1. Field of the Invention
The present invention is directed to a breath actuated pulmonary drug delivery device used in the delivery of fluid dispensations from a drug-containing canister. The delivery device provides a metered dose of drug or other therapeutic agent when the patient inhales from the device.
2. Description of the Prior Art
There are a variety of inhalation devices which release aerosol medication, either in a continuous spray or in a predetermined amount of medication, commonly referred to as a metered dose. Most common in this category are “press and breathe”, canister in actuator, delivery systems (pMDIs or pressurized metered dose inhalers). In these devices, drug for multiple doses is stored under pressure in a canister fitted at one end with a metering valve and an associated discharge port or stem. When inserted into an actuator body with mouthpiece, a “puff” or single dose of the stored drug is metered and delivered when the patient depresses the canister within the actuator. The spray is applied directly into the patient's mouth, nasal area or respiratory airways. Typically, these devices are actuated by the pressure applied by the user's fingers, button action, or other related manual techniques.
Proper use of these manually actuated devices requires that the spray be activated at the appropriate point in the inspiratory cycle, so that the medication is carried into the lungs rather than being deposited in the mouth or throat. If this actuation is not correctly coordinated with the inspiratory phase, the metered dose may be deposited differently with each actuation and potentially compromise the therapeutics and safety of the product.
There are numerous factors leading to poor coordination of actuation of the spray and the inspiration cycle. Included in those factors are poor training, the inherent limitations of the users (if any), such as impaired physical abilities of geriatric patients or the as-yet-undeveloped skills of children, or their inability of either group to comprehend the correct way to use the device. In view of the difficulties associated with manually actuated devices, it has been recognized that there is a need for correct and accurately delivered doses for patients having either local or systemic pulmonary diseases. It has been further recognized that a reliable breath activated device would improve the quality of life for these afflicted people.
A breath actuated inhaler helps eliminate the problems associated with manually actuated inhalers by making the product easier to coordinate and more patient friendly, with predictable delivery and dispersion in the respiratory airways. Breath-actuated inhalers (U.S. Pat. Nos. 5,408,994 and 5,447,150) address the problems associated with synchronization of drug delivery with inhalation. Both commercially available devices, however, rely on either pneumatic or mechanical functions that generally limit their utility. Further, they do not incorporate added features of importance to patients, i.e. low spray velocity and indication of number of drug doses or “puffs” remaining after each use.
The inventors have recognized that while there are metered dose inhalation devices that are activated by the breath of users, a greatly improved breath actuated device could be developed. The present invention is directed toward a breath actuated metered dose inhaler that overcomes many of the drawbacks associated with prior inhalers.
A breath actuated metered dose inhaler according to the invention includes a housing, a mouthpiece positioned at one end of the housing, and a mechanical release mechanism positioned at another end of the housing. The release mechanism is triggered by a diaphragm and the inhaler is configured such that the air inhalation pathway is unimpeded by the release mechanism.
The velocity, with which the inhaler discharges drug and propellant, is extremely important. If too high drug particles may impact upon the throat inducing a gagging or choking reflex thus limiting the amount of drug reaching the lung. It is also important that the actuator nozzle delivering the plume provide aerosolization and deaggregation of drug in suspension to insure particle sizes appropriate for delivery to the desired target area within the lung. The device of the present invention may employ a nozzle of conventional design. A preferred embodiment, however, might utilize a vortex nozzle as described in U.S. Patent No. 6,418,925, which is commonly assigned and the contents of which are expressly incorporated herein by reference, producing a slowly moving spray while meeting aerosolization requirements with less retention of drug within the structure.
An additional feature of the invention, herein, is the inclusion of a record keeping means as described in U.S. Pat. Nos. 5,544,647 and 5,622,163, which are commonly assigned and the contents of which are expressly incorporated herein by reference. An electronic event counter provides the patient with a numerical indication of puffs remaining in the canister as well as the number of puffs taken in a sequence to obtain a prescribed dose. This information display assures that the patient can be kept aware of depletion of medication in time to refill their prescription. This breath-actuated inhaler overcomes deficiencies apparent in earlier mechanical and pneumatic devices while adding additional user benefits. A breath-actuated metered dose inhaler according to the invention is housed within a structure in a form to comfortably fit in the hand of the user. Said housing includes a mouthpiece positioned at one end and a mechanical release mechanism at another end. A diaphragm in the inhalation air passageway triggers the release mechanism. Inclusion of an event counter and a vortex drug delivery nozzle are facilitated by the design of the structure.
