The present invention relates to radomes.
The term “radome,” which is a portmanteau word derived from the words radar and dome, originally referred to radar-transparent, dome-shaped structures that protected radar antennas on aircraft. Over time, its meaning has expanded to encompass almost any structure that protects a device, such as a radar antenna, that sends or receives electromagnetic radiation, such as that generated by radar, and is substantially transparent to the electromagnetic radiation. A radome can be flat, ogival, etc.; it need not be dome-shaped. Radomes are found on aircraft, sea-faring vessels, and on the ground.
Radomes typically have a solid, exterior “skin” for isolating antennas, etc., and accompanying electronics from the ambient environment (e.g., weather and other environmental influences). Radomes usually comprise either (1) solid foams or (2) cellular cores (e.g., honeycomb, etc.) with solid facing sheets that are formed of a fiber-reinforced composite material. The radome must, of course, be substantially transparent to radio-frequency radiation.
The electronics that radomes protect generate heat. In high-power systems, liquid-cooling must be used to dissipate the substantial heat load generated by the electronics. But liquid cooling systems are heavy and relatively complex, which is undesirable, particularly for use in air craft and naval vessels.
Air cooling is a lower-weight, lower-complexity alternative to liquid cooling. Air-cooled systems rely on the thermal conductivity of the radome's structural materials and the efficient routing of air flow over electronics to provide cooling. But radomes are typically made from composite materials, which are not well suited for thermal management. As a consequence, current air-cooled systems are limited to the relatively lower heat loads of low-power applications.
It would be desirable, therefore, to increase the effectiveness of air-cooled systems so that they can be used for the thermal management of higher-power antennas.
The present invention provides a radome that, relative to prior-art radomes, increases the efficiency of air-cooled systems that are used for dissipating heat from antenna systems or other electronics.
The illustrative embodiment of the invention is a “breathable” radome that has a structure that permits a flow of air to pass through it. In other words, it is not simply “air-permeable,” but actually enables a flow of air to pass. This structure permits a relatively greater flow of cooling air to be drawn over the radiating elements of the electronics' air-cooling system than prior-art radomes. The increase in cooling that results from the use of the breathable radome enables air-cooled systems to be used with relatively higher-powered electronics than previously possible.
A breathable radome in accordance with the illustrative embodiment of the present invention comprises:
In a first alternative embodiment of the invention, the layers of composite material are contourable or formable such that a separate frame is not required to give the radome a form or shape. In a second alternative embodiment, a “non-structural” breathable radome is provided. As used herein, the term “non-structural radome” means a radome whose structure is not load sharing. In some embodiments of non-structural breathable radomes that are disclosed herein, the cellular core is not included. Rather, the radome includes an air-permeable, water-impermeable, electromagnetically-transparent material that is supported by a frame.
In some embodiments, the air for the air-cooling system is drawn inward through the breathable radome and over the radiating elements. In some other embodiments, the air is drawn in through vents and exhausted through the radome after having passed over the radiating elements.
It is anticipated that the breathable radome disclosed herein will be used with a variety of electronics systems. As will be appreciated by those skilled in the art, such a variety of systems are likely to have widely varying thermal requirements. To that end, the breathable radome disclosed herein and other elements of the cooling system are highly tailorable to the thermal requirements of any specific application.
The following terms are defined for use in this Specification, including the appended claims:
Radar system 104 is protected by breathable radome 106. In addition to providing conventional radome functionality (e.g., environmental protection, etc.), breathable radome 106 is specially adapted to pass a flow 120 of air. Due to the flow-through nature of radome 106, a greater quantity (i.e., mass) of air can be flowed over heat-radiating elements 112 than would otherwise be the case. As a consequence, the air-cooling system can dissipate more heat than prior-art air-cooling systems in which air flows less freely. Since breathable radome 106 improves the operation of the air-cooling system, it can be considered to be part of the air-cooling system.
