This invention relates generally to a warming, as well as cooling, system and apparatus, particularly useful for breastmilk, and most particularly for neonatal care.
Most infants in the neonatal intensive care unit (NICU) are not able to breastfeed effectively. Instead, either the infant is bottle fed, or breastmilk or formula is delivered through an orogastric or nasogastric passage to the infant's stomach. In these situations, breastmilk is expressed from the mother and stored in a freezer or refrigerator until it is desired for use, at which point it is often transferred to bottles or syringes for delivery to the baby.
Because infants in the NICU have difficulty maintaining their body temperature, the breastmilk or formula is warmed prior to feeding so the chill will not stress the infant. The current practice for warming breastmilk or formula is for nurses to place the bottles in warm water baths. The water in the warm water baths is typically supplied from sink faucets. Depending on the hot water settings, distance of the NICU from the water heater, and other variables, the temperatures of the warm water can vary greatly. The temperatures of the warm water can also vary depending on how long the nurses wait for the water to reach its maximum temperature before filling the baths. The actual water temperature is not measured, and the actual temperature of the milk in the bottle is unknown.
The breastmilk is typically thawed using one of several methods: thawing for more than 24 hours in a refrigerator at 4° C., setting the liquid out for an undetermined number of hours on a counter at room temperature and then placing it in a refrigerator, or a rapid thaw may be performed in which the protocol used for thawing and warming with water is employed to frozen milk in order to accelerate the thawing rate. This protocol is an uncontrolled method in which the damage that has potentially been done to the milk as a result of the temperature and rate times that are employed is unknown.
Additionally, the prevention of the spreading of germs is critical in this environment, as infants in the NICU are very fragile and susceptible to infection. The risk of warming a bottle or syringe using water that is not sterile and contains some level of bacteria exists. This water could leak into the bottle or syringe and contaminate the liquid within, aid transfer of germs through handling of the water and containers, and provide a media for further bacterial growth. This is a known potential of contamination within the majority of hospitals. Just using water as a temperature adjustment medium is considered undesirable.
The fact that water is used to heat the bottles and the bottles are then often carried to the baby's bed may also result in water damage to bedside charts and computers.
It is desirable to have an apparatus that can repeatedly warm and thaw breastmilk or formula to an appropriate temperature without detrimentally affecting the breastmilk composition in order to prevent stressing the infant and eliminating the risk of potential contamination sites. Conversely, it would be desirable for the same apparatus to further have a cooling (or refrigeration) aspect as well.
It is also desirable to perform these tasks as quickly as possible, given the time constraints and workload imposed upon neonatal nurses. Nurses usually state it takes them approximately 15 minutes for the total warming process for breastmilk. Considering that this task is repeated six to eight times a day, it can accumulate to a considerable amount of time and labor cost for a facility.
It is also desirable to have an apparatus that can handle all manner of devices that may be used to contain the breastmilk, such as syringes, bottles, jars, bags and other containers.
The present invention is an improved apparatus and system for thawing, warming and in a further application cooling, breastmilk. More particularly, the present invention has a principal objective of providing a bottle and syringe warmer system useful to repeatedly and precisely warm breastmilk or formula for use in the NICU, such as to infants in need of milk. It will be understood that while the invention is generally discussed in the particular environment of a bottle or syringe type container, and in the NICU setting, other containers and applications are contemplated and will fall within the scope of the invention.
The bottle and syringe warmer system in one form comprises a bedside unit that is attachable to an IV pole. By having the unit at a bedside IV pole, the amount of time a nurse is away from a baby due to milk preparation is greatly reduced. Warming and preparation is now done bedside, allowing nurses to spend more time devoted to the care of the patient. Additionally, every time milk is transferred from one area to another, a second nurse is typically required to verify that the right milk is going to the right patient. Enabling bedside preparation reduces the need for identification verification. The foregoing need not be pole-mounted, but could be a desktop unit.
