Breast biopsy and needle localization using tomosynthesis systems

Abstract
Methods, devices, apparatuses and systems are disclosed for performing mammography, such as utilizing tomosynthesis in combination with breast biopsy.
Description
BACKGROUND AND SUMMARY OF THE DISCLOSURE

Mammography is a well-established method of breast imaging. Using mammograms of the breast, radiologists identify areas suspicious of pathologies. Further identification, such as the determination of cancer is usually done through the taking of a breast biopsy. This is done in several ways. One way is to use mammography to place a wire or needle into the breast, marking the suspected pathology's location. The patient then undergoes an open surgical procedure, and the surgeon can remove tissue from the suspicious area marked by the wire or needle. This is an open surgical biopsy. Another method is known as stereotactic breast biopsy. In this method, using image guidance, a hollow needle is inserted into the breast, and a tissue sample is taken from the area of interest, without a separate surgical procedure. As stated above both methods require some method of localization of the area of interest and a method to direct a wire or needle into the breast so it resides at the already identified area of interest's location.


This patent disclosure covers methods of wire and/or needle guidance into the breast using breast tomosynthesis imaging technology. It covers both upright and prone biopsy equipment.


Tomosynthesis (tomo) is a method of performing three dimensional (3D) breast x-ray imaging. It generates images of cross sectional slices through a compressed breast, and also is used to identify breast pathologies. One of the advantages of tomosynthesis is that the images are three-dimensional, so that once an area of interest is identified in an image, its exact 3D coordinate in the breast can be calculated or estimated, e.g. from the x, y coordinate in the image of a slice and from the z, or depth, coordinate given by the image slice depth location. Another advantage of tomosynthesis is its ability to provide high contrast visibility of objects by the suppression of images from objects at different heights in the breast. Because of its superior contrast visibility, it is expected that there will be pathologies seen on the tomo images that will not be visible using standard x-ray mammography or stereotactic devices or using ultrasound or even MRI or other methods currently employed to provide guidance to the insertion of wires and needles to the location of an identified area of interest. For this reason, it is desired to develop localization methods using tomosynthesis systems that utilize tomosynthesis' natural 3D localization abilities.


This patent disclosure addresses both systems and methods for tomosynthesis imaging, and devices and methods for needle and wire localization using tomosynthesis imaging systems. In one non-limiting example, the new approach described in this patent disclosure is based on conventional tomosynthesis designs, e.g. as described in U.S. patent application Ser. No. 10/305,480, filed Nov. 27, 2002, now U.S. Pat. No. 7,123,684, issued Oct. 17 2006. U.S. patent application Ser. No. 10/723,486, filed Nov. 26, 2003, now U.S. Pat. No. 7,831,296 issued Nov. 9, 2010, U.S. Provisional Patent Application Ser. No. 60/628,516, filed Nov. 15, 2004, International. PCT Application Serial No. PCT/US2005/049194, filed Nov. 15, 2005, published as WO/2006/055830 on May 26, 2006, U.S. Provisional Patent Application Ser. No. 60/631,296, filed Nov. 26, 2004, and International PCT Application Serial No. PCT/US2005/042613, filed Nov. 23, 2005, published as WO/2006/058160 on Jun. 1, 2006, which are hereby incorporated by reference. Typically, the breast is compressed. between a breast platform and a compression paddle. The paddle may be one of the standard paddles used for screening mammography, or one with holes and guide marks used for needle localization or biopsy procedures with conventional mammography equipment, e.g. as described in U.S. Pat. No. 5,078,142 filed Nov. 21, 1989, U.S. Pat. No. 5,240,011 filed Nov. 27, 1991, U.S. Pat. No. 5,415,169 filed Feb. 17, 1993, U.S. Pat. No. 5,735,264 filed Jun. 7, 1995, U.S. Pat. No. 5,803,912 filed Apr. 25, 1995, U.S. Pat. No. 6,022,325 filed Sep. 4, 1998, U.S. Pat. No. 5,289,520 filed Oct. 6, 1992, U.S. Pat. No. 5,426,685 filed Jan. 24, 1994, U.S. Pat. No. 5,594,769 filed May 9, 1995, and U.S. Pat. No. 5,609,152 filed Feb. 15, 1995, which are hereby incorporated by reference, and as used in the prone or upright needle biopsy devices commercially available from the Lorad Division of Hologic, Inc. of Bedford, Mass. The x-ray tube is mechanically designed so that it moves along a path that images the breast from differing angles, making a sequence of exposures at differing locations along the path. A digital x-ray image receptor acquires the images. The detector can be stationary during the scan, or it can move during the scan such as if it was mounted on a c-arm connected with the x-ray tube or is otherwise connected to move in sync with the x-ray tube, though not necessarily through the same angle. The entire system can be oriented so that the patient is either upright or lying on a table with her breast pendulant and protruding through a hole in the table and positioned properly on the detector to access the area of interest as needed. One system design would be using a relatively small field of view, such as approximately 5×5 cm. This would correspond to developing a tomosynthesis biopsy system with similar field of view to standard prone table stereo localization systems. However, another way disclosed here, which differentiates a tomo biopsy system from conventional stereo localization system; is to use a significantly larger detector field of view. In one example of an embodiment the field of view can be at least 10×10 cm, in another at least 20×25 cm, in another approximately 24×29 cm.


Localization of an area of interest can start with breast acquisition carried out in a standard way used in breast tomosynthesis. The data is reconstructed, and reviewed. The area of interest is identified either on the reconstructed images of slices, or in the raw projection images. The 3D coordinates of the area of interest can be computed or estimated from the identification of the area of interest on the images.


Once the 3D location of the area of interest is calculated, known methods of directing needles and wires to that location can be used.


There might be some differences in tomo scans during biopsy procedures from screening mammography. The dose might be higher, to get lower noise images. The angular range might be wider or shallower, and the number of projections might be larger or smaller. One might want a wider angle, for example, to get higher precision depth discrimination. One might also want higher resolution for these scans, compared to conventional tomo screening. This could be accomplished through the use of smaller pixel sizes.


A biopsy system used with a tomosynthesis system can include a needle gun assembly with motorized or non-motorized stage that can direct a needle to a specific 3D coordinate in the breast. This stage may be swung or otherwise moved out of the way of the acquisition system during the initial tomosynthesis scan, so that if desired it does not shadow or interfere with the visualization of the breast or breast area of interest.


Following the tomo scan and the identification of the 3D area of interest location, the stage is moved into place. The needle is moved to the 3D coordinate previously identified. The needle may access in the breast via a left or right lateral access (e.g. with the needle roughly parallel to the compression paddle and the patient's chest wall), or it could access the breast with the needle roughly normal to the compression paddle, through an opening in the compression paddle. Or, the needle may enter the breast at an angle between the normal and parallel paths (in relation to the compression paddle and detector) through a hole in the breast compression paddle. It may also come from the front of the breast, directing the needle rearwards towards the chest wall. It can also come from between the paddle and the breast platform but at an angle rather than through the hole in the paddle.


The biopsy system should be capable of working with the tomosynthesis system in all orientations of the tomosynthesis system, including, but not limited to, CC, MLO, and ML and LM imaging orientations. These systems can rotate 360° around the breast and take images from any angle.


Standard techniques of breast biopsy typically involve verification of the needle's location before tissue sampling, known as pre- and post-fire verification. In pre-fire, the needle is inserted into the breast approximately 2 cm short of the center of the area of interest and x-ray exposures are made and images are generated and viewed to verify proper pre-fire needle location relative to the area of interest before tissue sampling. In post-fire, at least one additional exposure is made and the resulting image is viewed to verify proper needle location relative to the area of interest after the firing of the needle and before the tissue is sampled.


These verification images can be images from tomosynthesis scans, or they can be stereo x-ray pairs or individual images. The tomosynthesis scans can be done with different angular ranges and different number of projections and a different dose from conventional tomosynthesis imaging.


Post-fire needle verification can be accomplished in a variety of ways, which may depend on whether the needle access was lateral or tangential. One challenge arises from the fact that the gun and stage and needle are generally radio-opaque and can contribute artifacts to the images if not properly dealt with.


With tangential access, there may be an angular range where the gun and stage shadow the breast. Lateral access may not have the problem of the gun stage in the field of view, but it can have the needle in the field of view, and there might be other mechanics that if imaged can create image artifacts. In general, x-rays from angles that shadow the gun and stage are less useful. Solutions to this problem in accordance with the new approach disclosed in this patent specification include:


a. Development of needle and other sheathing materials that are sufficiently radiolucent that they will not create significant image artifacts. Possible materials are plastics, ceramics, glasses, carbon tubes, and low atomic number metals and other materials. If these materials are used, they can be marked with fiducial markings such as radio-opaque rings or dots allowing visibility in the tomosynthesis images so they can be differentiated from breast tissue or breast area of interest. Alternately, a needle can be used where only the tip (last 1-3 cm) is radiolucent and rest of the needle is radio-opaque.


b. Scanning through angles that do not shadow these objects. This can entail an asymmetric scan geometry, whereby all or an important part of the x-ray beam path does not pass through the needle or other radio-opaque parts. An example is scanning to just one side of the needle.


c. Scanning over a large range, and generally or always avoiding x-ray exposures when the stage or other radio-opaque parts shadow the breast, area of interest or image receptor. Alternatively, x-ray imaging can be done even in angular areas with this shadow problem, but these exposures can be eliminated from viewing or reconstruction, either automatically or through manual elimination via a user interface. Another alternate method involves artifact suppression algorithms used during reconstruction, as in known in tomosynthesis and CT scanning.


d. Stereotactic imaging. Conventional stereotactic imaging involves using a pair of x-ray images at, for example, ±15° to the normal to the compression paddle. This geometry involves sufficiently large angles to typically avoid the stage shadows on the image receptor. A tomo system can be used to take tomo projection images at angles that avoid undesirable shadows at relevant parts of the images.


e. Scan angle changes. A larger scan angle than used in conventional tomo imaging can better avoid artifacts from the stage.


f. Bringing the needle to a fixed distance from the lesion. An image can then be taken that does not obscure the area of interest, and the proper distance between needle and area of interest can be verified from imaging. The needle can then be advanced into the correct location within the area of interest based on information from the tomo or conventional imaging while the needle is spaced from the area of interest.


g. In many if not most cases the projection images and perhaps the reconstructed images of breast slices will contain at some location an image of the needle. The needle image can create artifacts in reconstructed images, which can be removed via artifact reduction algorithms as in known in conventional tomosynthesis and CT imaging. One algorithm can involve skipping projection images with extensive shadowing in the projections. Another algorithm can involve segmenting out the needle and other high contrast objects and avoiding reconstruction using these pixels, as has been used in CT and other imaging. Other alternatives include viewing the projection images, which can have images of the needles but no other significant artifacts.


The examples embodiments disclosed in this patent specification can include user interfaces to mark the area of interest location on either the projection tomo images or the reconstructed tomb images of breast slices. Signals directing the needle to the correct location in the breast can be generated automatically based on identifying the location of the area of interest in the images, or the coordinates of the area of interest can be displayed and the needle can be guided to the appropriate location under manual control.


For the pre and post fire images, a facility can be provided to mark the previously identified area of interest location on the current images. This can help visualization of proper needle placement, in case the area of interest becomes harder to see because it has been removed or in case the needle creates large artifacts. The orientation of the needle relative to this mark can provide assurance as to proper location placement.