Notwithstanding its etymology, a “radome” need not be dome-shaped. Although the radome that is depicted in
In the embodiment that is depicted in
An inner layer (like inner layer 222) and an outer layer (like outer layer 230) are often present in prior-art radomes. These composite layers are usually formed from polymer matrix composites such as epoxy or cyanate ester, with quartz or fiberglass reinforcement. In the prior art, and unlike layers 222 and 230 of radome 106 in accordance with the present invention, these composite layers are typically solid. In radome 106, inner composite layer 222 and outer composite layer 230 are perforated to enable a flow of air to pass these layers. In particular, inner layer 222 includes perforations 224 and outer layer 230 includes perforations 232.
The perforated inner layer 222 and perforated outer layer 230 flank or “sandwich” core layer 226. The core layer, which is often present in prior-art radomes, has an open structure (e.g., cellular, perforated, etc.) that permits a flow of air to pass. In the embodiment that is depicted in
Since outer composite layer 230 is perforated, it is desirable to cover it with a material that provides a barrier to water intrusion (e.g., rain, snow, ice, etc.) In some embodiments, layer 230 is covered by a fabric that is water-impermeable and that permits a flow of air to pass. The material is advantageously robust enough to withstand anticipated environmental conditions. Suitable materials include, without limitation, polytetrafluoroethylene (PTFE), polyester woven material, and PTFE-coated fiberglass.
In some embodiments, composite layers 222 and 230 are contoured or formed into a desired shape such that a separate frame (i.e., frame 220) is not required. In some further embodiments, especially those in which radome 106 is non-structural, core 226 is not present. In yet some additional embodiments, the core is formed to a desired shape.
As will be appreciated by those skilled in the art, the breathable radome disclosed herein is likely to be used in conjunction with a variety of different radar systems, some relatively higher-powered and others relatively lower powered. There can be significant differences in the amount of heat that is generated by such systems. Furthermore, the breathable radome disclosed herein will be used with other types of heat-generating electronics. As a consequence, heat load can vary greatly from application to application.
To that end, the breathable radome disclosed herein and other elements of the cooling system are highly tailorable to meet the thermal requirements of any specific application. In particular, the effectiveness of the breathable radome for heat removal is tailored via alterations in skin perforation size, the quantity of perforations in the skin, the inclusion or exclusion of a permeable fabric, fabric thickness and type, thermal conductivity of the composite materials, as well as other parameters.
Furthermore, other aspects of the system are alterable to meet specific thermal requirements. For example, to the extent that fans are present for cooling, the quantity, location, and flow rate of the fans are parameters that can be varied to meet thermal requirements. Also, in some cases, there will be freedom to select the geometry and orientation of the heat-generating electronics, which will have an impact on thermal requirements.
Those skilled in the art will be able to vary these parameters, as required, to satisfy the thermal requirements of any particular application.
It is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. For example, in this Specification, numerous specific details are provided in order to provide a thorough description and understanding of the illustrative embodiments of the present invention. Those skilled in the art will recognize, however, that the invention can be practiced without one or more of those details, or with other methods, materials, components, etc.
Furthermore, in some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the illustrative embodiments. It is understood that the various embodiments shown in the Figures are illustrative, and are not necessarily drawn to scale. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure, material, or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the present invention, but not necessarily all embodiments. Consequently, the appearances of the phrase “in one embodiment,” “in an embodiment,” or “in some embodiments” in various places throughout the Specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, materials, or characteristics can be combined in any suitable manner in one or more embodiments. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5793608 | Winick et al. | Aug 1998 | A |
5831830 | Mahler | Nov 1998 | A |
5892481 | Andersson | Apr 1999 | A |
5986618 | Aakula et al. | Nov 1999 | A |
6028565 | Mackenzie et al. | Feb 2000 | A |
6064344 | Walton | May 2000 | A |
6767606 | Jackson et al. | Jul 2004 | B2 |
20070035468 | Kuroda et al. | Feb 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080001841 A1 | Jan 2008 | US |