The present invention relates generally to a breathing apparatus for providing filtered air to a wearer. In particular, the invention relates to a breathing apparatus having a ‘full face’ mask dimensioned to receive and cover a face of the wearer.
Breathing apparatus, such as powered air purifying respirators (PAPR), are generally used in polluted environments to provide filtered, non-toxic air to a wearer. A PAPR device typically comprises a flow generator for generating filtered air, and a mask for communicating the filtered air to the wearer. The flow generator typically comprises a powered impeller arranged to draw air from the atmosphere and a filter element through which the air is passed and filtered. The filtered air is then conveyed to the wearer via the mask.
PAPR devices are often used in heavily polluted or otherwise hazardous environments, such as industrial areas or hospitals. In particular environments, it is desirable to provide a mask which substantially covers the wearer's face, known as a ‘full face’ mask, to protect the face from particulates or contaminants contacting the face.
Conventional PAPRs are generally bulky, restrict movement of the wearer and are therefore inconvenient and uncomfortable, particularly for prolonged periods of use. This is further exacerbated when a PAPR includes a full face mask, as this typically involves a hose which conveys the filtered air to the mask being connected to the front of the mask. This not only further restricts the movement of the wearer's head but also restricts its vision. These problems can be disincentives for using a PAPR device, potentially meaning that a PAPR is not used and consequently increasing health risks.
Accordingly, it would be useful to provide a breathing apparatus having a full face mask which restricts a wearer's vision and/or movement less than prior art approaches. Furthermore, it would be useful to provide a solution that avoids or ameliorates any of the disadvantages present in the prior art, or which provides another alternative to the prior art approaches.
According to one aspect of the invention, there is provided a breathing apparatus comprising a face mask dimensioned to receive a face of a user and defining a peripheral region adapted to form a pneumatic seal against the face, and further comprising an air inlet arranged proximal to the peripheral region, and a neck component attached to the face mask and dimensioned to substantially surround a neck of the user, the neck component including a flow generator configured to receive unfiltered air from outside of the breathing apparatus, filter the unfiltered air, and convey the filtered air to the face mask through the air inlet.
Other aspects are disclosed.
Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:
The present disclosure relates to a breathing apparatus comprising a face mask dimensioned to receive a face of a user and defining a peripheral region adapted to form a pneumatic seal against the face, and further comprising an air inlet arranged proximal to the peripheral region, and a neck component attached to the face mask and dimensioned to substantially surround a neck of the user, the neck component including a flow generator configured to receive unfiltered air from outside of the breathing apparatus, filter the unfiltered air, and convey the filtered air to the face mask through the air inlet.
The disclosed breathing apparatus is a compact design comprising only the face mask and neck component, therefore ensuring the entire apparatus can be worn about the user's head. This is advantageous is this allows relatively free movement of the head and is comfortable to wear and use for prolonged periods.
The apparatus is firmly secured to the head by the face mask being retained relative to the neck component, thereby allowing the peripheral region of the mask to form a pneumatic seal against the face. An air inlet is arranged proximal to this peripheral region through which filtered air is conveyed by the flow generator arranged in the neck component. The position of the air inlet close to, or within, the peripheral region is important, as this prevents the fluid connection between the face mask and the neck component, which provides the filtered air to the user, interrupting the user's field of vision. This may involve the air inlet being arranged proximal to a portion of the peripheral region arranged to seal against the user's cheeks, or lower portion of the face. The arrangement of the air inlet proximal to the peripheral region also ensures the connection is conveniently located to optimise movement of the face mask, thereby enhancing manoeuvrability and comfort of the breathing apparatus.
The face mask typically includes a visor portion arranged at least partially across the face of the user, typically comprising a single surface which substantially covers the face. The air inlet is generally arranged to convey the filtered air into the face mask in a direction which is substantially tangential to the visor portion. This advantageously allows the filtered air to travel unencumbered across the face and access the user's airways, i.e. through the mouth and/or nostrils of the user. Furthermore, the tangential direction of the air inlet also allows the air inlet, and associated conduits or channels connected thereto, to be arranged close to the user's face/head, thereby minimising the size of the breathing apparatus and further enhancing manoeuvrability.