The 3D nature of the tomosynthesis images allows for calculation of the 3D volume of the area of interest, once it has been identified on the tomosynthesis projections or reconstructed images of slices. This can be part of the display and used to help verify that the correct lesion has been targeted.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1-5 illustrate various ways of positioning a biopsy needle relative to a breast and imaging positions of an x-ray source and an image plane for reducing undesirable image artifact due to the presence of the needle or other radio-opaque material.



FIGS. 6A-6D, 7A-7E, 8A-8E, 9, and 11 illustrate various biopsy sampling needle designs for reducing undesirable image artifacts.



FIG. 10 shows a block diagram of a system with additional optional features.



FIGS. 12-14 illustrate a tomosynthesis system and its operation.



FIGS. 15-18 illustrate a biopsy stage and its operation.





DETAILED DESCRIPTION OF EXAMPLES OF PREFERRED EMBODIMENTS


FIG. 1 illustrates lateral needle access, where a breast compression paddle 10 and abreast support plate 14 can be a part of an otherwise known tomosynthesis system such as described in the co-pending patent applications identified above and incorporated by reference in this patent specification, and a biopsy needle stage 16 and a needle 18 such as used, for example, in the patents identified above that pertain to prone biopsy. For clarity, the rest of the tomosynthesis system and other parts of the biopsy apparatus are not shown in this FIG. 1, and a detailed discussion of the basic aspects of tomosynthesis is not included herein. The reader is referred to the references cited herein for such discussions. For example, image reconstruction can be performed using filtered back projection (for rapid speed of reconstruction) and/or artifact reduction methods (such as ordered statistics backprojection), as disclosed, for example, in U.S. Patent Application Publication No. 2002/0113681, the entire contents of which are incorporated by reference herein.


A patient's breast 12 is compressed between paddle 10 and support plate 14 and a needle biopsy stage 16 has been used to position the tip of a biopsy needle 18 near an area of interest 20 in breast 12. In this example needle 18 enters the breast 12 generally laterally, i.e. along the plane of support plate 14 and along the chest wall of the patient, and from the left as seen in the drawing. Of course, the needle 18 can enter instead from the right, and need not be exactly parallel to support plate 14 or to the chest wall, but can be at any angle thereto that the health professional doing the needle biopsy finds suitable for the particular patient or area of interest location. As described above, the location of area of interest 20 has been determined based on tomosynthesis images that can be tomo projection images and/or tomo reconstructed slice images. In FIG. 1, the patient's chest is behind the illustrated structure and is generally along the plane of the sheet. If upright biopsy is used, the patient's chest wall would be generally vertical; if a prone biopsy table is used, the patient's chest wall would be generally horizontal.



FIG. 2 illustrates frontal needle access in which needle 18 accesses area of interest 20 from the front of breast 12, in a direction generally along the plane of support plate 14 and normal to chest wall 22 of the patient. Again, the needle 18 direction need not be exactly parallel to support plate 14 or normal to chest wall 22, but can be at any convenient angle thereto that would allow the tip of needle 18 to reach area of interest 20 generally from the front of the breast 12, at either side of the nipple. In FIG. 2 the patient's chest wall 22 is generally normal to the sheet.



FIG. 3a illustrates tangential needle access, where a breast compression paddle 10 has, as seen in FIG. 3b, one or more needle access holes 11. FIG. 3a illustrates breast compression paddle 10, breast 12 and support plate 14 in a view similar to that of FIG. 1, but a needle stage 16 and needle 18 at a position above the breast. Needle 18 accesses area of interest 20 in a direction generally normal to support plate 14 and along the chest wall (not shown) of the patient. Again, needle 18 need not be at the angles shown but may be at any angle that the health professional doing the biopsy finds suitable.



FIG. 4 illustrates one type of a tomo scan that can be used to reduce undesirable image artifacts due to the presence of a biopsy needle 18 and possibly other radio-opaque materials. While FIG. 4 illustrates tangential needle access similar to that of FIG. 3, the principles discussed below in connection with FIGS. 4 and 5 apply to any other type of access to area of interest 20. FIG. 4 illustrates positions 24a, 24b, . . . , 24n of an x-ray tube (not shown) from which the tube emits x-ray beams for taking tomo projection images. While positions 24a-24n are illustrated as being along an arcuate path, they can be along a differently shaped path, and scanning can start from either end of the path, or from an intermediate positions along the path. As evident from FIG. 4, it is likely that at some positions of the scan, needle stage 16 would obscure at least a significant part of the imaging x-ray beam and the resulting projection image is likely to have significant and probably unacceptable artifacts.



FIG. 5 is otherwise similar to FIG. 4 but illustrates a gap region 26 in the path of x-ray tube positions 24a-24n. No x-ray tomo exposures are taken from positions in this gap region 26. Exposures are taken from positions outside this region to minimize or at least significantly reduce the extent to which the needle stage 16 and any other x-ray opaque materials affect the imaging x-ray beams and thus reduce undesirable artifacts in the images relative to images that could have been obtained with exposures taken from positions in gap 26. Sufficient tomo projection images can be taken from positions outside gap 26 from which acceptable tomo reconstructed images of breast slices can be computed to localize needle 18 relative to area of interest 20. Gap 26 can be at an end of the path of positions 24a-24n or it can be intermediate positions 24a-24n. Different x-ray dose can be used for different ones of positions 24a-24n, e.g. less dose for exposure positions in which radio-opaque materials in the path of the x-ray beam are likely to generate more undesirable artifacts, and greater dose for positions in which such material are less likely to produce such artifacts. It is possible to take exposures even from positions in gap 26, preferably at low x-ray dose, but not use the resulting projection images for reconstructing tomo images of breast slices.


During the x-ray tomo exposure, metallic breast biopsy needles can obstruct the sampled lesion or cause other undesirable artifacts such as, for example, streaking artifacts in reconstructed tomosynthesis images. This is especially acute where the sampled lesions are calcifications. This obstruction can reduce the accuracy of biopsy. Embodiments of the present disclosure include a needle design that allows for better visibility of the sampled lesion.


Several embodiments of such needles are shown m FIGS. 6-8. Here, x-ray transparent material is used in the construction of the stem of the needle to a significant extent so the sampled lesions can be seen more clearly when imaged with tomosynthesis or 2D mammography. The needle stem should still be solid enough to cut the tissue and the lesion. Of course, the x-ray transparent material need not be perfectly transparent but only sufficiently transparent to minimize or at least significantly reduce undesired image artifacts as compared with the use of metallic needles without such material. The term “x-ray transparent” is used in this sense in this patent disclosure.



FIGS. 6A-6D illustrates the use of a breast biopsy needle with an x-ray transparent body according to embodiments of the present disclosure. The needle 30 consists of two metallic tips 32 for cutting the tissue and lesion 38, and two needle stems 34 made of x-ray transparent material so as not to block x-rays. Because the needle stems 34 are x-ray transparent, the position of the needles may be determined by the position of the needle tips 32 in x-ray images and the known needle geometry. FIG. 6A illustrates the needle 30 prior to its firing. The relative location of the needle and the lesion 38 are confirmed using x-ray tomosynthesis (or 2D x-ray mammography). FIG. 6B illustrates that one of the two needle stems 34 may have a notch 36. The notched needle stem 34a may be within the lumen or cannula of the un-notched needle stem 34b. The notched needle stem 34a may be fired from the un-notched needle stem 34b such that the notch is placed in proximity to the lesion 38. FIG. 6C illustrates that the un-notched stem 34b may be pushed to close around the notched stem 34a thereby cutting and trapping the lesion 38, or at least a part thereof, within the notch 36 and the cannula of the un-notched stem 34b. Tomosynthesis or 2D mammography may then be used to confirm the position of the lesion 38 within the notch 36 and the cannula of the un-notched stem 34b. FIG. 6D illustrates that the needle may be removed from the patient with the trapped lesion 38. Tomosynthesis or 2D mammography may then be used to confirm that the lesion 38 has been correctly sampled.



FIGS. 7A-7E illustrate the use of a breast biopsy needle with an x-ray transparent body stiffened with metal according to another embodiment of the present disclosure. The needle 40 comprises two metallic tips 42 (to cut the tissue and lesion 48), and two needle stems 44 made of x-ray transparent material (so as not to block or scatter x-rays excessively) and removable solid metallic wires or ribs 50 to enhance the structural integrity of the needle stems during the firing. The wires or ribs 50 can be removed from the stems, after firing, to allow the needle stems 44 to be x-ray transparent and the taking of x-ray images after the wires or ribs 50 have been withdrawn. As seen in FIG. 7A, before firing the needle 40, the relative location of the needle 40 and the lesion 48 may be confirmed using tomosynthesis or 2D mammography. As seen in FIG. 7B, a notched needle stem 44a may be fired from an un-notched needle stem 44b. As seen in FIG. 7C, the un-notched needle stem 44b may be pushed to the notched needle stem 44a so as to cut and trap the lesion 48 between the notch 46 of the notched needle stem 44a and the un-notched needle stem 44b. As seen in FIG. 7D, the metallic wires 50 can be removed from the needle stems 44 prior to performing tomosynthesis or 2D mammography to confirm the location of the lesion 48. As seen in FIG. 7E, the needle 40 may be removed from the patient with the trapped lesion 48. Tomosynthesis or 2D mammography may then be used to confirm that the lesion 48 has been correctly sampled.



FIGS. 8A-8E illustrate another embodiment of a new breast biopsy needle that comprises two coaxial bodies each having an x-ray transparent (e.g. plastic) layer and an x-ray opaque (e.g. metal) layer that adds mechanical strength or stiffness but can be withdrawn, if desired, after the needle is in place in the breast but before x-ray images are taken. As seen in FIG. 8A, needle 60 is inserted into the breast until its cutting tips 62 are close to but spaced from suspected lesion 68. At this time, the relative locations of the needle and the lesion can be confirmed by taking tomosynthesis or 2d mammography images. Then, as seen in FIG. 8B, the notched stylet 64b (the notch shown as 66) of the needle can be fired into lesion 68 to sample it and, as seen in FIG. 8C the cannula 64a can be pushed in to slice the lesion or at least a part of it into the notch. Then the radio-opaque metal layers can be withdrawn from each of the cannula and the stylet to leave the x-ray transparent structure seen in FIG. 8D (except for its cutting tips 62). At this time, post-fire tomosynthesis or 2D mammography images can be taken to confirm that the lesion or a part of it is in the notch. Because of the use of x-my transparent material at the lesion at this time, the post-fire images are unlikely to suffer from undesirable artifacts. The core system can then be pulled back with the lesion sample, e.g. to the position illustrated in FIG. 8E.



FIG. 9 illustrate another example of a new breast biopsy needle. Biopsy needle 90 is configured as “tube-within-a-tube” cutting device and includes an outer cannula 91, an inner cannula (or localizing obturator) 92, an introducer stylet 93 and an introducer sheath 94. In addition, the outer cannula 91, localizing obturator 92, introducer stylet 93 and introducer sheath 94 can be mounted to a handpiece (not shown) or an attachment (not shown) which is in turn coupled to a support fixture or positioning device for moving the biopsy needle to a desired position. The outer cannula 91 defines an outer lumen and terminates in a tip which is preferably a trocar tip that can be used to penetrate the patient's skin. The localizing obturator 92 fits concentrically within the outer cannula 91. The localizing obturator 92 can be driven by a rotary motor and a reciprocating motor drive to translate the localizing obturator 92 axially within the outer cannula 91, while rotating the localizing obturator 92 about its longitudinal axis (or the localizing obturator 92 can be rotated and/or translated manually). Alternatively, the introducer stylet 93 which is inserted in the annular introducer sheath 94 can be inserted. In this example, the introducer stylet 93 and/or sheath 94 can be radiolucent with a radio-opaque band at a distal end thereof.