The following detailed description, given by way of example and not intended to limit the present invention solely thereto, will best be appreciated in conjunction with the accompanying drawings, wherein like reference numerals denote like elements and parts, in which:
The breath actuated inhaler of the present invention is suitable for the delivery of practically any inhaled aerosol medication that would benefit from the controlled, precision delivery offered by a breath actuated inhaler.
Prior to discussing the advantages of the present breath actuated inhaler, the structure and function of the inhaler will be described.
The device of the invention can generally be made using parts molded of plastic materials, with the exception of springs, generally made of metal and seals, gaskets and diaphragms made of elastomeric materials. Components of the electronic event counter may include semiconductor elements, battery, circuit board and display means.
Pivotally attached to lower section 2 is a cocking lever 6 which may have an integral mouthpiece cover 7. Not visible in this view but located on the back of the inhaler 1 in lower section 2 is a window for viewing the numerical display of event counter 8 (described in more detail below). Between lower section 2 and upper section 4 is included a vent port 9 for inspiratory “make up” air. In
The upper end of load sleeve 22 has two projecting arms 24, which at their upper extremity have cylindrical bosses 26 set at right angles to the projecting arms 24. Cylindrical bosses 26 engage receiver slot 28 in toggle 30. The top radius of the cylindrical bosses 26 bear against the lower surface of platen 33 to oppose the force of main spring 44. Toggle 30 rotates on integral axle 32, the ends of which are seated within bearing sockets molded into upper section 4 of housing structure 100. The features of toggle 30 are best understood by the study of
A pressurized metered dose inhaler (pMDI) canister 46 rides within sleeve 12 and load sleeve 22. The lower end of spring cup 38 rests against the bottom of the pMDI canister 46. Canister 46 has, at the other end, a ferrule 48 retaining a metering valve therein which discharges a discrete dose of drug upon displacement of a delivery stem 50. Delivery stem 50 engages vortex nozzle 49 (described in more detail below) within mouthpiece 3. The twist lock feature 5 facilitates separation of upper and lower sections 2, 4 in order to access pMDI canister 46 for priming and vortex nozzle 49 for cleaning. Additionally, accessing pMDI canister 46 allows a user to manually operate the inhaler 1 by pressing down on the canister 46 in order to manually operate the device in the event of a failure of the actuating mechanism.
An escapement 52 as shown in
A finger 58 projecting from the face of escapement 52 contacts the center 59 of elastomeric diaphragm 60 shown in
In
Simultaneous with the displacement of canister 46, the rotation of toggle 30 on axle 32 forces down cylindrical bosses 26 riding in toggle receiver slot 28. Cylindrical bosses 26 transmit the force to load sleeve 22 via arms 24. Motion of load sleeve 22 downward uncovers vent port 9 in housing structure 100, opening make up air route B-B by which an inhalation maneuver post drug delivery may continue. Ambient air entering vent port 9 passes through slot 23, between canister 46 and sleeve 12, to openings 19 in the rear of vortex nozzle 49.
As shown in
The structure of arms 24 that extend from the upper side of load sleeve 22 is depicted in greater detail in
Toggle 30 is shown in
a, which is a different view of toggle 30, shows the distance that spring cup 38 drops from the node 34 to the shelf 36. This occurs as toggle 30 rotates on axle 32 when rollers 56 of escapement 52 release bars 57 of platen 33 (platen 33 moves from position A to position B). The 45-degree rotation of axle 32, as illustrated, conveys the force of main spring 44 to canister 46. The displacement of canister 46 by a distance X (which is anywhere from 0.125 to 0.150 inches depending on drug canister specifications), is adequate to insure drug delivery.