Alternatively, or in addition, a bottle or syringe warming device may be a multi-port unit in a centralized milk preparation area. This embodiment comprises a centralized heating system that allows for the ability to warm and/or cool multiple containers at the same time while providing patient identification methods to properly identify each individual warming port. This embodiment would also provide all of the benefits of the single, IV-mountable unit: consistency, performance, safety, and reliability while reducing the cycle time spent by nurses, technicians, or other milk preparation staff in the thawing and warming of milk.
The bottle and syringe warming device is intended in a preferred form to accommodate a variety of sizes, shapes, and containers of various volumes commonly used in the NICU.
This device will most preferably use a non-liquid heating system to eliminate the risk of infection as well as cleanup associated with using water as a heat transfer means. The device will also preferably accommodate a liner element so as to capture spills and reduce potential contamination. The liner would be intended to be changed out between nurse shifts and patients, but may be changed more frequently as warranted. The liner may comprise a first material with an interior that defines a liquid containing portion and an opening defined by a perimeter. A top section that covers at least part of the opening may be made from a second material; the top section would contain an access port to the interior of the liquid containing portion.
The device will, in its preferred form, advantageously contain a heating algorithm or like operational feature based on a user inputting milk parameters such as volume and initial temperature. The heating program then provides for a predetermined thawing/warming cycle based upon the input parameters that yields a minimization of time required to heat milk with the least deleterious impact on the milk according to customized heat profiles. The apparatus will advantageously use a control heating and thawing cycle that has been designed, based on research, to not damage the critical composition of breastmilk or formula. For the nurse, mother, or other user, the input required is minimal and the rest is automated.
The bottle and syringe warming device will in its most preferred form herein use warm air forced convection as the primary mode of heat transfer. The air temperature will be regulated in accordance with the warming algorithm (program or other controller) associated with nurse/clinician input parameters. Temperature hold modes may further maintain desired temperatures until the user is ready to use the bottle or syringe (or other container).
In yet a further variation, the invention may advantageously further employ a cooling aspect. As discussed herein, for example, a Peltier heating/cooling element is employed, yielding the ability to readily switch between thawing/warming to cooling. A separate refrigeration element is also contemplated as a possibility.
All in all, a relatively compact apparatus and system is achieved by the invention which is adapted for use with a wide range of types, sizes, shapes and volumes of containers commonly employed in a hospital or other institutional setting for the handling of breastmilk. The foregoing invention is considered to be a highly useful apparatus and system for a NICU setting where a plurality of mothers and their premature babies are treated, and where the invention is easily operated and maintained with a minimum of effort and skill.
These and other advantages of the invention will be further understood upon consideration of the following detailed description of certain embodiments, taken in conjunction with the drawings, in which:
To ensure health and proper growth, rapid weight gain is important for a premature infant. One way for a premature infant to gain weight rapidly is to feed the infant breastmilk at the correct temperature. Breastmilk contains important immunoglobulins, nutritional components, and vitamins. If overheated, these elements within the breastmilk will not remain intact; thus it is important to avoid overheating the breastmilk. Feeding a premature infant breastmilk, or related liquid-like formula, at the correct temperature also avoids placing any undue stress on the infant that may be present as a result of the temperature difference between the infant's body temperature and the temperature of the feeding. Moreover, the manner of feeding the premature infant may be highly circumscribed, such as the need to administer the milk at a very small rate, as through a syringe-type feeder.
As shown in
In the open lid position, as shown in
First compartment 122 and second compartment 124 are raised portions of lid 118. There are two openings per compartment, as shown in
In a situation in which a larger syringe is used, second lid 128 may be opened, and the larger syringe may be pushed through hole or orifice 130 so that the milk-containing portion of the syringe is in chamber 136. The plunger handle of the larger syringe extends outside of chamber 136. Access port 126 may hold the syringe to keep internal and external air flows separated. Hole or orifice 130 may be adjustable to accommodate various syringe sizes. One way to accomplish this would be to use an adjustable material, such as silicone, for access port 126.