Additional examples of breast biopsy needles are disclosed in U.S. Pat. Nos. 6,638,235, 6,758,824, 6,620,111 and 6,626,849 and U.S. Publications Nos. 2006/0155209 A1, 2006/0129062 A1, 2006/0030784 AI, 2005/0113715 A1, 2005/0049521 A1, and 2004/0267157 A1, the entire contents of which are incorporated herein by reference.


Thus, in one aspect this patent specification discloses a method and a system in which tomosynthesis reconstructed images of slices of a patient's breast and/or tomosynthesis projection images of the breast are used to (1) identify the location of a suspected area of interest in the breast, (2) guide needle biopsy of the area of interest, (3) confirm pre-fire position of the needle relative to the area of interest, and/or (4) confirm post-fire position of the needle relative to the area of interest. One unique benefit of this approach is with respect to suspected pathologies that can be seen or assessed better in tomosynthesis images than in conventional mammograms or in conventional ultrasound images of breast tissue. The method and system involve taking a series of tomosynthesis projection images at respective different angles of the imaging x-ray beam relative to the breast, for example in the manner disclosed in said patent applications that are incorporated by reference in this patent specification. The information from these projection images is reconstructed into images of slices through the breast, which may represent slices of selected thickness and selected angles relative to the breast platform or the imaging plane(s) of the projection images. Typically but not necessarily the reconstructed images represent slices that are parallel to the breast platform and thus to the plane of a conventional mammogram. These images are used to identify the location of the area of interest in the breast in three dimensions, for example by having the health professional point to the location of the area of interest in one or more images and using the system to compute the 3D coordinates of the location in a manner similar to that used in said biopsy system patents identified above and incorporated by reference in this patent specification, or in a different manner, such as by pointing to the area of interest in a reconstructed slice image to thereby identify the location of the area of interest in two dimensions in the plane of the slice and to provide the third dimension from knowledge of the depth of the slice in the breast. This 3D information of the area of interest location can be used together with information regarding a geometrical relationship between the equipment in which the breast of compressed and immobilized to determine the direction and extent of biopsy needle motion executed by a needle stage in a manner similar to that disclosed in said patents incorporated by reference herein, to position the needle, to sample the area of interest and to confirm pre-fire and post-fire locations of the needle relative to the area of interest.


In order to reduce undesirable artifacts in the x-ray images due to the presence of radio-opaque objects such as the biopsy needle in the imaging x-ray beam, the method and system disclosed here employ new approaches either singly or in combinations or subcombinations with each other. A first new approach in this respect pertains to selection of tomosynthesis images and involves taking projection tomosynthesis images only at angles in which the radio-opaque objects are not in the imaging x-ray beam or, if they are in the beam, their effect in the image is significantly less than it would have been for other possible beam angles. This may involve not taking projection images at angles that would produce more undesirable artifacts and/or taking such projection images but not using them in reconstructing slice images. A second new approach that can be used instead of or in addition to the first one is to carry out post-processing of the tomo images to reduce artifact therein due to the presence of radio-opaque objects in the beam. This can involve processing of the reconstructed slice image, e.g. by using streak artifact removal algorithms similar to those conventionally used in CT (computerized tomography) technology, and/or image processing of the tomo projection images to remove or reduce such artifacts. A third new approach that can be used instead of one or more of the first and second, or together with one or both of the first and second, is to use biopsy equipment that reduces or avoids such image artifacts, e.g. a biopsy needle that is made at least partly of a material that is significantly more x-ray transparent than conventional biopsy needles. A needle made of such material can be used as is for insertion into the breast and for tissue sampling, or it may be stiffened by portions of an x-ray opaque material such as metal that are used for insertion and/or tissue sampling but are withdrawn from the breast or at least from the immediate vicinity of the area of interest before pre-fire and/or post-fire x-ray images can be taken to thereby avoid the image artifacts that such metal would cause if not withdrawn. As one example, such stiffening portions can be in the form of pins or ribs inside a cannula. As another example, they can be sleeves coaxial with a cannula and/or a stylet. Other examples of stiffening portions that are withdrawn before pre-fire and/or post fire imaging also are contemplated.


Additional features can be added. For example, in the system 100 shown in FIG. 10, a calcification detector 104 is added in a sample delivery path 103 between a biopsy needle 101 and a collection chamber (or filter) 102. The sample delivery path 103 typically includes a tube or other channel for delivery of the extracted sample to the collection filter 102. The calcification detector 104 can be coupled to the sample delivery path 103 to determine whether the samples include calcifications and estimate an amount of the calcifications. The calcification detector 104 can include, as an example, an x-ray source and detector for imaging the samples passing through the sample delivery path 103, and a CAD (computer aided diagnosis) component configured to detect and count the number of calcifications in the samples.


In one example (FIG. 11), a tissue biopsy apparatus 110 configured as a handheld device (although the apparatus can also be mounted to a support fixture that is used to position the biopsy needle) includes a biopsy needle mounted to a handpiece. The biopsy needle includes an outer cannula 115 terminating in a tip 116. A tissue-receiving opening 125 is provided (relatively) near the tip 116. An inner cannula 117 fits concentrically within the outer lumen of the outer cannula 115. The inner cannula 117 is rotated (for example, by a rotary motor) about its longitudinal axis and is translated axially within the outer cannula 115 (for example, by a reciprocating motor drive). The outer cannula 115 terminating, tip 116, inner cannula 117 and tissue-receiving opening 125 interoperate similar to the other examples discussed above to extract biopsy samples of a patient's breast. The inner cannula 117 provides an avenue for aspiration of the biopsy samples to the tissue aspiration path which also includes aspiration tube 150 coupling the tissue aspiration path to a collection chamber 155. Aspirator 121 applied vacuum or aspiration pressure to the collection chamber to draw samples through the tissue aspiration path to the collection chamber 155. X-ray tube 111 and detector 112 operate under appropriate control of a controller 114, and a detection signal representing the x-rays received by the detector 112 from the source 111 is output to CAD component 113 which decodes the signal to determine whether the samples include calcifications and estimates an amount of the calcifications. CAD systems and techniques are well-known in the art, and therefore a detailed discussion of such systems and techniques is omitted from this disclosure in the interest of clarity and brevity.


In the case that the collection filter is integrated with the biopsy needle in a handheld device or in a needle stage, the x-ray tube and detector would be small-scaled. An example of a small scale detector is available from Hamamatsu, Corporation, Bridgewater, New Jersey (see http://sales.hamamatsu.com/en/products/electron-tube-division/x-ray-products/x-ray-flat-panel-sensor.php). Information regarding a small scale x-ray tube (40 kV metal-ceramic X-ray tube from Newton Scientific Inc., Cambridge, Massachusetts) is available at http://www.newtonscientificinc.com/swans.htm.



FIG. 12 schematically illustrates a side view of a system comprising x-ray source 100a at one end 200a of a C-arm 200 that is supported for selective rotation about an axis 202, independently of a support 204 for compression paddle 104a and breast platform 106a. Support 204 also selectively rotates about the same axis 202. The other end 200b of C-arm 200 interacts with x-ray receptor 110a through a motion translator schematically illustrated at 206 that translates the rotational motion of the end 200b about axis 202 to a substantially translational motion of receptor 110a that substantially maintains the distance of receptor 110a from breast platform 106a while x-ray data is being taken. FIG. 2 is not to scale, and receptor 110a can be spaced further from member 200b than illustrated, to allow more space for motion translator 206, and also to allow for receptor 110a to be moved selectively further from or closer to breast platform 104a and thus allow for x-ray image magnification. In operation, C-arm 200 and support 204 are rotated to desired angular positions, either manually or by motor drives, patient breast 102a is positioned on platform 106a and is immobilized by bringing paddle 104a toward platform 106a and compressing breast 102a, with typically the same or less force than for a typical conventional mammogram, such as between one to one-third the conventional force. With breast 102a immobilized, and with C-arm at a selected angle relative to a normal to platform 106a and receptor 110a, such as +15°, imaging starts, and a projection image is taken for each of a number of selected angular positions of source 100a while C-arm 200 rotates, continuously or intermittently, through a selected angle, such as an angle of 30°, i.e. from +15° to −15°. Of course, the motion can be in the opposite direction, from −15° to +15°, or can be over a different angular interval, such as over less than a total of 30°, e.g. 25°, 20°, etc., or more than 30°, such as 35°, 40°, etc. Currently, the preferred range is ±15°. A set of image data can be taken at selected angular positions, such as every degree, or every fraction of a degree; or every several degrees of angle. The angular increments between the different positions for sets of image data need not be the same. For example, the increments around 0° can be less than those at the extremes of the angular positions, or vice versa. Currently, the preferred angular increment is 3°. The sets of image data can be taken after an incremental motion from one angular position of source 100a to another, and from one translational position of receptor 110a to another, such that source 100a and receptor 110a are stationary white a set of image data is being taken. Alternatively, one or both of source 100a and receptor 110a can move continuously while sets of image data are being taken, one set for each increment of continuous motion. In the currently preferred embodiment, in the example of continuous motion while taking image data both source 100a and receptor 110a move while image data are being taken.



FIG. 12 also illustrates schematically an electrical/electronic system 208 that interacts with the components discussed above. System 208 includes a control 210 for selectively energizing and otherwise controlling x-ray source 100a, an arm rotation control 212 for selectively rotating C-arm 200 and support 204, a breast compression control 214 for selectively moving compression paddle 104a toward and away from breast platform 106a, data readout electronics 216 coupled with x-ray receptor 110a to read out the sets of image data at the respective positions of source 100a and receptor 110a relative to immobilized breast 102a, and an image reconstruction and display unit 218 coupled with data readout electronics 216 to receive the sets of image data from electronics 216 and to process the image data for reconstruction and other purposes and display images.


For a given position of breast 102a, such as a position that is the same or similar to the CC position for a conventional mammogram, source 100a and receptor 110a can be positioned relative to immobilized breast 102a such that at the 0° position a center ray of the x-ray beam from source 100a would be substantially normal to receptor breast platform 106a and receptor 110a. For a first set of image data, source 100a is at +(or −) 15° in a preferred example, and is gradually moved; continuously or intermittently to −(or +) 15°, with a set of image data taken every 3°. The angular range and the increment over which data sets are taken can each be selectively set by the operator, depending of characteristics of the breast being imaged and the screening and diagnostic needs, and can be different for different patients or from one to the other breast of the same patient. For example the source can move through angles that range from a fraction to a degree to several degrees from one imaging position to the next. Each set of image data is supplied by image readout 216 for processing at image reconstruction and display unit 218. Each set of image data can be taken at the same x-ray dose to the breast, and the dose at any one of the different imaging positions can be substantially less than that for a conventional mammogram. The x-ray dose can be substantially the same for each imaging position, but preferably the dose at one of the position, e.g., at or close to the 0° position, is the same or similar to dose for a conventional mammogram while the dose at the each of the other positions is less, preferably much less. Alternatively, the scan can begin with or end with an exposure close to the 0° position at a dose similar to a conventional mammogram, and the rest of the set of image data can be over the angular range with each exposure at an x-ray dose that is substantially less than that for a conventional mammogram. Thus, two types of images can be produced in accordance with the currently preferred embodiment while breast 102a is immobilized in the same position. One type is the same or is at least similar to a conventional mammogram, which can be read and interpreted in the manner familiar to health professionals. The other type is tomosynthetic images reconstructed from the image data and displayed either separately or as an adjunct to the display of the image that is the same or similar to a conventional mammogram. The process described above for one position of breast 102a can be repeated for another position. For example one process can be for a breast position in a manner that is the same or similar to positioning the breast for a conventional CC view, the breast can then be released, the support 204 and C-arm 200 rotated to other angular positions and the breast repositioned in a manner that is the same and similar to the position for an MLO view, and the procedure repeated.