Escapement 52 is depicted in
As shown in
In
Returning mouthpiece cover 7 to the closed position over mouthpiece 3 after use, rearms the inhaler for the next breath actuation. Rotation of cocking lever 6 (integral with 7) in closing, raises cam lobes 18 into contact with posts 14 on sleeve 12. As sleeve 12 rises, it pushes adjacent load sleeve 22 up in such a manner that cylindrical bosses 26 on arms 24 of load sleeve 22 force toggle 30 to rotate up to the armed, latched, position. Toggle 30 rotates on axle 32 as it is moved upward to a position at which escapement 52, urged by a biasing spring, returns to rest with rail 62 against stop 64. During rotation, toggle 30 also forces spring cup 38 upward, compressing main spring 44 as the bottom edge of 38 shifts from a seat on shelf 36 of toggle 30 to nodes 34. The full, armed, spring force is born by the vertically aligned elements of spring cup 38, toggle 30, sleeve 12 and load sleeve 22, and cams 18. Escapement 52 and diaphragm 60 are effectively decoupled from the inhaler mechanism. This insures against misfire due to accidental impact or other unanticipated events.
As previously discussed, the breath actuated inhaler 1 of the present invention includes an event counter 8. The dispensation history of the event counter 8 can include, but is not limited to, the number of doses of medication or actuations remaining in the canister, the number of actuations of the inhaler during a dosage sequence, the number of doses or actuations taken over a period of time, and the time since the last dispensation of the medication.
Depicted in
The event counter 8 is comprised of a circuit board 340 for mounting all or substantially all of the components of the event counter 8. These components include the battery 300, the display 200, the switch membrane trigger 70, and an application specific integrated circuit (ASIC). The event counter 8 can operate in a variety of counting modes. The manufacturer may select the mode of the apparatus during production. Alternatively, the user may select the mode in an apparatus that is enabled with two or more counting modes.
The breath actuated inhaler 1 of the present invention also includes a vortex nozzle 49 as depicted in
Nozzle face 220 may be flat as shown in
A corresponding nozzle back seal 240 forms the backside of the vortex chamber and is a means for manufacturing the device. Nozzle back seal 24 is inserted into back of the nozzle and extends to the very edge of the tangential passage 180, which feeds liquid into swirl chamber 120. Back seal 240 is preferably attached to the nozzle using ultrasonic welding. In essence, the back surface of the vortex nozzle 46 is flat while the main vortex chamber is shown as primarily funnel shaped with a 90-degree cone leading to the exit orifice 200 but may be modified as aforesaid.
Having described the structure and operation of the breath actuated inhaler 1 of the present invention, the advantages of the inhaler over prior inhalers will now be discussed in detail.
The inhaler of the present invention includes several advantageous structural features. One such feature is the nesting of the main spring within the toggle mechanism. To implement this feature, the release arm was “de-coupled” from the toggle and pivotally attached to the upper unit of the housing, where its motion during actuation does not move it into the space occupied by the main spring. This allows for the use of a main spring of increased diameter, thereby increasing the actuation force capacity of the device.
Another advantageous feature is the interfacing of the diaphragm and release mechanism within a very small space. That is, the toggle is designed to pass over the moving escapement, within the same space envelope, without interference. Such “nesting action” reduces the space occupied by the release mechanism. Nevertheless, the escapement still has access outside the “travel envelope” for interfacing with the diaphragm and travel stops on the housing.
Still another advantageous feature is the interfacing of the sleeves with the release mechanism. In particular, the two cylindrical bosses on the upper sleeve fit into mating slots on the toggle, causing the upper sleeve to move vertically in response to the pivoting motion of the toggle. Upon closure of the mouthpiece cover, the upper sleeve pivots the toggle to its closed position, compressing the main spring and resetting the device.
Yet another advantageous feature of the device is that of using a “sleeve valve” to open a make-up air pathway. More specifically, the openings in the upper sleeve provide the make-up air pathway. When the device fires, the toggle rotates downward, urging the upper sleeve downward. When the upper sleeve reaches the lower limit of travel, the two openings in the sleeve align with ports in the upper housing unit. The alignment of the holes creates an open pathway to ambient air outside the device, allowing it to be drawn through the device as “make-up” air for inhalation. The size and shape of the openings on the upper sleeve, and/or the ports in the upper housing unit, may be tailored to manage inhalation resistance and flow rate.
An additional advantage of the device of the present invention is that the bayonet twist lock joining the upper and lower parts of the assembly provide for easy disassembly for cleaning of the nozzle orifice and, in the event of mechanical failure, operation as a conventional “press and breathe” device.