First passage 112 is in fluid communication with heater 110 and with first compartment 122 of housing 116. Second passage 114 is in fluid communication with heater 110 and with second compartment 124 of housing 116. Each of first opening of first compartment 122 and second compartment 124 is in fluid communication with each of first passage 112 and second passage 114, respectively, and each of second opening 134 of first compartment 122 and second compartment 124 releases the air into chamber 136.
Bottle and syringe warmer 100 has the ability to be mounted on an IV pole. If mounted on an IV pole, bottle and syringe warmer 100 will have mechanisms to attach to the pole and to maintain the device in the upright position. This could be a clamp (not shown) affixed to the warmer 100. Having bottle and syringe warmer 100 attached to an IV pole that is bedside has many advantages. Warming and preparation of the milk may now be done at the bedside, allowing a nurse to spend a greater portion of his or her time near the baby, devoted to the infant's care. Additionally, every time milk is transferred from one area to another, an additional nurse is typically required to verify that the correct milk is going to the assigned patient. With bottle and syringe warmer 100 attached to the IV pole at a patient's bedside, this tedious step can be eliminated. Alternatively, bottle and syringe warmer 100 may be placed on a countertop.
Preferably, heater 110 uses warm air forced convection as the primary mode of heat transfer. Alternate versions of heater 110 may employ either natural or forced convection, conduction, or radiation as the primary method to warm the milk. Bottle and syringe warmer 100 uses a non-liquid heating system to eliminate the infection risk and mess associated with using water for heat transfer.
The airflow within bottle and syringe warmer 100 may be conditioned. Conditioned air may be heated air. Alternatively, conditioned air may be cooled air. The airflow within bottle and syringe warmer 100 comprises a temperature that is altered by conditioning using either heater 110, a cooling mechanism, or both simultaneously.
Examples of reasons for cooling infant feed would be for temperature control, refrigeration prior to warming the liquid (storage), and post thawing. The conditioned airflow may be fully recirculating to minimize the power requirements necessary to heat or cool and maintain the air at the desired temperature. When the system is set up so that the air is recirculating, the airflow is substantially a closed or mostly closed system, wherein the air is conditioned to generate the desired heating or cooling effect. Closing the system reduces the power requirements to modify the air temperature. The conditioned airflow may be set up to be a partially recirculating, or a venting system. Airflow in a partially closed or open system would comprise ambient air introduction into the system. Ambient air at the ambient air temperature may be strategically introduced so as to quickly heat or cool the system air as desired, also helping reduce the power requirements to modify the air temperature.
The airflow temperature may be raised using a heating mechanism until the temperature of the airflow reaches a set temperature. The airflow temperature may then be maintained at the set temperature for a period of time. The length of the period of time may be determined by the user, or may be pre-set. To properly maintain the set temperature for a period of time, a cooling mechanism may be used to function in tandem with the heating mechanism. Both the cooling mechanism and the heating mechanism may operate at the same time. Alternatively, the heating mechanism and the cooling mechanism may alternate, so that only one of the mechanisms is operating at a time. After the designated period of time has elapsed, the temperature of the airflow may be reduced to a temperature that is less than the set temperature, using solely the cooling mechanism. In an alternative embodiment, once the temperature of the airflow achieves the set temperature, the airflow may be immediately cooled using the cooling mechanism to a temperature that is less than the set temperature.
Bottle and syringe warmer 100 may regulate the air temperature within chamber 136 using heating algorithms based on nurse entered parameters into a control panel 200, as shown in
In an exemplary embodiment, four heating profiles may be used based on the possible combinations of warming or thawing and the solid or liquid phases of milk. The first profile may be to warm refrigerated milk, the second profile to warm room temperature milk, the third profile to thaw frozen milk, and the fourth profile to warm frozen milk. An exemplary heating logic algorithm to warm refrigerated milk is shown in the diagram shown in
Temperature hold modes will maintain desired temperatures until the nurse is ready to use the milk. A maximum temperature may be set to as to not damage the composition of the breastmilk. The temperature limits may be based on University Western Australia research as disclosed in WO 2007/11267 A1 in order to ensure protection of proteins and other milk components by not overheating the milk. Based on this data, the air temperature itself could be held at a higher temperature that is determined to be safe, removing cross-contamination potential from a recirculating airflow.
