The invention relates to a breathing aid for enabling a person buried by an avalanche to breathe, comprising a housing which includes an inhalation channel comprising a valve situated in the housing, which automatically opens during inhalation and automatically closes during exhalation, and an exhalation channel comprising a valve situated in the housing, which automatically closes during inhalation and automatically opens during exhalation, wherein the inhalation channel and the exhalation channel open into a mouthpiece situated on the housing.
The chances of survival for people in an avalanche depend on various factors. Approximately 25% of avalanche victims die due to trauma suffered during the avalanche. Approximately 75% of the victims due to asphyxiation (suffocation). Snow consists, in principle, of a large percentage of air, depending on the extent of compaction of the snow. The problem is not the lack of oxygen in an avalanche, but rather the re-inhalation of CO2 that the buried persons have exhaled.
U.S. Pat. No. 4,365,628 and DE 10 2014 111 655 A1 describe systems which are operated by high-pressure oxygen cartridges. The disadvantage of these systems is that the cartridges, which must be carried along, have a certain amount of weight. Moreover, these systems do not make use of the air that is available in sufficient quantities in every avalanche, and they do not separate the life-threatening exhaled air. Avalanche rescue systems of this type also frequently do not comprise a mouthpiece, but rather a mask. This has the disadvantage that the user must hold the mask tight with his or her hand, which may not be possible or may be extremely difficult when the user has been buried by an avalanche. A user may possibly not hold the mask on the face long enough.
For example, it is known from EP 0 998 959 A1 to separate the inhaled air and the exhaled air. This takes place with the aid of a valve system which is mounted on the shoulder or in the hip area of a user. In the valve system, fresh air is drawn in from the snow pack, and inhaled air and exhaled air are separated. The inhaled air is drawn in, via a tube, in the direction of the mouthpiece. The exhaled air is carried away from the valve system via a further tube. A breathing tube of up to 60 cm in length is located between the mouthpiece of these rescue systems and the valve system. The volume of this breathing tube is referred to as dead space and is associated with a considerable disadvantage. All the air that is located in the tube up to the valves is inhaled once again. A user therefore inhales the life-threatening CO2 once again and, therefore, is placed at risk of slow CO2 poisoning.
WO 2016/102522 A2 describes a valve system for a breathing aid for swimmers, comprising a valve housing and a valve diaphragm situated in the housing; on a contact section preferably formed in a central area of the valve diaphragm, the valve diaphragm is situated on a first end of a fastening element, wherein, originating from the contact section, the valve diaphragm extends at least partially at an angle in the direction of a second end of the fastening element. The valve system is situated at a distance from a mouthpiece. In particular, the mouthpiece is connected to the valve system via a tube. The separation of inhaled air and exhaled air takes place in the valve system. Dead space is therefore present here as well, and so there is the risk that a user will re-inhale CO2-containing air that he or she had previously exhaled.
GB 2 437 926 A describes a device which comprises a mouthpiece including an exhalation valve. An inhalation valve can be situated in a tube leading to a filter unit.
WO 2013/181080 A1 describes a device which comprises a mouthpiece including two valves. The inhalation valve communicates with a tube, on the end of which a filter is situated. The filter is situated in the area of a user's ear.
DE 20 2006 009 726 U1 describes a safety helmet for skiiers, which comprises a tube system including a mouthpiece and a breathing air intake area and a respiratory gas outlet area which is situated on the helmet at a distance from the intake area. The helmet comprises a mouthpiece, in the area of which an inhalation valve and an exhalation valve are situated. An inhalation channel communicates with openings on the outer side of the helmet.
U.S. Pat. No. 5,490,501 describes a breathing aid, wherein a channel originating from a mouthpiece branches, and a valve is situated in each of the channels. The mouthpiece can be attached to a vest.
FR 1,443,927 A describes a breathing aid comprising a housing, in which two valves are situated and which includes a mouthpiece.
WO 2017/077074 A1 describes an avalanche protection device comprising an avalanche protection backpack including at least one inflatable buoyant airbag. Moreover, a breathing system is provided, comprising a breathing housing which connects a one-way valve to an ambient-air intake zone, and connects an exhalation one-way valve to an exhalation tube and a CO2 exhalation area, wherein a mouthpiece is provided on the breathing housing.