An alternative embodiment, illustrated schematically in a front view in FIG. 13 and in side view in FIG. 14, is similar except that receptor 110a is affixed to the end 200b of C-arm 200 that is opposite x-ray source 100a. In this embodiment, receptor 110a moves relative to immobilized breast 102a along an arcuate path from one imaging position to another. Because the change in angle between receptor 110a and breast platform is small, it can be disregarded in processing the sets of x-ray image data. Alternatively, a geometric correction known to those skilled in the art can be applied to each set of image data to convert it to interpolated pixel values that would correspond to those that would have been obtained if receptor 110a had been parallel to and at the same distance from platform 106a at all imaging positions. The so corrected sets of image data can then be used in filtered back projections as described above.



FIG. 15 illustrates a biopsy needle positioning mechanism that is typically employed as a component of an overall mammographic needle biopsy system, and comprises a conventional puncture instrument 10a for retaining a biopsy needle or other biopsy or therapeutic delivery device (not illustrated). Three conventional DC motors 12a, 14a, and 16a are provided for moving the biopsy needle retained by the puncture instrument 10a in the rotation and angulation axes and for setting a stop position along the depth axis, respectively. Positional feedback is provided to the biopsy needle positioning motor controller by the three DC motors 12a, 14a, and 16a. The operator hand controller allows the clinician user to control the motorized biopsy needle positioning system. Controls are provided to permit the user to initiate movement of the biopsy needle into a position for insertion to the identified point of interest within the patient's breast, in accordance with the computed spatial coordinates of that point of interest The position of the biopsy needle may be monitored by the user with reference to a 32-character display on the operator hand controller. An enable switch is provided to prevent inadvertent motion of the biopsy needle.


The remote view and display box receives the spatial coordinates of rotation, angulation, and depth from the biopsy needle positioning motor controller and displays them for the benefit of the clinician user or others on a 40-character alphanumeric display. The remote view and display box may be conveniently mounted on a table that includes means for mounting and lighting x-ray reference films to be viewed during a breast biopsy procedure.


Operation of the biopsy needle positioning motor controller may be understood with reference to the detailed block diagram of FIG. 16. The biopsy needle positioning motor controller receives the spatial coordinates of the identified point of interest within the patient's breast from the film digitizer and coordinates calculator and computes the variables required to drive the three DC motors 12a, 14a, and 16a that form part of the biopsy needle positioning mechanism. Information regarding the position of the biopsy needle is continuously provided by the biopsy needle positioning motor controller to the LED displays in the operator hand controller. During manual operation, the biopsy needle positioning motor controller receives commands from the operator hand controller and drives the biopsy needle positioning mechanism in the direction specified for as long as the user simultaneously depresses one of the direction arrow keys and the enable switch located on the operator hand controller illustrated in FIG. 17.


A central processing unit (8032 CPU) within the biopsy needle positioning motor controller has a direct serial communications link with the remote view and display box through an RS422 serial transmitter U29. The 8032 CPU also has two bi-directional communications links through a dual synchronous universal transmitter/receiver DUART, which provides serial communications between the biopsy needle positioning motor controller and both the film digitizer and coordinates calculator (serial channel B) and the operator hand controller (serial channel A).


Under normal operating conditions, the 8032 CPU loads the three DC motor controller sections (rotation, angulation, and depth) with high level initial conditions data. This initial conditions data includes velocity constants, acceleration constants, PID filter information, and sample period. When the spatial coordinates of the identified point of interest within the patient's breast, as computed by the film digitizer and coordinates calculator, are placed on the data bus ADO-AD7 by DUART U11, the 8032 CPU reads these spatial coordinates and calculates the corresponding motor control values. The 8032 CPU then sends this data to the three motor control sections. The motor control sections calculate the actual motor drive voltages and provide the drive voltages to motors 12a, 14a, and 16a through separate H-bridge circuits. The motor control sections monitor the encoder feedback from the biopsy needle positioning mechanism to determine the position of the biopsy needle and to adjust the motor drive voltages as the biopsy needle reaches the identified point of interest. A typical motor voltage and velocity profile is trapezoidal in nature, ramping up to a start voltage, then holding constant, and finally ramping down to a stop voltage when the biopsy needle has reached the position required for insertion to the identified point of interest.


The 8032 CPU support circuits include operating and debug program data in erasable programmable read-only memories EPROMs U1 and U6. Fourteen status bits plus a six-bit DIP switch are monitored through an input port and a random access memory RAM U15. The status bits include +/−limit switches and a home switch associated with each coordinate axis. Two additional status bits serve to monitor the +5-volt (+5ENC) and +24-volt (+24VOK) power supplies. A reset circuit U23 provides a reset signal to reset the 8032 CPU when power is initially applied. The reset circuit also monitors program execution by counting a pulse associated with each cycle of the program and by executing a CPU reset command if the pulses stop, as may occur during a software lockup.


Referring now to FIGS. 17 and 18, it will be understood how the operator hand controller of FIG. 17 transmits data to and receives data and instructions from the biopsy needle positioning motor controller via an RS422 serial transmitter/receiver bus (serial channel A). While the operator hand controller is described herein as being a hand-held unit, it may also comprise a console or table-mounted unit. The principal functions of the operator hand controller are to 1) transmit switch closure data resulting from actuation of the direction arrow keys and the MANUAL, OFFSET, and TARGET keys to the biopsy needle positioning motor controller; 2) illuminate button LEDs in accordance with information received from the biopsy needle positioning motor controller; and 3) display the spatial coordinates of the identified point of interest within the patient's breast, as provided by the biopsy needle positioning motor controller. Additionally, the operator hand controller provides a safety interlock through the ENABLE switch SW9, which must be simultaneously depressed by the user with a selected one of the function keys in order to initiate any of the functions of the operator hand controller. The ENABLE switch is mounted on the side of the operator hand controller and, when depressed, energizes a relay in the biopsy needle positioning motor controller that enables movement of the biopsy needle positioning mechanism. When this switch opens, the relay removes power from the three DC motors 12a, 14a, and 16a of the biopsy needle positioning mechanism.


The clinician user initiates control of the biopsy needle positioning mechanism in either an automatic or manual mode by depressing control switches on the operator hand controller. Depressing one of the arrow keys or one of the MANUAL, OFFSET or TARGET keys has the effect of grounding a corresponding input of serial encoder U 13. This causes serial encoder U13 to apply an 1INTERRUPT 0 (1NTOO) to the CPU U9 and place the serial data in 12C protocol on the serial lines SDA and. SCL to the CPU U9. The CPU U9 converts the switch information to RS422 protocol and sends it to the biopsy needle positioning motor controller via serial transmitter U15. Each of the keys on the operator hand controller contains a light emitting diode LED that is illuminated under the control of the biopsy needle positioning motor controller. The biopsy needle positioning motor controller selects a particular LED to be illuminated, sets the brightness of that LED, and determines how long that LED is to remain illuminated. This information is sent to the CPU U9 via serial receiver U15. The CPU U9 then places the information in 12C protocol on the serial lines SDA and SCL to be transmitted to serial decoder/driver U14. Serial decoder/driver U14 pulls a corresponding output to its low state, thereby illuminating the selected LED. The CPU U9 controls the brightness of the LEDs on the operator hand controller by setting the duty cycle of BRIGHTNESS (BL) pulses applied to the LEDS. A 50% duty cycle illuminates the LEDs at half brightness and a 100% duty cycle illuminates the LEDs at full brightness.


The position readout displays U1-U8 in the operator hand controller provide two rows of displayed information comprising 16 ASCII characters in each row. Each row comprises four display devices, and each display device contains four 5.times.7 dot matrix character displays. Referring to FIG. 4, the top line of the position readout display indicates target number 2 (2:), a rotation axis angle of 10.32 degrees right (10.32R), and an angulation axis angle of 9.72 degrees up (9.72U). The bottom line of the position readout display indicates a depth stop setting of 135.6 millimeters (135.6 nun depth). As previously described in connection with the LEDs that illuminate each of the keys of the operator hand controller, the biopsy needle positioning motor controller similarly controls the position readout displays through serial communications with the operator hand controller CPU U9. The CPU U9 provides segment selection control and character display using two data buses DDO-DD7 and DAO-DA4. To display a selected ASCII character, the CPU U9 puts data describing the character on the DDO-DD7 (P3.0-P3.6 outputs of the CPU U9) bus. The CPU U9 transmits a low signal FNABLE (DWR) to segment decoder U10, which decodes bits DA2-DA4 and applies a low enable signal to the appropriate ones of display device U1-U8. The enabled display device then decodes the character select bit DAO and DA1 to select the character position which displays the ASCII character defined by data bus DDO-DD6. As with the LEDs, the biopsy needle positioning motor controller defines the brightness of the position readout display. The biopsy needle positioning motor controller communicates the brightness level to the CPU U9, which then switches the BRIGHTNESS (BL) signal on and off, producing the designated duty cycle.


In addition, an additional line 106 can be added for introducing anesthetic and/or contrast agents, for example, along with a flushing agent or lavage. The introduction of the anesthetic and/or contrast agents can be automated and synchronized to the imaging sequence.


Many variations can be introduced on the above-discussed illustrative embodiments and examples without departing from the spirit of the disclosure or from the scope of the appended claims. For example, elements and/or features of different examples and illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure and appended claims.