Additionally, bottle and syringe warmer 100 may employ a cleaning cycle where the temperature limits are intentionally held or exceeded for a period of time in order to disinfect the device. Alternatively, an inline disinfecting agent, antimicrobial materials, filter, or UV light in the airflow may be used to disable or remove potential contaminants.
Heater 110 may be covered with a separate housing. Alternatively, housing 116 may cover the entire warming device, including heater 110.
Chamber 136 is large enough to accommodate a variety of sizes, shapes, and volumes of containers commonly used in the NICU. For example, chamber 136 may accommodate either a bottle or a syringe. Chamber 136 may comprise an airflow inlet into the interior of the chamber, which is in fluid communication with the conditioned airflow. Chamber 136 may be made to be infrared transparent. In this embodiment, an infrared transparent polymer would be used to manufacture the chamber.
Bottle and syringe warmer 100 typically includes a liner 146 to capture any spills and reduce potential contamination. Liner 146 is intended to be removed and changed out between patients and nurse shifts, but may be changed even more frequently. Portions of liner 146 may be used to direct airflow effectively around the bottle or syringe to maximize heat transfer. Liner 146 may also incorporate features to center the syringe or bottle in order to ensure effective and repeatable heat transfer and airflow.
Liner 146 may take on a variety of forms.
Bottle and syringe warmer may also comprise a multi-chamber unit. In this embodiment, a plurality of chambers is present in housing 116 instead of merely one chamber. In this embodiment, one chamber is designated for heating and thawing and the other chambers could be storage areas for the refrigeration or freezing of milk.
In operation, lid 118 of housing 116 is opened to reveal the interior of chamber 136. Liner 146 may be placed inside chamber 136 using any of the methods previously discussed to attach liner 146 to chamber 136. Next a bottle is placed inside liner 146. After the bottle is placed in liner 146, lid 118 is returned to the closed position, and a nurse may enter information into bottle and syringe warmer 100 describing the previously discussed parameters required for the heating algorithm. Heater 110 then heats air using forced convection. The heated air exits heater 110 and enters into first passage 112. The heated air then moves through first passage 112 into first compartment 122, and finally into chamber 136. While the conditioned air is within the interior of chamber 136, it is effectively heating the liquid inside the bottle. The air is able to exit chamber 136 via second compartment 124 and then through second passage 114, and may either exit to ambient air or return to heater 110 for re-circulation. A temperature sensor may provide control of the air temperature and monitor the heating profile.
If a syringe is to be heated in lieu of a bottle, access port 126 is used. A syringe detection sensor may be used to detect whether a syringe is being used instead of a bottle. After liner 146 has been secured within chamber 136, lid 118 may be returned to the closed position and lid 128 may be opened, revealing access port 126 and hole 130. A sensor may be used to determine when lid 118 is closed. The syringe may be inserted into hole 130, ensuring that the liquid containing portion of the syringe is within chamber 136. The heating process then begins as described in the example using a bottle.
The liner top 156 is held in place on housing lid 118, so as to open and close the liner body 154 as the lid 118 is opened and closed. Shown are a pair of clasps 161 that grip the front edge of top 156 for travel with the lid. Alternative mechanisms can be readily envisioned to keep top 156 in place with the lid. Note that orifice 131 (shown in dotted line) is formed in lid 118 and aligns with hole 158 for access to the chamber for a syringe with lid 118 closed. Lid may be made from an infrared opaque substrate.
It will be further understood that top 156 may have cut-outs formed therein similar to those of
In one embodiment, liner 200 comprises a bag or receptacle formed of a first material 210. First material may be a flexible polyethylene. The bag has an interior 220, an opening 230, and a plurality of pressure equalization holes 231. Pressure equalization holes 231 allow for air to flow between the outside of the bag and the bag interior so that the pressure inside the bag is equalized. Liner 200 may be formed from a first sheet being attached to a second sheet with a first seam, a second seam, and a third seam. The sheets effectively form the sides of liner 200.