The problem addressed by the present invention is that of providing a breathing aid which is suitable for reliably protecting a person, who has been buried by an avalanche, from asphyxiation.
This problem is solved according to the invention by a breathing aid for enabling a person buried by an avalanche to breathe, comprising a housing which includes an inhalation channel comprising a valve situated in the housing, which automatically opens during inhalation and automatically closes during exhalation, and an exhalation channel comprising a valve situated in the housing, which automatically closes during inhalation and automatically opens during exhalation, wherein the inhalation channel and the exhalation channel open into a mouthpiece situated on the housing, and the housing includes at least one inhalation opening into which the inhalation channel opens, wherein the housing is designed as a handle which can be gripped by a user's hand and brought to the mouth.
Therefore, it is possible to carry the breathing aid along during winter sports activities, without the breathing aid being located in the area of the mouth during normal physical activity and, therefore, possibly bothering or hampering a winter sports enthusiast. Due to the fact that the housing is designed as a handle, the breathing aid can be brought to the mouth easily and quickly as necessary, namely in particular when the winter sports enthusiast has been buried by an avalanche. It is also possible to couple the housing to an avalanche rescue system, so that a release system can be activated by the movement of the breathing aid to the mouth, in order to thereby inflate an avalanche airbag, for example, which is located inside a backpack. In the same movement, the user therefore brings the release handle, which is designed as a breathing aid, to the mouth.
The separation of the exhaled air and the inhaled air takes place with the aid of the valves directly in the housing, i.e., in the proximity of the mouthpiece. Due to the fact that the at least one inhalation opening is formed on the housing, the inhalation opening is located in the direct vicinity of the mouthpiece, so that the inhalation channel is very short. Therefore, there is no enlargement or only a negligible enlargement of the dead space, since the breathing air is drawn in in the direct proximity of the mouthpiece. The inhalation opening is exposed, in particular, i.e., it is not connected to further elements, for example, a tube. The suctioning in of the fresh air as well as the separation of the inhaled air and the exhaled air therefore takes place in one component. Preferably, the housing is formed as at least two pieces, in particular comprising an upper shell and a lower shell, whereby the assembly and manufacture of the breathing aid is facilitated.
The at least one inhalation opening is situated on the same side of the housing, in particular on the underside of the housing, as the mouthpiece. Preferably, multiple inhalation openings are provided, so that a sufficient amount of breathing air is available to a user. The inhalation openings and the mouthpiece can be situated on the same side. As a result, the mouthpiece and the inhalation openings can be situated so as to be more easily covered, in order to prevent penetration, for example, of snow. In particular, the complete surface of the underside of the housing can be designed as an air inlet (except in an area in which the exhalation channel is situated).
It is particularly advantageous when a closed cover is provided for covering the mouthpiece and/or the at least one inhalation opening. Therefore, penetration of snow or moisture can be prevented when the breathing aid is not needed. Therefore, neither the mouthpiece nor the inhalation openings can clog or ice up. The functional capability in the case of emergency, i.e., upon the occurrence of an avalanche, can therefore be ensured.
The housing can be detachably connectable to the cover. Therefore, the cover can be removed particularly easily and quickly from the housing when the breathing aid is to be utilized. The advantage of the cover is, in particular, that the open mouthpiece and, therefore, the sensitive inner workings of the handle are first “opened” in the instant of the triggering. This has the advantage that no foreign objects can enter the handle or ice up the valves through the mouthpiece when it is not detached. The handle is ready for breathing only when the handle is actually used/by being pulled away from the cover (in the instant that the avalanche starts).
In particular, the cover can comprise a receptacle for the mouthpiece. The breathing aid can therefore be inserted, together with the mouthpiece, into the receptacle and can be easily detached from the cover once again.
The mouthpiece can be clippable into the cover. As a result, it is particularly easy to separate the mouthpiece from the cover once again. Therefore, the breathing aid is particularly quickly operational. The cover can consist of different parts comprising different materials. For example, a fastening part can be made of a harder material and, for example, connected to a carrying system, while a softer part can be resilient, so that the mouthpiece can be easily clipped in and removed once again in the area of the soft part.
