwardly into the sleeve 72 and fail. Failure of the upper disc 52 causes the lower disc 58 to fail, either due to shrapnel from the upper disc 52 or from hydrostatic or dynamic pressure inside the tubing string thereby providing communication through the tool 44.
Exactly how the upper disc 52 fails may be subject to some argument because it is not completely clear whether the upper disc 52 shatters because it stops suddenly or whether it is squeezed by Constriction of the passage 74. Initially, the intact upper disc 52 moves downwardly into the sleeve 72 but as its lower end approaches the I.D. 78, the upper disc 52 fails. It may fail because of the sudden stop, either inside the sleeve 72 or against the plate 54. It may fail because of the hoop stress applied to the skirt 68 by the constriction of the passage 74. In any event, and without being bound by any theory, the upper disc 52 fails when it moves downwardly. This causes the lower disc 58 to fail. Tests run on a prototype show that the upper disc 52 shatters into relatively large pieces while the lower disc 58 is reduced to fine powder.
The embodiment of
Referring to
The tool 100 may also include a lower disc 128 having a skirt 130 sealed by multiple seals 132 against the central body. The lower disc 128 may be captivated against the ledge 112 by the coupling 106.
The tool 100 may typically be attached to a stinger (not shown) on the bottom of a packer (not shown) so that the tubing string (not shown) to which the packer is attached is isolated from formation pressure. The packer may be hydraulically set or other operations conducted without interference or difficulty caused by formation or hydrostatic pressure on the outside of the tubing string.
The discs 108, 128 may be ceramic discs of the type shown in U.S. Pat. No. 5,924,696 or in application Ser. No. 12/800,622 or of any other suitable type frangible members that have the property of being stronger in one direction than in another.
When it is desired to provide communication through the tool 100, pressure is applied from above as suggested by the arrow 134. When the pressure produces a force sufficient to shear the pin or pins 118, the sleeve 114 moves downwardly as suggested in
It will be seen that an important advantage of the tool 100 is that the spurs 120 contact the upper disc 108 at a location near the junction of the curved top of the disc 108 and the skirt 116 more-or-less aligned with or outboard of the interior surface of the shoulder 112. This may be of advantage because the breaking mechanism does not utilize any radial space inside the passage through the shoulder 112. Tools used in hydrocarbon wells have a great deal of leeway in an axial direction, i.e. along the well axis, but very little leeway perpendicular to the well axis. In other words, taking up radial space in a well tool is very costly.
Although this invention has been disclosed and described in its preferred forms with a certain degree of particularity, it is understood that the present disclosure of the preferred forms is only by way of example and that numerous changes in the details of operation and in the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Name | Date | Kind |
---|---|---|---|
3831680 | Edwards | Aug 1974 | A |
4510994 | Pringle | Apr 1985 | A |
4658902 | Wesson | Apr 1987 | A |
5511617 | Snider | Apr 1996 | A |
5924696 | Frazier | Jul 1999 | A |
6026903 | Shy | Feb 2000 | A |
6155350 | Melenyzer | Dec 2000 | A |
6672389 | Hinrichs | Jan 2004 | B1 |
7044230 | Starr | May 2006 | B2 |
7210533 | Starr | May 2007 | B2 |
7287596 | Frazier | Oct 2007 | B2 |
7350582 | McKeachnie | Apr 2008 | B2 |
7455116 | Lembcke | Nov 2008 | B2 |
7806189 | Frazier | Oct 2010 | B2 |
20070074873 | McKeachnie | Apr 2007 | A1 |
20070251698 | Gramstad et al. | Nov 2007 | A1 |
20070284119 | Jackson | Dec 2007 | A1 |
20080271898 | Turley | Nov 2008 | A1 |
20090020290 | Ross | Jan 2009 | A1 |
20090056955 | Slack | Mar 2009 | A1 |
20090139720 | Frazier | Jun 2009 | A1 |
20120125631 | Entchev | May 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150068730 A1 | Mar 2015 | US |