Opening 230 includes a perimeter 232. Opening 230 may be sealed shut by attaching the first sheet to the second sheet along a fourth seam.
Liner 200 also comprises a rim portion 240 formed of a second material 250 and a section 260. Section 260 comprises a port 262.
Interior 220 has the purpose of containing liquid. Rim portion 240 may extend along the entire perimeter 232. Rim portion 240 may comprise an indented line that allows the rim portion to flex at the line, effectively creating a living hinge, or a hinge 241. Hinge 241 allows for the rim portion 240 to lie flat during manufacturing or storage of the liner, and then to flex as needed for insertion and use in the warmer. Section 260 may also be formed from second material 250, and may be integral with rim portion 240. Top section may cover at least a portion of opening 230, as shown in
Port 262 may serve as a pass-through for bottles, syringes, and the like. Port 262 may be a sphincter-like member. Port 262 may be flexible to accommodate various syringe sizes. One way to accomplish this would be to use a flexible third material 264, such as silicone, for port 262. The third material may be such that when pressure is applied to the material, the material deforms.
Third material 264 comprising port 262 may be molded so that there are no openings through the port, only frangible sections 263. Port 262 is then in a sealed state until a container such as a syringe is pressed against the third material 264 and breaks frangible portions 263, opening port 262.
In operation, lid 318 of housing 316 is opened to reveal chamber 350. Liner 200 may be placed inside chamber 350 by setting rim portion 240 on housing lip 315, as shown in
The container may have one or more sides, a top and a bottom. Liner 200 is sized to receive the container therein, allowing for the container side or sides to be spaced from the side or sides of liner 200, such that airflow through liner 200 can pass around the side or sides of the container to thereby provide moving air around the container.
A motion mechanism may be included to vibrate or mix the milk in the bottle or syringe during operation. The benefit of the motion mechanism would be to keep the milk components homogenous as well as aid in heat transfer, speeding up the warming process. This motion may be imparted by a mechanical system such as a shaker or orbital mixer. Additionally the motion may be imparted by the air circulation on the container already in use for the heat transfer.
Various exemplary embodiments have been described above. Those skilled in the art will understand, however, that changes and modifications may be made to those examples without departing from the scope and spirit of the present invention. And it should be noted that the above overview is meant to be illustrative, not limiting. That is, additional and/or different features may be present in some embodiments of the present invention.
This application is a divisional application of U.S. patent application Ser. No. 12/371,834, filed Feb. 16, 2009, which claims priority to U.S. Provisional Application Ser. No. 61/066,186, filed on Feb. 19, 2008. The disclosures of Application Ser. Nos. 12/371,834 and 61/066,186 are incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1865472 | Lamstein | Jul 1932 | A |
2090666 | Copeland | Aug 1937 | A |
2187196 | Douglass | Jan 1940 | A |
2292992 | Crouch | Aug 1942 | A |
2413176 | Deaton | Dec 1946 | A |
2428996 | Schworm, Jr. | Oct 1947 | A |