Alternatively or additionally, it can be provided that a projection is provided on the cover, which can be inserted into a corresponding inner contour of the mouthpiece, or the inner contour of the mouthpiece can be slipped over the projection and clipped to the projection. In particular due to this measure, it is possible to provide the cover without a rim, i.e., the cover can be designed without a rim that encircles the mouthpiece. The contour of the mouthpiece is therefore larger than the contour of the cover plate, and so steps or gaps are avoided, in which water can settle. It is therefore possible to prevent the mouthpiece from freezing on the cover plate. In addition, the inner contour is sealed.
The cover can comprise a fastening means for fastening to a carrying system, in particular, a shoulder strap. Therefore, the breathing aid can be fastened, for example, to a shoulder strap via the cover. The receptacle can be open toward the bottom, so that, in the case of emergency, the user can pull the housing downward out of the receptacle and thereby trigger the avalanche rescue system. Simultaneously, the user can bring the breathing aid to the mouth.
The fastening means can be designed, for example, in such a way that the cover can be fastened to the shoulder strap in different positions. For example, a piping system can be provided, so that the receptacle can be steplessly adjusted on the shoulder strap.
Moreover, the fastening means can comprise, for example, four projections. In particular, the fastening means can be designed to be cross-like, so that the fastening means can be fastened in positions offset by 90 degrees on appropriate tabs of a shoulder strap. In particular, it is possible, as a result, to fasten the cover to the left and the right shoulder straps in positions offset by 90 degrees. This can be advantageous, in particular, in order to effectuate an alignment of the breathing aid or the housing, so that the housing can be gripped particularly well and the mouthpiece can be brought to the mouth without a further rotary motion.
Further advantages of the invention result when a filter element is situated in the inhalation channel and/or in the area of the at least one inhalation opening. Therefore, particles, water, or snow can be prevented from entering the valves and clogging them or icing them up.
Particular advantages result when the filter element is made of hydrophobic material. Moreover, the filter element can rest against the wall of the inhalation channel. Therefore, in particular, there is no intermediate space between the filter element and the wall of the inhalation channel, so that no water can collect there.
The filter element can be formed from an air-permeable and water-repellent material. In particular, the material may have been rendered hydrophobic and/or may be plasma-treated, in order to design the material to be water-repellent. The filter element can be designed as a textile, in particular, cloth, woven fabric, knitted fabric, fleece, or the like. The filter element can be flexible. The filter element is preferably fixed in the area of an inhalation opening. The cloth can be clamped between the upper shell and the lower shell of the housing. The filter element can be situated in a planar manner with respect to the outer side of the housing. Therefore, steps or gaps can be avoided, at which ice, snow, or water deposits can form.
In order to prevent water from entering the area of the inhalation opening and, in particular, the area of the filter element, one or multiple water deflectors, in particular, lamellae, can be provided in the area of the inhalation opening. The lamellae can be aligned and situated with respect to one another in such a way that, in the event that water impacts the housing perpendicularly to the surface, no water can enter the filter element. For example, the lamellae can be aligned in an angular range between 30 degrees and 60 degrees with respect to the surface of the housing.
The exhalation channel can be connected to an air conduit, in particular, a tube. Therefore, the exhalation air can be conveyed away from the mouthpiece and discharged at another point. Therefore, the situation in which exhaled CO2 is inhaled once again can be effectively prevented.
As mentioned above, the housing can be connected to a triggering mechanism of an avalanche rescue system. Therefore, as the breathing aid is being brought to a user's mouth, the triggering mechanism can be triggered and, for example, activate an avalanche airbag.
The triggering mechanism or a part of the triggering mechanism can be coupleable to the housing at different points. Therefore, the breathing aid can be utilized on the left as well as on the right, i.e., on a left or a right shoulder strap and can be detached by a user using the left hand or the right hand. In particular, it can be provided that the triggering mechanism can be coupled or fastened to the housing on the right or the left. For this purpose, appropriate recesses, for example, can be provided on the housing, into which a thickened end piece of a cable pull can be inserted. The thickened end of the cable pull can then be secured in the recess, for example, via a type of bayonet mount. The bayonet mount, in turn, can be secured, in order to prevent an inadvertent opening. The securing can take place via a blockage of the space in which the bayonet base moves.