An additional advantage is the means by which the event counter is affixed to the inhaler. The counter is totally isolated from the airflow path and all other components by a membrane/ramp switch seal in the wall of the inhaler body. This feature also prevents moisture from reaching the event counter during rinsing or washing of the drug delivery nozzle.
Still another advantageous feature is the way the event counter is integrated into the device, particularly the interfacing of the event counter with the ferrule of the canister. Access to the ferrule is facilitated by the location of the release mechanism and triggering function above the canister, leaving the entire lower portion of the canister and metering valve open to access.
The present inhaler uses a mechanical (non-vacuum) release mechanism that is located at the top of the device, above the canister. This approach provides for ample stored energy capacity, while avoiding the issues associated with a mechanism that “surrounds” the metering valve. In particular, it is noted that there are no small parts or features in the inhalation air pathway; the canister ferrule is accessible to an isolated event counter via a membrane/ramp interface; and the layout does not require compromise of any kind in the design of the vortex nozzle.
The present inhaler uses a flexible diaphragm for triggering, instead of a rotating vane/door. A diaphragm is much easier to locate away from the inhalation airflow path, facilitating the placement of the release mechanism at the top of the device. There are two significant advantages to this arrangement, first the mechanism does not encroach upon the airflow pathway and second, there is no way components can be inhaled in the event of mechanical failure. Further, in as much as the present inhaler does not employ a vacuum “holdup” mechanism to retain stored energy in the spring, the overall force capacity of the inhaler is sufficient to actuate any metering valve commonly used in pressurized metered dose inhalers (pMDIs).
The present inhaler uses sliding sleeves to link the mouthpiece cover to the arming mechanism. Thereby, allowing the actions of opening and closing the mouthpiece cover to be used to input energy to arm the device (no separate arming lever is needed). The sleeves (upper and lower) also serve as an interface between the detachable upper and lower units of the device. In the rest state (mouthpiece-cover-closed), the force of the compressed main spring is resisted by the sleeves and the mouthpiece cover, which is closed past an actuation point. Importantly, the release mechanism components—physically smaller than prior release mechanism components—are not loaded in this state. Therefore, motion-induced misfires are unlikely.
The advantages of the present invention stand in contrast to some of the disadvantages of prior breath actuated inhalers. The disadvantages of one type of prior breath actuated inhalers include: (1) small parts and/or features in the inhalation air pathway, allowing for the possibility of a user inhaling a mechanical component of a failed device; (2) susceptibility to inadvertent triggering; (3) triggering mechanisms that effectively prevent access to the ferrule of the canister, which is a very desirable area from which to activate a counter mechanism (FDA guidance currently recommends a counter on all new devices); (4) a triggering vane located in the mouthpiece and hinged very close to the nozzle orifice, acting as a “ceiling” just above the orifice during delivery of the dose potentially compromising spray quality and metrics of the emitted dose, (5) the use of a lever to arm the device, requiring added parts and an additional user operational step and; (6) components of the device do not separate enabling the patient to use the device as a conventional “press and breathe” inhaler in the event of mechanical failure.
The disadvantages of another type of prior breath actuated inhalers include: (1) the use of a “vacuum-holdup” mechanism that retains stored energy in the compressed spring, limiting the stored energy capacity of the device according to the ambient air pressure, the volume of the device and the integrity of the vacuum seals—for this reason the device does not have enough stored energy capacity to actuate all metering valves, significantly limiting the device's applicability; (2) preloading of the metering valve, that is maintaining the medicament canister in a state in which the valve stem is partially depressed, can have undesirable side effects, such as allowing for gradual leaking of drug or propellant; and (3) dependence on the creation of a consistently reproducible vacuum seal can adversely affect reliability and manufacturing yield of the device.
Modifications to the present invention would be obvious to those of ordinary skill in the art in view of this disclosure, but would not bring the invention so modified beyond the scope of the appended claims.
This application is a continuation of U.S. Patent Application No. 10/908,133, filed April 28, 2005, pending.
Number | Date | Country | |
---|---|---|---|
Parent | 10908133 | Apr 2005 | US |
Child | 11709535 | Feb 2007 | US |