2583118 | Porambo | Jan 1952 | A |
2584435 | Doerr | Feb 1952 | A |
2595685 | Mallory | May 1952 | A |
2644072 | Aruth | Jun 1953 | A |
2653214 | Shaw | Sep 1953 | A |
2654018 | Sandberg | Sep 1953 | A |
2713112 | Mills et al. | Jul 1955 | A |
2853205 | Boyd | Sep 1958 | A |
2932718 | Marsters | Apr 1960 | A |
3345497 | Porteous | Oct 1967 | A |
3346883 | Ersek | Oct 1967 | A |
3511241 | Lee | May 1970 | A |
3607134 | McIntyre | Sep 1971 | A |
3634651 | Siegel et al. | Jan 1972 | A |
3780794 | Staub | Dec 1973 | A |
3801278 | Wagner et al. | Apr 1974 | A |
3855451 | Lee | Dec 1974 | A |
3902043 | Rogan | Aug 1975 | A |
3999601 | Spanoudis | Dec 1976 | A |
4009368 | Faivre et al. | Feb 1977 | A |
4037081 | Aldridge et al. | Jul 1977 | A |
4038968 | Rovell | Aug 1977 | A |
4163471 | Leder | Aug 1979 | A |
4215843 | Gay et al. | Aug 1980 | A |
4233495 | Scoville et al. | Nov 1980 | A |
4256697 | Baldwin | Mar 1981 | A |
4273992 | Thomas | Jun 1981 | A |
4328676 | Reed | May 1982 | A |
4364234 | Reed | Dec 1982 | A |
4390104 | Cummings | Jun 1983 | A |
4423819 | Cummings | Jan 1984 | A |
4550842 | Cummings | Nov 1985 | A |
4597435 | Fosco, Jr. | Jul 1986 | A |
4598834 | Singletary, Jr. | Jul 1986 | A |
4923681 | Cox et al. | May 1990 | A |
4954149 | Fullemann | Sep 1990 | A |
5057671 | Colson | Oct 1991 | A |
5108372 | Swenson | Apr 1992 | A |
5183994 | Bowles et al. | Feb 1993 | A |
5195976 | Swenson | Mar 1993 | A |
5248870 | Redal | Sep 1993 | A |
5327901 | Delente | Jul 1994 | A |
5397875 | Bechtold, Jr. | Mar 1995 | A |
5399007 | Marconet | Mar 1995 | A |
5408576 | Bishop | Apr 1995 | A |
5410130 | Braunstein | Apr 1995 | A |
5531810 | Fullemann | Jul 1996 | A |
5544701 | Elder | Aug 1996 | A |
5628309 | Brown | May 1997 | A |
5661978 | Holmes et al. | Sep 1997 | A |
5786573 | Fabrikant et al. | Jul 1998 | A |
5817146 | Augustine | Oct 1998 | A |
5913844 | Ziemba et al. | Jun 1999 | A |
5924303 | Hodosh | Jul 1999 | A |
5954431 | Fabel | Sep 1999 | A |
6234165 | Creighton et al. | May 2001 | B1 |
6294762 | Faries et al. | Sep 2001 | B1 |
6417498 | Shields et al. | Jul 2002 | B1 |
6444956 | Witcher et al. | Sep 2002 | B1 |
6467953 | Faries et al. | Oct 2002 | B1 |
6566631 | Faries et al. | May 2003 | B2 |
6605475 | Taylor et al. | Aug 2003 | B1 |
6617552 | Taylor | Sep 2003 | B1 |
6722782 | Faries et al. | Apr 2004 | B2 |
6809302 | Jones et al. | Oct 2004 | B1 |
6847013 | Audette et al. | Jan 2005 | B2 |
6870137 | Clapp | Mar 2005 | B1 |
6897413 | Wertheim | May 2005 | B1 |
7158717 | Young et al. | Jan 2007 | B2 |
7776008 | Renz et al. | Aug 2010 | B2 |
8821011 | Faries et al. | Sep 2014 | B2 |
20010035413 | Thai | Nov 2001 | A1 |
20030141268 | Kerns et al. | Jul 2003 | A1 |
20070135767 | Gillespie et al. | Jun 2007 | A1 |
20070280657 | Loia | Dec 2007 | A1 |
20080087659 | Norman et al. | Apr 2008 | A1 |
20080093357 | Norman et al. | Apr 2008 | A1 |
20090208193 | Bauer et al. | Aug 2009 | A1 |
20140374371 | Bauer et al. | Dec 2014 | A1 |
20140376894 | Bauer et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
0036612 | Sep 1981 | EP |
WO 0231417 | Apr 2002 | WO |
WO 05041733 | May 2005 | WO |
Entry |
---|
International Search Report for PCT/US09/34303 dated Jan. 25, 2010. |
Chinese Search Report for 201610138041.6 dated Feb. 8, 2018. |
Number | Date | Country | |
---|---|---|---|
20140376894 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61066186 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12371834 | Feb 2009 | US |
Child | 14479255 | US |