The valves in the housing can be designed, for example, as drain valves. The valves are situated within the housing and separate the inhalation air from the exhalation air. The exhalation air can be conveyed, via an exhalation tube which extends across a shoulder strap of a carrying system, onto the back side of a backpack situated on the carrying system, and can be discharged there. Since the area at which the fresh air is drawn in is situated at a different location than the exhalation area, the situation in which exhaled CO2 is inhaled once again can be effectively prevented. A considerably longer survival time under an avalanche is the result.
The inhalation air can be filtered through a hydrophobic filter. This has the advantage that no particles, water, or snow can enter the valve system. Water in the valve system could cause the valves to freeze. The inhalation openings are protected by the hydrophobic but air-permeable filter.
The inhalation opening and the mouthpiece are first opened when the housing is detached from the receptacle, in particular, a locking plate. As a result, it is ensured that no moisture, water, snow, or other particles can therefore enter the filter and/or the valves through the mouthpiece. The filter can be planar with respect to the upper half of the housing or the outer side of the housing. As a result, no water can accumulate and result in the inhalation opening freezing and clogging. The hydrophobic material of the filter element, together with the cover, forms a closed system into which neither condensed water nor moisture can penetrate.
The mouthpiece on the housing back side can be detachably connected to the shoulder strap of a carrying system, in particular, a backpack, via the cover, in particular, a locking plate. Due to the shape of the cover, the mouthpiece can be hidden and protected from external influences. Moreover, due to the placement of the mouthpiece on the underside of the housing or the handle-like housing, as well as the shape of the housing, a lever effect caused by the snow masses of the avalanche is reduced by the greatest extent possible. An opening of the cover toward the bottom permits the triggering of an airbag system as well as the detachment of the breathing aid from the cover by pulling downward on the breathing aid. Moreover, the locking plate offers the advantage that the handle and the breathing system can be utilized without the airbag system. The mouthpiece/the handle can therefore be locked on the shoulder strap without a triggering mechanism of the airbag system.
Due to the arrangement of the two valves in the housing, the inhalation air is separated from the exhalation air at the first possible point. As a result, in contrast to the prior art, no CO2 is inhaled once again. A dead space is dispensed with. Due to the fact that known systems do not separate the breathing air from the exhalation air directly in front of the mouth, valves are not actuated in the case of shallow breathing, which can have the result that the exhalation air is not separated from the inhalation air.
The system according to the invention also requires only one tube which is utilized for discharging the exhalation air. A tube from the inhalation channel to a valve unit which is situated, for example, on a user's shoulder, is dispensed with.
Due to the fact that the inhalation openings are situated on the underside of the housing, the inhalation openings are not covered by a user's hand when the hand brings the breathing aid to the mouth. Therefore, it is advantageous when the inhalation openings are situated in the area of the mouthpiece, in particular, on the same side of the housing as the mouthpiece.
The mouthpiece can be situated on the housing so as to be rotatable through 360 degrees and lockable in 90-degree positions. It can be provided that the mouthpiece can be latched in the two end positions of the swivel range, so that the position of the mouthpiece is fixed relative to the housing. Therefore, the mouthpiece can be aligned in different positions with respect to the housing, whereby the breathing aid can be adapted for use or fastening on the left or the right shoulder strap of a carrying system. In particular, it can be provided that the mouthpiece can be swiveled through 45 degrees in the clockwise or counterclockwise direction relative to a longitudinal axis of the housing. Therefore, the breathing aid can be fastened on the shoulder strap in such a way that the user, in one simple movement, can detach the housing, including the mouthpiece, from the shoulder strap and bring it to his or her mouth, without the need to adapt the housing and, therefore, the mouthpiece, to the position of his or her mouth with the aid of a rotary motion.