Claims
  • 1. A method for displaying contrast tomosynthesis reconstructed images of a breast of a patient, the method comprising: performing a tomosynthesis scan of the breast while the breast contains a contrast agent, the tomosynthesis scan comprising: moving an imaging x-ray source through a plurality of imaging positions along a source trajectory; andobtaining a plurality of images corresponding to each of the plurality of imaging positions, wherein the plurality of images includes a first set of images and a second set of images;based on the first set of images and the second set of images, deriving tomosynthesis reconstructed images representing respective slices of the breast;displaying at least one of the tomosynthesis reconstructed images of the breast;receiving an indication on at least one of the tomosynthesis reconstructed images of an area of interest within the breast;determining, from the indication, three-dimensional coordinates of the area of interest;positioning an insertable artificial element at the area of interest in the breast, based on the three-dimensional coordinates of the area of interest; andemitting, after positioning the insertable artificial element, a plurality of verification x-ray beams of a same image type along a verification imaging trajectory from the imaging x-ray source at a plurality of verification x-ray positions, wherein at least two of the plurality of verification x-ray beams corresponds to at least a first x-ray dose and a second x-ray dose different than the first x-ray dose.
  • 2. The method of claim 1, wherein the plurality of verification imaging positions are disposed along the verification imaging trajectory.
  • 3. The method of claim 1, wherein the insertable artificial element is one of: a needle;a wire; ora marker.
  • 4. The method of claim 3, wherein the insertable artificial element is the needle, and the verification imaging trajectory is disposed asymmetrically to the needle.
  • 5. The method of claim 3, wherein the insertable artificial element is the needle, and the needle is positioned in one of the following positions prior to emission of the verification x-ray beam: a pre-extended position; oran extended position.
  • 6. The method of claim 1, wherein emitting the verification x-ray beam at the plurality of verification imaging positions comprises emitting a first x-ray beam on a first side of the insertable artificial element and emitting a second x-ray beam on a second side of the insertable artificial element.
  • 7. The method of claim 1, the method further comprising: performing a biopsy at a location of the insertable artificial element.
  • 8. A method for displaying contrast tomosynthesis reconstructed images of a breast of a patient, the method comprising: performing a tomosynthesis scan of the breast while the breast contains a contrast agent, the tomosynthesis scan comprising: moving an imaging x-ray source through a plurality of imaging positions along a source trajectory; andobtaining a plurality of images corresponding to each of the plurality of imaging positions, wherein the plurality of images includes a first set of images and a second set of images;based on the first set of images and the second set of images, deriving tomosynthesis reconstructed images representing respective slices of the breast;displaying at least one of the tomosynthesis reconstructed images of the breast;receiving an indication on at least one of the tomosynthesis reconstructed images of an area of interest within the breast;determining, from the indication, three-dimensional coordinates of the area of interest;positioning an insertable artificial element at the area of interest in the breast, based on the three-dimensional coordinates of the area of interest; andemitting a plurality of verification x-ray beams along a verification imaging trajectory from the imaging x-ray source at a plurality of verification x-ray positions, wherein at least two of the plurality of verification x-ray beams corresponds to at least a first x-ray dose and a second x-ray dose different than the first x-ray dose;wherein the verification imaging trajectory is disposed asymmetrically to the insertable artificial element.
  • 9. The method of claim 8, wherein the plurality of verification imaging positions are disposed along the verification imaging trajectory.
  • 10. The method of claim 8, wherein the insertable artificial element is one of: a needle;a wire; ora marker.
  • 11. The method of claim 10, wherein the insertable artificial element is the needle.
  • 12. The method of claim 10, wherein the insertable artificial element is the needle, and the needle is positioned in one of the following positions prior to emission of the verification x-ray beam: a pre-extended position; oran extended position.
  • 13. The method of claim 8, wherein emitting the verification x-ray beam at the plurality of verification imaging positions comprises emitting a first x-ray beam on a first side of the insertable artificial element and emitting a second x-ray beam on a second side of the insertable artificial element.
  • 14. The method of claim 8, the method further comprising: performing a biopsy at a location of the insertable artificial element.
  • 15. The method of claim 8, wherein the insertable artificial element includes a tip for cutting a tissue and a stem for blocking or scattering x-rays.
  • 16. The method of claim 15, wherein the tip includes metallic material, and the stems includes x-ray transparent material.
  • 17. The method of claim 15, wherein the stem further includes an x-ray opaque rib.
  • 18. The method of claim 17, wherein the rib includes metallic material.
  • 19. The method of claim 17, wherein the rib is configured to be removed from the stem after firing the insertable artificial element.
  • 20. The method of claim 15, wherein the stem includes a first body and a second body, the first and second bodies are coaxial, the first body includes an x-ray transparent layer the second body includes an x-ray opaque layer.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/434,064, filed Jun. 6, 2019, now U.S. Pat. No. 11,452,486, which is a continuation of U.S. patent application Ser. No. 15/904,735, filed Feb. 26, 2018, now U.S. Pat. No. 10,335,094, which is a continuation of U.S. patent application Ser. No. 14/021,624, filed Sep. 9, 2013, now U.S. Pat. No. 9,901,309, which is a continuation of U.S. patent application Ser. No. 11/707,587 filed Feb. 15, 2007, now U.S. Pat. No. 8,532,745, which claims Priority from U.S. Provisional Application No. 60/774,142, filed Feb. 15, 2006. To the extent appropriate, a claim for priority is made to each of the above-recited applications.

US Referenced Citations (472)
Number Name Date Kind
3502878 Stewart Mar 1970 A
3863073 Wagner Jan 1975 A
3971950 Evans et al. Jul 1976 A
4160906 Daniels Jul 1979 A
4310766 Finkenzeller et al. Jan 1982 A
4496557 Malen et al. Jan 1985 A
4559641 Caugant et al. Dec 1985 A
4706269 Reina et al. Nov 1987 A
4727565 Ericson Feb 1988 A
4744099 Huettenrauch May 1988 A
4773086 Fujita Sep 1988 A
4773087 Plewes Sep 1988 A
4819258 Kleinman et al. Apr 1989 A
4821727 Levene et al. Apr 1989 A
4907156 Doi et al. Jun 1990 A
4969174 Schied Nov 1990 A
4989227 Tirelli et al. Jan 1991 A
5018176 Romeas et al. May 1991 A
RE33634 Yanaki Jul 1991 E
5029193 Saffer Jul 1991 A
5051904 Griffith Sep 1991 A
5078142 Siczek et al. Jan 1992 A
5099846 Hardy Mar 1992 A
5129911 Siczek et al. Jul 1992 A
5133020 Giger et al. Jul 1992 A
5163075 Lubinsky Nov 1992 A
5164976 Scheid et al. Nov 1992 A
5199056 Darrah Mar 1993 A
5219351 Teubner Jun 1993 A
5240011 Assa Aug 1993 A
5279309 Taylor et al. Jan 1994 A
5280427 Magnusson Jan 1994 A
5289520 Pellegrino et al. Feb 1994 A
5343390 Doi et al. Aug 1994 A
5359637 Webbe Oct 1994 A
5365562 Toker Nov 1994 A
5386447 Siczek Jan 1995 A
5415169 Siczek et al. May 1995 A
5426685 Pellegrino et al. Jun 1995 A
5452367 Bick Sep 1995 A
5491627 Zhang et al. Feb 1996 A
5499097 Ortyn et al. Mar 1996 A
5506877 Niklason et al. Apr 1996 A
5526394 Siczek Jun 1996 A
5539797 Heidsieck et al. Jul 1996 A
5553111 Moore Sep 1996 A
5592562 Rooks Jan 1997 A
5594769 Pellegrino et al. Jan 1997 A
5596200 Sharma Jan 1997 A
5598454 Franetzki Jan 1997 A
5609152 Pellegrino et al. Mar 1997 A
5627869 Andrew et al. May 1997 A
5642433 Lee et al. Jun 1997 A
5642441 Riley et al. Jun 1997 A
5647025 Frost et al. Jul 1997 A
5657362 Giger et al. Aug 1997 A
5660185 Shmulewitz et al. Aug 1997 A
5668889 Hara Sep 1997 A
5671288 Wilhelm et al. Sep 1997 A
5712890 Spivey Jan 1998 A
5719952 Rooks Feb 1998 A
5735264 Siczek et al. Apr 1998 A
5763871 Ortyn et al. Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5773832 Sayed et al. Jun 1998 A
5803912 Siczek et al. Sep 1998 A
5818898 Tsukamoto et al. Oct 1998 A
5828722 Ploetz Oct 1998 A
5835079 Shieh Nov 1998 A
5841124 Ortyn et al. Nov 1998 A
5872828 Niklason et al. Feb 1999 A
5875258 Ortyn et al. Feb 1999 A
5878104 Ploetz Mar 1999 A
5878746 Lemelson et al. Mar 1999 A
5896437 Ploetz Apr 1999 A
5941832 Tumey Aug 1999 A
5954650 Saito Sep 1999 A
5986662 Argiro Nov 1999 A
6005907 Ploetz Dec 1999 A
6022325 Siczek et al. Feb 2000 A
6067079 Shieh May 2000 A
6075879 Roehrig et al. Jun 2000 A
6091841 Rogers Jul 2000 A
6101236 Wang et al. Aug 2000 A
6102866 Nields et al. Aug 2000 A
6137527 Abdel-Malek Oct 2000 A
6141398 He Oct 2000 A
6149301 Kautzer et al. Nov 2000 A
6175117 Komardin Jan 2001 B1
6196715 Nambu Mar 2001 B1
6215892 Douglass et al. Apr 2001 B1
6216540 Nelson Apr 2001 B1
6219059 Argiro Apr 2001 B1
6256370 Yavus Apr 2001 B1
6233473 Sheperd May 2001 B1
6243441 Zur Jun 2001 B1
6245028 Furst et al. Jun 2001 B1
6272207 Tang Aug 2001 B1
6289235 Webber et al. Sep 2001 B1
6292530 Yavus Sep 2001 B1
6293282 Lemelson Sep 2001 B1
6327336 Gingold et al. Dec 2001 B1
6327377 Rutenberg et al. Dec 2001 B1
6341156 Baetz Jan 2002 B1
6375352 Hewes Apr 2002 B1
6389104 Bani-Hashemi et al. May 2002 B1
6411836 Patel Jun 2002 B1
6415015 Nicolas Jul 2002 B2
6424332 Powell Jul 2002 B1
6442288 Haerer Aug 2002 B1
6459925 Nields et al. Oct 2002 B1
6463181 Duarte Oct 2002 B2
6468226 McIntyre, IV Oct 2002 B1
6480565 Ning Nov 2002 B1
6501819 Unger et al. Dec 2002 B2
6556655 Chichereau Apr 2003 B1
6574304 Hsieh Jun 2003 B1
6597762 Ferrant Jul 2003 B1
6611575 Alyassin et al. Aug 2003 B1
6620111 Stephens et al. Sep 2003 B2
6626849 Huitema et al. Sep 2003 B2
6633674 Barnes Oct 2003 B1
6638235 Miller et al. Oct 2003 B2
6647092 Eberhard Nov 2003 B2
6650928 Gailly Nov 2003 B1
6683934 Zhao Jan 2004 B1
6744848 Stanton Jun 2004 B2
6748044 Sabol et al. Jun 2004 B2
6751285 Eberhard Jun 2004 B2
6758824 Miller et al. Jul 2004 B1
6813334 Koppe Nov 2004 B2
6882700 Wang Apr 2005 B2
6885724 Li Apr 2005 B2
6901156 Giger et al. May 2005 B2
6912319 Barnes May 2005 B1
6940943 Claus Sep 2005 B2
6978040 Berestov Dec 2005 B2
6987331 Koeppe Jan 2006 B2
6999554 Mertelmeier Feb 2006 B2
7022075 Grunwald et al. Apr 2006 B2
7025725 Dione et al. Apr 2006 B2
7030861 Westerman Apr 2006 B1
7110490 Eberhard Sep 2006 B2
7110502 Tsuji Sep 2006 B2
7117098 Dunlay et al. Oct 2006 B1
7123684 Jing et al. Oct 2006 B2
7127091 OpDeBeek Oct 2006 B2
7142633 Eberhard Nov 2006 B2
7218766 Eberhard May 2007 B2
7245694 Jing et al. Jul 2007 B2
7289825 Fors et al. Oct 2007 B2
7298881 Giger et al. Nov 2007 B2
7315607 Ramsauer Jan 2008 B2
7319735 Defreitas et al. Jan 2008 B2
7323692 Rowlands Jan 2008 B2
7346381 Okerlund et al. Mar 2008 B2
7406150 Minyard et al. Jul 2008 B2
7430272 Jing et al. Sep 2008 B2
7443949 Defreitas et al. Oct 2008 B2
7466795 Eberhard et al. Dec 2008 B2
7577282 Gkanatsios et al. Aug 2009 B2
7606801 Faitelson et al. Oct 2009 B2
7616801 Gkanatsios et al. Nov 2009 B2
7630533 Ruth et al. Dec 2009 B2
7634050 Muller et al. Dec 2009 B2
7640051 Krishnan Dec 2009 B2
7697660 Ning Apr 2010 B2
7702142 Ren et al. Apr 2010 B2
7705830 Westerman et al. Apr 2010 B2
7760924 Ruth et al. Jul 2010 B2
7769219 Zahniser Aug 2010 B2
7787936 Kressy Aug 2010 B2
7809175 Roehrig et al. Oct 2010 B2
7828733 Zhang et al. Nov 2010 B2
7831296 DeFreitas et al. Nov 2010 B2
7869563 DeFreitas Jan 2011 B2
7974924 Holla et al. Jul 2011 B2
7991106 Ren et al. Aug 2011 B2
8044972 Hall et al. Oct 2011 B2
8051386 Rosander et al. Nov 2011 B2
8126226 Bernard et al. Feb 2012 B2
8155421 Ren et al. Apr 2012 B2
8165365 Bernard et al. Apr 2012 B2
8532745 DeFreitas et al. Sep 2013 B2
8571289 Ruth Oct 2013 B2
8594274 Hoernig et al. Nov 2013 B2
8677282 Cragun et al. Mar 2014 B2
8712127 Ren et al. Apr 2014 B2
8897535 Ruth et al. Nov 2014 B2
8983156 Periaswamy et al. Mar 2015 B2
9020579 Smith Apr 2015 B2
9075903 Marshall Jul 2015 B2
9084579 Ren et al. Jul 2015 B2
9119599 Itai Sep 2015 B2
9129362 Jerebko Sep 2015 B2
9289183 Karssemeijer Mar 2016 B2
9451924 Bernard Sep 2016 B2
9456797 Ruth et al. Oct 2016 B2
9478028 Parthasarathy Oct 2016 B2
9589374 Gao Mar 2017 B1
9592019 Sugiyama Mar 2017 B2
9805507 Chen Oct 2017 B2
9808215 Ruth et al. Nov 2017 B2
9811758 Ren et al. Nov 2017 B2
9901309 DeFreitas et al. Feb 2018 B2
10008184 Kreeger et al. Jun 2018 B2
10010302 Ruth et al. Jul 2018 B2
10092358 DeFreitas Oct 2018 B2
10111631 Gkanatsios Oct 2018 B2
10242490 Karssemeijer Mar 2019 B2
10335094 DeFreitas Jul 2019 B2
10357211 Smith Jul 2019 B2
10410417 Chen et al. Sep 2019 B2
10413263 Ruth et al. Sep 2019 B2
10444960 Marshall Oct 2019 B2
10456213 DeFreitas Oct 2019 B2
10573276 Kreeger et al. Feb 2020 B2
10575807 Gkanatsios Mar 2020 B2
10595954 DeFreitas Mar 2020 B2
10624598 Chen Apr 2020 B2
10977863 Chen Apr 2021 B2
10978026 Kreeger Apr 2021 B2
11419565 Gkanatsios Aug 2022 B2
11508340 Kreeger Nov 2022 B2
20010038681 Stanton et al. Nov 2001 A1
20010038861 Hsu et al. Nov 2001 A1
20020012450 Tsuji Jan 2002 A1
20020050986 Inoue May 2002 A1
20020075997 Unger et al. Jun 2002 A1
20020113681 Byram Aug 2002 A1
20020122533 Marie et al. Sep 2002 A1
20020188466 Barrette et al. Dec 2002 A1
20020193676 Bodicker Dec 2002 A1
20030007598 Wang Jan 2003 A1
20030018272 Treado et al. Jan 2003 A1
20030026386 Tang Feb 2003 A1
20030048260 Matusis Mar 2003 A1
20030073895 Nields et al. Apr 2003 A1
20030095624 Eberhard et al. May 2003 A1
20030097055 Yanof May 2003 A1
20030128893 Castorina Jul 2003 A1
20030135115 Burdette et al. Jul 2003 A1
20030169847 Karellas Sep 2003 A1
20030194050 Eberhard Oct 2003 A1
20030194121 Eberhard et al. Oct 2003 A1
20030195433 Turovskiy Oct 2003 A1
20030210254 Doan Nov 2003 A1
20030212327 Wang Nov 2003 A1
20030215120 Uppaluri Nov 2003 A1
20040008809 Webber Jan 2004 A1
20040008900 Jabri et al. Jan 2004 A1
20040008901 Avinash Jan 2004 A1
20040036680 Davis Feb 2004 A1
20040047518 Tiana Mar 2004 A1
20040052328 Saboi Mar 2004 A1
20040064037 Smith Apr 2004 A1
20040066884 Hermann Claus Apr 2004 A1
20040066904 Eberhard et al. Apr 2004 A1
20040070582 Smith et al. Apr 2004 A1
20040077938 Mark et al. Apr 2004 A1
20040081273 Ning Apr 2004 A1
20040094167 Brady May 2004 A1
20040101095 Jing et al. May 2004 A1
20040109028 Stern et al. Jun 2004 A1
20040109529 Eberhard et al. Jun 2004 A1
20040127789 Ogawa Jul 2004 A1
20040138569 Grunwald Jul 2004 A1
20040171933 Stoller et al. Sep 2004 A1
20040171986 Tremaglio, Jr. et al. Sep 2004 A1
20040267157 Miller et al. Dec 2004 A1
20050047636 Gines et al. Mar 2005 A1
20050049521 Miller et al. Mar 2005 A1
20050063509 Defreitas et al. Mar 2005 A1
20050078797 Danielsson et al. Apr 2005 A1
20050084060 Seppi et al. Apr 2005 A1
20050089205 Kapur Apr 2005 A1
20050105679 Wu et al. May 2005 A1
20050107689 Sasano May 2005 A1
20050111718 MacMahon May 2005 A1
20050113681 DeFreitas May 2005 A1
20050113715 Schwindt et al. May 2005 A1
20050124845 Thomadsen et al. Jun 2005 A1
20050135555 Claus Jun 2005 A1
20050135664 Kaufhold Jun 2005 A1
20050226375 Eberhard Oct 2005 A1
20060009693 Hanover et al. Jan 2006 A1
20060018526 Avinash Jan 2006 A1
20060025680 Jeune-Iomme Feb 2006 A1
20060030784 Miller et al. Feb 2006 A1
20060074288 Kelly et al. Apr 2006 A1
20060098855 Gkanatsios et al. May 2006 A1
20060129062 Nicoson et al. Jun 2006 A1
20060132508 Sadikali Jun 2006 A1
20060155209 Miller et al. Jun 2006 A1
20060147099 Marshall et al. Jul 2006 A1
20060197753 Hotelling Sep 2006 A1
20060210131 Wheeler Sep 2006 A1
20060228012 Masuzawa Oct 2006 A1
20060238546 Handley Oct 2006 A1
20060257009 Wang Nov 2006 A1
20060269040 Mertelmeier Nov 2006 A1
20060274928 Collins et al. Dec 2006 A1
20060291618 Eberhard et al. Dec 2006 A1
20070019846 Bullitt et al. Jan 2007 A1
20070030949 Jing et al. Feb 2007 A1
20070036265 Jing et al. Feb 2007 A1
20070046649 Reiner Mar 2007 A1
20070052700 Wheeler et al. Mar 2007 A1
20070076844 Defreitas et al. Apr 2007 A1
20070114424 Danielsson et al. May 2007 A1
20070118400 Morita et al. May 2007 A1
20070156451 Gering Jul 2007 A1
20070223651 Wagenaar et al. Sep 2007 A1
20070225600 Weibrecht et al. Sep 2007 A1
20070236490 Casteele Oct 2007 A1
20070242800 Jing et al. Oct 2007 A1
20070263765 Wu Nov 2007 A1
20070274585 Zhang et al. Nov 2007 A1
20080019581 Gkanatsios et al. Jan 2008 A1
20080043905 Hassanpourgol Feb 2008 A1
20080045833 DeFreitas et al. Feb 2008 A1
20080101537 Sendai May 2008 A1
20080114614 Mahesh et al. May 2008 A1
20080125643 Huisman May 2008 A1
20080130979 Ren Jun 2008 A1
20080139896 Baumgart Jun 2008 A1