The fastening of the air conduit on the housing can be easily brought about by way of the fact that a counter bearing is provided in the air conduit, so that the air conduit can be clamped between the counter bearing and the housing. Therefore, clamps or cable ties for fastening the air conduit on the housing can be avoided. As a result, and due to the movable mouthpiece, the handle can be moved in all spatial axes, so that the handle can move along with the snow pack and is flexible. As a result, the handle can be held in the mouth even in the presence of strong forces caused by the snow pack.
Further features and advantages of the invention result from the detailed description of exemplary embodiments of the invention that follows, with reference to the figures in the drawing which shows the details that are essential to the present invention. Further features and advantages of the present invention also result from the claims. The features described therein are not intended to be interpreted literally, and are presented in such a manner that the special features of the present invention may be presented clearly. The various features can be implemented individually, or these can be combined in any possible manner in different variants of the invention.
Exemplary embodiments of the invention are represented in the schematic drawing and are described in greater detail in the description which follows.
Wherein:
A valve 27, which is designed as a drain valve, is also situated in the exhalation channel 23. The valve 27 automatically closes upon inhalation and automatically opens upon exhalation. Abutting the exhalation channel 23 is an air conduit 28, in particular, the tube 10 (
The inhalation channel 21 opens into inhalation openings 30, 31. The inhalation openings 30, 31 are exposed and are situated on the same side of the housing 20 as the mouthpiece 25. In particular, the inhalation openings 30, 31 are situated on an underside or back side of the housing 20. A user can therefore grip the upper side or the upper housing half 20a without having to be afraid of covering the inhalation openings 30, 31. Therefore, a user can bring the breathing aid 5 to the mouth and, if necessary, hold the breathing aid 5 on the mouth, without covering the inhalation openings 30, 31.
A cover 35 is fastened to the carrying system 2, in particular, on the shoulder strap 3. The breathing aid 5 is held on the shoulder strap 3 via the cover 35. The cover 35 is formed as a type of slot in the area 36, in particular being open at the point 37. The breathing aid 5 can therefore be removed from the cover 35 in the arrow direction 38, whereby the mouthpiece 25 is exposed. In the position shown, the mouthpiece 25 is covered by the cover 35, so that no particles, snow, or moisture can enter the housing 20 via the mouthpiece. The mouthpiece 25 can be latched in the cover 35.
According to an embodiment which is not shown, the cover 35 can be designed in such a way that the inhalation openings 30, 31 can also be covered, so that no moisture can enter here, either.
A filter element 40, which is made, in particular, of hydrophobic material, is situated in the inhalation channel 21. The filter element 40 prevents snow, moisture, or particles from entering the housing 20 via the inhalation openings 30, 31 and prevents the inhalation channel 21 from becoming clogged, in particular preventing moisture from entering up to the valve 26 or even the valve 27. Therefore, an impairment of the function of the valves 26, 27, in particular due to freezing up, can be prevented.
It is clear from the representation in
Support elements 52, against which the support structures 51 can abut, can be provided in the upper housing half 20a′. By joining the housing halves 20a′, 20b′, the support structures 51 and the filter elements 40′ are therefore clamped between the housing halves 20a′, 20b′ and, therefore, are fixedly positioned.
Therefore, the mouthpiece 25′ is also detachably held on the cover 35′ via the projection 25c′.
Moreover, it is apparent from
On the other hand, the fixing element 56 can be intentionally detached in order to decouple the triggering mechanism on the one side of the breathing aid 5′ and to couple the triggering mechanism on the opposite side of the breathing aid 5′. This can be helpful, in particular, when the breathing aid 5′ is to be moved from the left shoulder strap to the right shoulder strap, or vice versa.
It is apparent from
Moreover, it is apparent from
Therefore, the fastening means 36 comprising the opposing projections 36a, 36c or 36b, 36d can be fastened to adjacent loops provided on a shoulder strap. The cover 36 can therefore be fastened to a shoulder strap in positions offset by 90 degrees.
It is apparent from the sectional representation from
Number | Date | Country | Kind |
---|---|---|---|
10 2016 120 441.2 | Oct 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/070623 | 8/14/2017 | WO | 00 |