20080152086 Hall Jun 2008 A1
20080165136 Christie et al. Jul 2008 A1
20080187095 Boone et al. Aug 2008 A1
20080198966 Hjarn Aug 2008 A1
20080221479 Ritchie Sep 2008 A1
20080229256 Shibaike Sep 2008 A1
20080240533 Piron et al. Oct 2008 A1
20080297482 Weiss Dec 2008 A1
20090003519 DeFreitas Jan 2009 A1
20090005668 West et al. Jan 2009 A1
20090005693 Brauner Jan 2009 A1
20090010384 Jing et al. Jan 2009 A1
20090034684 Bernard Feb 2009 A1
20090037821 O'Neal et al. Feb 2009 A1
20090079705 Sizelove et al. Mar 2009 A1
20090080594 Brooks et al. Mar 2009 A1
20090080602 Brooks et al. Mar 2009 A1
20090080604 Shores et al. Mar 2009 A1
20090080752 Ruth Mar 2009 A1
20090080765 Bernard et al. Mar 2009 A1
20090087067 Khorasani Apr 2009 A1
20090123052 Ruth May 2009 A1
20090129644 Daw et al. May 2009 A1
20090135997 Defreitas et al. May 2009 A1
20090138280 Morita et al. May 2009 A1
20090143674 Nields Jun 2009 A1
20090167702 Nurmi Jul 2009 A1
20090171244 Ning Jul 2009 A1
20090238424 Arakita Sep 2009 A1
20090259958 Ban Oct 2009 A1
20090268865 Ren et al. Oct 2009 A1
20090278812 Yasutake Nov 2009 A1
20090296882 Gkanatsios et al. Dec 2009 A1
20090304147 Jing et al. Dec 2009 A1
20100034348 Yu Feb 2010 A1
20100049046 Peiffer Feb 2010 A1
20100054400 Ren et al. Mar 2010 A1
20100079405 Bernstein Apr 2010 A1
20100086188 Ruth et al. Apr 2010 A1
20100088346 Urness et al. Apr 2010 A1
20100098214 Star-Lack et al. Apr 2010 A1
20100105879 Katayose et al. Apr 2010 A1
20100121178 Krishnan May 2010 A1
20100131294 Venon May 2010 A1
20100131482 Linthicum et al. May 2010 A1
20100135558 Ruth et al. Jun 2010 A1
20100152570 Navab Jun 2010 A1
20100166267 Zhang Jul 2010 A1
20100195882 Ren et al. Aug 2010 A1
20100208037 Sendai Aug 2010 A1
20100231522 Li Sep 2010 A1
20100246909 Blum Sep 2010 A1
20100259561 Forutanpour et al. Oct 2010 A1
20100259645 Kaplan Oct 2010 A1
20100260316 Stein et al. Oct 2010 A1
20100280375 Zhang Nov 2010 A1
20100293500 Cragun Nov 2010 A1
20110018817 Kryze Jan 2011 A1
20110019891 Puong Jan 2011 A1
20110054944 Sandberg et al. Mar 2011 A1
20110069808 Defreitas et al. Mar 2011 A1
20110069906 Park Mar 2011 A1
20110087132 DeFreitas et al. Apr 2011 A1
20110105879 Masumoto May 2011 A1
20110109650 Kreeger May 2011 A1
20110110576 Kreeger May 2011 A1
20110125526 Gustafson May 2011 A1
20110150447 Li Jun 2011 A1
20110163939 Tam et al. Jul 2011 A1
20110178389 Kumar et al. Jul 2011 A1
20110182402 Partain Jul 2011 A1
20110234630 Batman et al. Sep 2011 A1
20110237927 Brooks et al. Sep 2011 A1
20110242092 Kashiwagi Oct 2011 A1
20110310126 Georgiev et al. Dec 2011 A1
20120014504 Jang Jan 2012 A1
20120014578 Karssemeijer Jan 2012 A1
20120069951 Toba Mar 2012 A1
20120106698 Karim May 2012 A1
20120131488 Karlsson et al. May 2012 A1
20120133600 Marshall May 2012 A1
20120133601 Marshall May 2012 A1
20120134464 Hoernig et al. May 2012 A1
20120148151 Hamada Jun 2012 A1
20120189092 Jerebko Jul 2012 A1
20120194425 Buelow Aug 2012 A1
20120238870 Smith et al. Sep 2012 A1
20120293511 Mertelmeier Nov 2012 A1
20130022165 Jang Jan 2013 A1
20130044861 Muller Feb 2013 A1
20130059758 Haick Mar 2013 A1
20130108138 Nakayama May 2013 A1
20130121569 Yadav May 2013 A1
20130121618 Yadav May 2013 A1
20130202168 Jerebko Aug 2013 A1
20130259193 Packard Oct 2013 A1
20140033126 Kreeger Jan 2014 A1
20140035811 Guehring Feb 2014 A1
20140064444 Oh Mar 2014 A1
20140073913 DeFreitas et al. Mar 2014 A1
20140219534 Wiemker et al. Aug 2014 A1
20140219548 Wels Aug 2014 A1
20140327702 Kreeger et al. Nov 2014 A1
20140328517 Gluncic Nov 2014 A1
20150052471 Chen Feb 2015 A1
20150061582 Smith Apr 2015 A1
20150238148 Georgescu Aug 2015 A1
20150302146 Marshall Oct 2015 A1
20150309712 Marshall Oct 2015 A1
20150317538 Ren et al. Nov 2015 A1
20150331995 Zhao Nov 2015 A1
20160000399 Halmann et al. Jan 2016 A1
20160022364 DeFreitas et al. Jan 2016 A1
20160051215 Chen Feb 2016 A1
20160078645 Abdurahman Mar 2016 A1
20160140749 Erhard May 2016 A1
20160228034 Gluncic Aug 2016 A1
20160235380 Smith Aug 2016 A1
20160367210 Gkanatsios Dec 2016 A1
20170071562 Suzuki Mar 2017 A1
20170262737 Rabinovich Sep 2017 A1
20180047211 Chen et al. Feb 2018 A1
20180137385 Ren May 2018 A1
20180144244 Masoud May 2018 A1
20180256118 Defreitas Sep 2018 A1
20190015173 DeFreitas Jan 2019 A1
20190043456 Kreeger Feb 2019 A1
20190290221 Smith Sep 2019 A1
20200046303 DeFreitas Feb 2020 A1
20200093562 DeFreitas Mar 2020 A1
20200184262 Chui Jun 2020 A1
20200205928 DeFreitas Jul 2020 A1
20200253573 Gkanatsios Aug 2020 A1
20200345320 Chen Nov 2020 A1
20210100518 Chui Apr 2021 A1
20210113167 Chui Apr 2021 A1
20210118199 Chui Apr 2021 A1
20220005277 Chen Jan 2022 A1
20220013089 Kreeger Jan 2022 A1
20220192615 Chui Jun 2022 A1
20220386969 Smith Dec 2022 A1
20230053489 Kreeger Feb 2023 A1
20230054121 Chui Feb 2023 A1
20230056692 Gkanatsios Feb 2023 A1
20230082494 Chui Mar 2023 A1
20230125385 Solis Apr 2023 A1
Foreign Referenced Citations (101)
Number Date Country
2014339982 Apr 2015 AU
1846622 Oct 2006 CN
202161328 Mar 2012 CN
102429678 May 2012 CN
107440730 Dec 2017 CN
102010009295 Aug 2011 DE
102011087127 May 2013 DE
775467 May 1997 EP
982001 Mar 2000 EP
1428473 Jun 2004 EP
2236085 Jun 2010 EP
2215600 Aug 2010 EP
2301432 Mar 2011 EP
2491863 Aug 2012 EP
1986548 Jan 2013 EP
2656789 Oct 2013 EP
2823464 Jan 2015 EP
2823765 Jan 2015 EP
3060132 Apr 2019 EP
H09-198490 Jul 1997 JP
H09-238934 Sep 1997 JP
H10-33523 Feb 1998 JP
2000-200340 Jul 2000 JP
2002-109510 Apr 2002 JP
2002-282248 Oct 2002 JP
2003-189179 Jul 2003 JP
2003-199737 Jul 2003 JP
2003-531516 Oct 2003 JP
2004254742 Sep 2004 JP
2006-519634 Aug 2006 JP
2006-312026 Nov 2006 JP
2007-130487 May 2007 JP
2007-330334 Dec 2007 JP
2007-536968 Dec 2007 JP
2008-068032 Mar 2008 JP
2009-034503 Feb 2009 JP
2009-522005 Jun 2009 JP
2009-526618 Jul 2009 JP
2009-207545 Sep 2009 JP
2010-137004 Jun 2010 JP
2011-110175 Jun 2011 JP
2012501750 Jan 2012 JP
2012011255 Jan 2012 JP
2012-061196 Mar 2012 JP
2013-244211 Dec 2013 JP
2014-507250 Mar 2014 JP
2014-534042 Dec 2014 JP
2015-506794 Mar 2015 JP
2015-144632 Aug 2015 JP
2016-198197 Dec 2015 JP
10-2015-0010515 Jan 2015 KR
10-2017-0062839 Jun 2017 KR
9005485 May 1990 WO
9317620 Sep 1993 WO
9406352 Mar 1994 WO
199700649 Jan 1997 WO
199816903 Apr 1998 WO
0051484 Sep 2000 WO
2003020114 Mar 2003 WO
2005051197 Jun 2005 WO
2005110230 Nov 2005 WO
2005110230 Nov 2005 WO
2005112767 Dec 2005 WO
2005112767 Dec 2005 WO
2006055830 May 2006 WO
2006058160 Jun 2006 WO
2007095330 Aug 2007 WO
08014670 Feb 2008 WO
2008014670 Feb 2008 WO
2008047270 Apr 2008 WO
2008054436 May 2008 WO
2009026587 Feb 2009 WO
2010028208 Mar 2010 WO
2010059920 May 2010 WO
2011008239 Jan 2011 WO
2011043838 Apr 2011 WO
2011065950 Jun 2011 WO
2011073864 Jun 2011 WO
2011091300 Jul 2011 WO
2012001572 Jan 2012 WO
2012068373 May 2012 WO
2012063653 May 2012 WO
2012112627 Aug 2012 WO
2012122399 Sep 2012 WO
2013001439 Jan 2013 WO
2013035026 Mar 2013 WO
2013078476 May 2013 WO
2013123091 Aug 2013 WO
2014080215 May 2014 WO
2014149554 Sep 2014 WO
2014207080 Dec 2014 WO
2015061582 Apr 2015 WO
2015066650 May 2015 WO
2015130916 Sep 2015 WO
2016103094 Jun 2016 WO
2016184746 Nov 2016 WO
2018183548 Oct 2018 WO
2018183549 Oct 2018 WO
2018183550 Oct 2018 WO
2018236565 Dec 2018 WO
2021021329 Feb 2021 WO
Non-Patent Literature Citations (93)
Entry
Bushberg, Jerrold et al., “The Essential Physics of Medical Imaging”, 3rd ed., In: “The Essential Physics of Medical Imaging, Third Edition”, Dec. 28, 2011, Lippincott & Wilkins, Philadelphia, PA, USA, XP05579051, pp. 270-272.
Dromain, Clarisse et al., “Dual-energy contrast-enhanced digital mammography: initial clinical results”, European Radiology, Sep. 14, 2010, vol. 21, pp. 565-574.
Reynolds, April, “Stereotactic Breast Biopsy: A Review”, Radiologic Technology, vol. 80, No. 5, Jun. 1, 2009, pp. 447M-464M, XP055790574.
“Filtered Back Projection”, (NYGREN), published May 8, 2007, URL: http://web.archive.org/web/19991010131715/http://www.owlnet.rice.edu/˜elec539/Projects97/cult/node2.html, 2 pgs.
Berg WA et al., “Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer”, JAMA 299:2151-2163, 2008.
Canadian Office Action in Application 2829349, dated Oct. 15, 2018, 4 pages.
Carton AK, et al., “Dual-energy contrast-enhanced digital breast tomosynthesis—a feasibility study”, BR J Radiol. Apr. 2010;83 (988):344-50.
Chen SC, et al., “Initial clinical experience with contrast-enhanced digital breast tomosynthesis”, Acad Radio. Feb. 2007 14(2):229-38.
Chinese 2nd Office Action in Application 201480058064.5, dated Jul. 16, 2019, 5 pgs.
Diekmann F., et al., “Digital mammography using iodine-based contrast media: initial clinical experience with dynamic contrast medium enhancement”, Invest Radiol 2005; 40:397-404.
Dromain C., et al., “Contrast enhanced spectral mammography: a multi-reader study”, RSNA 2010, 96th Scientific Assembly and Scientific Meeting.
Dromain C., et al., “Contrast-enhanced digital mammography”, Eur J Radiol. 2009; 69:34-42.
European Communication in Application 10707751.3, mailed Oct. 4, 2018, 5 pages.
European Communication in Application 10707751.3, dated Aug. 7, 2019, 6 pages.
European Extended Search Report dated Jul. 18, 2014 in EP App 12754521.8, 7 pages.
European Extended Search Report for European Patent Application No. 14770362.3 dated Sep. 28, 2016, 8 pgs.
European Extended Search Report in Application 14855181.5, dated May 15, 2017, 7 pages.
European extended Search Report in Application 18153706.9, dated Jun. 1, 2018, 8 pages.
European Mar. 23, 2009 European Search Report in connection with counterpart European patent Application No. 07750818.
European Office Action in Application 10707751.3, dated Feb. 19, 2018, 5 pgs.
Freiherr G., “Breast tomosynthesis trials show promise”, Diagnostic Imaging—San Francisco 2005, V27; N4:42-48.
Giger, M. et al., “An “Intelligent” Workstation for Computer-aided Diagnosis”, RadioGraphics, (1993), 13(3): 647-656.
Giger, M. et al., “Development of a “smart” workstation for use in mammography”, Proceedings of SPIE, (1991), 45: 101-103.
Hologic, “Lorad StereoLoc II” Operator's Manual 9-500-0261, Rev. 005, 2004, 78 pgs.
Hologic, Inc., 510(k) Summary, prepared Nov. 28, 2010, for Affirm Breast Biopsy Guidance System Special 510(k) Premarket Notification, 5 pages.
Hologic, Inc., 510(k) Summary, prepared Aug. 14, 2012, for Affirm Breast Biopsy Guidance System Special 510(k) Premarket Notification, 5 pages.
ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, 12 pages.
Japanese Notice of Final Rejection in Application 2016-526115, dated Jun. 24, 2019, 5 pages.
Jochelson M., et al, “Bilateral Dual Energy contrast-enhanced digital mammography: Initial Experience”, RSNA 2010, 96th Scientific Assembly and Scientific Meeting, 1 page.
Jong, RA, et al., Contrast-enhanced digital mammography: initial clinical experience. Radiology 2003; 228:842-850.
Kopans, et.al. Will tomosynthesis replace conventional mammography? Plenary Session SFN08: RSNA 2005.
Lehman CD, et al. MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 2007; 356:1295-1303.
Lewin JM, et al., Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology 2003; 229:261-268.
Lindfors KK, et al., Dedicated breast CT: initial clinical experience. Radiology 2008; 246(3): 725-733.
Niklason, L., et al., Digital tomosynthesis in breast imaging. Radiology. Nov. 1997; 205(2):399-406.
Observations by Third Party, Remarks concerning European patent application No. 10707751.3 according to Article 115 EPC, dated Apr. 24, 2014, 8 pgs.
PCT Feb. 20, 2008 International Search Report and Written Opinion in connection with corresponding International patent application No. PCT/US2007/04006, 7 pgs.
PCT International Preliminary Report on Patentability in International Application PCT/US2014/061994, dated Apr. 26, 2016, 5 pages.
PCT International Search Report and Written Opinion in Application PCT/US2010/025873, dated Aug. 2, 2010, 19 pgs.
PCT International Search Report in Application PCT/US2014/026164, dated Jul. 28, 2014, 1 page.
PCT International Written Report for International Application PCT/US2014/026164, dated Jul. 28, 2014, 12 pgs.
PCT Written Opinion in International Application PCT/US2014/061994, dated Jan. 22, 2015, 4 pages.
PCT/US12/28334 International Search Report and Written Opinion, dated Jul. 5, 2012, 7 pages.
Poplack SP, et al, Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am J Roentgenology Sep. 2007 189(3):616-23.
Prionas ND, et al., Contrast-enhanced dedicated breast CT: initial clinical experience. Radiology. Sep. 2010 256(3):714-723.
Rafferty E. et al., “Assessing Radiologist Performance Using Combined Full-Field Digital Mammography and Breast Tomosynthesis Versus Full-Field Digital Mammography Alone: Results” . . . presented at 2007 Radiological Society of North America meeting, Chicago IL.
Shrading, Simone et al., “Digital Breast Tomosynthesis-guided Vacuum-assisted Breast Biopsy: Initial Experiences and Comparison with Prone Stereotactic Vacuum-assisted Biopsy”, the Department of Diagnostic and Interventional Radiology, Univ. of Aachen, Germany, published Nov. 12, 2014, 10 pgs.
Smith, A., Full field breast tomosynthesis. Radiol Manage. Sep.-Oct. 2005; 27(5):25-31.
Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. New England Journal of Medicine 1991; 324:1-8.
Weidner N, The importance of tumor angiogenesis: the evidence continues to grow. Am J Clin Pathol. Nov. 2004 122(5):696-703.
“Supersonic to feature Aixplorer Ultimate at ECR”, AuntiMinnie.com, 3 pages (Feb. 2018).
Kopans, Daniel B., “Breast Imaging”, 3rd Edition, Lippincott Williams and Wilkins, published Nov. 2, 2006, pp. 960-967.
Williams, Mark B. et al., “Optimization of exposure parameters in full field digital mammography”, Medical Physics 35, 2414 (May 20, 2008); doi: 10.1118/1.2912177, pp. 2414-2423.
Elbakri, Idris A. et al., “Automatic exposure control for a slot scannong full field digital mammagraphy system”, Med. Phys. Sep. 2005; 32(9):2763-2770, Abstract only.
Feng, Steve Si Jia, et al., “Clinical digital breast tomosynthesis system: Dosimetric Characterization”, Radiology, Apr. 2012, 263(1); pp. 35-42.
Samani, A. et al., “Biomechanical 3-D Finite Element Modeling of the Human Breast Using MRI Data”, 2001, IEEE Transactions on Medical Imaging, vol. 20, No. 4, pp. 271-279.
Yin, H.M., et al., “Image Parser: a tool for finite element generation from three-dimensional medical images”, BioMedical Engineering Online. 3:31, pp. 1-9, Oct. 1, 2004.
Sakic et al., “Mammogram synthesis using a 3D simulation. I. breast tissue model and image acquisition simulation” Medical Physics. 29, pp. 2131-2139 (2002).
Wodajo, Felasfa, MD, “Now Playing: Radiology Images from Your Hospital PACS on your iPad,” Mar. 17, 2010; web site: http://www.imedicalapps.com/2010/03/now-playing-radiology-images-from-your-hospital-pacs-on-your-ipad/, accessed on Nov. 3, 2011 (3 pages).
Pathmanathan et al., “Predicting tumour location by simulating large deformations of the breast using a 3D finite element model and nonlinear elasticity”, Medical Image Computing and Computer-Assisted Intervention, pp. 217-224, vol. 3217 (2004).
Al Sallab et al., “Self Learning Machines Using Deep Networks”, Soft Computing and Pattern Recognition (SoCPaR), 2011 Int'l. Conference of IEEE, Oct. 14, 2011, pp. 21-26.
Caroline, B.E. et al., “Computer aided detection of masses in digital breast tomosynthesis: A review”, 2012 International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET), Tiruchirappalli, 2012, pp. 186-191.
Ertas, M. et al., “2D versus 3D total variation minimization in digital breast tomosynthesis”, 2015 IEEE International Conference on Imaging Systems and Techniques (IST), Macau, 2015, pp. 1-4.
Ghiassi, M. et al., “A Dynamic Architecture for Artificial Networks”, Neurocomputing, vol. 63, Aug. 20, 2004, pp. 397-413.
Chan, “ROC Study of the effect of stereoscopic imaging on assessment of breast lesions,” Medical Physics, vol. 32, No. 4, Apr. 2005.
Lilja, Mikko, “Fast and accurate voxel projection technique in free-form cone-beam geometry with application to algebraic reconstruction,” Applies Sciences on Biomedical and Communication Technologies, 2008, Isabel '08, first international symposium on, IEEE, Piscataway, NJ, Oct. 25, 2008.
Pediconi, “Color-coded automated signal intensity-curve for detection and characterization of breast lesions: Preliminary evaluation of new software for MR-based breast imaging,” International Congress Series 1281 (2005) 1081-1086.
EFilm Mobile HD by Merge Healthcare, web site: http://itunes.apple.com/bw/app/efilm-mobile-hd/id405261243?mt=8, accessed on Nov. 3, 2011 (2 pages).
EFilm Solutions, eFilm Workstation (tm) 3.4, website: http://estore.merge.com/na/estore/content.aspx?productID=405, accessed on Nov. 3, 2011 (2 pages).
Burbank, Fred, “Stereotactic Breast Biopsy: Its History, Its Present, and Its Future”, published in 1996 at the Southeastern Surgical Congress, 24 pages.
E. Shaw de Paredes et al., “Interventional Breast Procedure”, published Sep./Oct. 1998 in Curr Probl Diagn Radiol, pp. 138-184.
Fischer Imaging Corp, Mammotest Plus manual on minimally invasive breast biopsy system, 2002, 8 pages.
Fischer Imaging Corporation, Installation Manual, MammoTest Family of Breast Biopsy Systems, 86683G, 86684G, P-55957-IM, Issue 1, Revision 3, Jul. 2005, 98 pages.
Fischer Imaging Corporation, Operator Manual, Mammo Test Family of Breast Biopsy Systems, 86683G, 86684G, P-55956-OM, Issue 1, Revision 6, Sep. 2005, 258 pages.
Georgian-Smith, Dianne, et al., “Stereotactic Biopsy of the Breast Using an Upright Unit, a Vacuum-Suction Needle, and a Lateral Arm-Support System”, 2001, at the American Roentgen Ray Society meeting, 8 pages.
Koechli, Ossi R., “Available Sterotactic Systems for Breast Biopsy”, Renzo Brun del Re (Ed.), Minimally Invasive Breast Biopsies, Recent Results in Cancer Research 173:105-113; Springer-Verlag, 2009.
Conner, Peter, “Breast Response to Menopausal Hormone Therapy—Aspects on Proliferation, apoptosis and Mammographic Density”, 2007 Annals of Medicine, 39;1, 28-41.
Glick, Stephen J., “Breast CT”, Annual Rev. Biomed. Eng., 2007, 9;501-26.
Metheany, Kathrine G. et al., “Characterizing anatomical variability in breast CT images”, Oct. 2008, Med. Phys. 35 (10); 4685-4694.
Dromain, Clarisse, et al., “Evaluation of tumor angiogenesis of breast carcinoma using contrast-enhanced digital mammography”, AJR: 187, Nov. 2006, 16 pages.
Zhao, Bo, et al., “Imaging performance of an amorphous selenium digital mammography detector in a breast tomosynthesis system”, May 2008, Med. Phys 35(5); 1978-1987.
Mahesh, Mahadevappa, “AAPM/RSNA Physics Tutorial for Residents—Digital Mammography: An Overview”, Nov.-Dec. 2004, vol. 24, No. 6, 1747-1760.
Zhang, Yiheng et al., “A comparative study of limited-angle cone-beam reconstruction methods for breast tomosythesis”, Med Phys., Oct. 2006, 33(10): 3781-3795.
Sechopoulos, et al., “Glandular radiation dose in tomosynthesis of the breast using tungsten targets”, Journal of Applied Clinical Medical Physics, vol. 8, No. 4, Fall 2008, 161-171.
Wen, Junhai et al., “A study on truncated cone-beam sampling strategies for 3D mammography”, 2004, IEEE, 3200-3204.
Ijaz, Umer Zeeshan, et al., “Mammography phantom studies using 3D electrical impedance tomography with numerical forward solver”, Frontiers in the Convergence of Bioscience and Information Technologies 2007, 379-383.
Kao, Tzu-Jen et al., “Regional admittivity spectra with tomosynthesis images for breast cancer detection”, Proc. of the 29th Annual Int'l. Conf. of the IEEE EMBS, Aug. 23-26, 2007, 4142-4145.
Varjonen, Mari, “Three-Dimensional Digital Breast Tomosynthesis in the Early Diagnosis and Detection of Breast Cancer”, IWDM 2006, LNCS 4046, 152-159.
Taghibakhsh, f. et al., “High dynamic range 2-TFT amplified pixel sensor architecture for digital mammography tomosynthesis”, IET Circuits Devices Syst., 2007, 1(10, pp. 87-92.
Chan, Heang-Ping et al., “Computer-aided detection system for breast masses on digital tomosynthesis mammograms: Preliminary Experience”, Radiology, Dec. 2005, 1075-1080.
Diekmann, Felix et al., “Thick Slices from Tomosynthesis Data Sets: Phantom Study for the Evaluation of Different Algorithms”, Journal of Digital Imaging, Springer, vol. 22, No. 5, Oct. 23, 2007, pp. 519-526.
Van Schie, Guido, et al., “Mass detection in reconstructed digital breast tomosynthesis vols. with a computer-aided detection system trained on 2D mammograms”, Med. Phys. 40(4), Apr. 2013, 41902-1-41902-11.
Van Schie, Guido, et al., “Generating Synthetic Mammograms from Reconstructed Tomosynthesis Volumes”, IEEE Transactions on Medical Imaging, vol. 32, No. 12, Dec. 2013, 2322-2331.
Related Publications (1)
Number Date Country
20200390404 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
60774142 Feb 2006 US
Continuations (4)
Number Date Country
Parent 16434064 Jun 2019 US
Child 16936550 US
Parent 15904735 Feb 2018 US
Child 16434064 US
Parent 14021624 Sep 2013 US
Child 15904735 US
Parent 11707587 Feb 2007 US
Child 14021624 US