The breathing apparatus may also include an inner mask for covering the mouth and/or nostrils of the user, and conveying exhaled air out of the face mask. The inner mask is typically releasably engageable with the face mask by an engagement mechanism, allowing the inner mask to be readily assembled to the breathing apparatus when required. The engagement mechanism typically includes one or more deformable clips to optimise ease of assembling the inner mask to the face mask. This arrangement is therefore useful, as this allows the breathing apparatus to be conveniently and rapidly configured according to use requirements.
The face mask may include an additional connection to the neck component, being a strap which extends from the face mask, over the user's head, and is secured to the neck component, thereby suspending the neck component from the back of the user's head. The strap typically has a connector for releasably engaging the neck component. This arrangement supports the neck component away from the user's neck, thereby decreasing the load on the neck and improving the manoeuvrability and comfort of the breathing apparatus.
In use, the face mask 14 is placed against the face of the user, forming a seal therebetween, and the neck component 20 connected thereto, thereby securing the breathing apparatus 10 to the user's head. The flow generator 22 is also connected to the air inlet 50 to provide fluid communication therebetween. When operated, the flow generator 22 draws unfiltered air from outside of the breathing apparatus 10, filters the unfiltered air to produce non-toxic, filtered air, and conveys the filtered air through the air inlet 50, into the breathing chamber 17. The user inhales and exhales the filtered air, and the exhaled air passes through the air outlet 51, out of the face mask 14 and away from the breathing apparatus 10.
Optionally, the breathing apparatus further comprises an inner mask 12. The inner mask 12 is dimensioned to receive a mouth and/or nostrils of the user and also defines a peripheral region 16 adapted to form a pneumatic seal against the face. The inner mask 12 is arranged within the breathing chamber 17 and includes one or more air inlets 32 for conveying the filtered air into the inner mask 12, and covers the air outlet 51, thereby allowing exhaled air to be conveyed therethrough. Each air inlet 32 also may include a one-way valve for controlling the flow of air therethrough in a single direction.
The peripheral sealing region 18 of the face mask 14 is typically arranged about a rear portion of the mask 14. The region 18 includes a lower portion arranged to form the pneumatic seal against a corresponding lower portion of the user' face, below the user's eyes. The lower portion also includes opposed cheek portions arranged to form the pneumatic seal against both of the user's cheeks. The air inlet 50 is generally arranged in the lower portion, and often arranged in one, or both, cheek portions. This minimises any visual obstruction caused by the air inlet 50 and also minimises any restriction to movement of the user's head. To further enhance the user's vision when using the apparatus 10 and minimise potential claustrophobic feelings, the face mask 14 and if assembled, the inner mask 12, are substantially transparent or translucent.
Best shown in
The neck component 20 connects to opposed sides of the face mask 14 and is arranged to surround the user's neck. The harness arrangement includes a head strap 40 connected between a top portion of the face mask 14 and a top portion of the neck component 20. The head strap 40 may also have mask straps 41 extending therefrom to side portions of the mask 14.
Typically, the head strap 40 is releasably connectable to the neck component 20 with a connector 42 secured thereto, the connector 42 adapted to engage with an attachment point 44 on the neck component. The attachment point 44 is formed along an arched beam extending from a top surface of the neck component 20. The connector 42 is typically a resiliently deformable clip able to engage the attachment point 44 to suspend the neck component 20 from the harness arrangement, thereby reducing the weight of the breathing apparatus 10 supported on the user's neck and/or shoulders. The connector 42 and attachment point 44 are complementarily shaped to facilitate mating and disengagement of the two components, thereby providing a ‘quick release’ system which allows the user to readily secure and remove the neck component 20 to the harness arrangement.
Whilst the invention is described above with reference to specific embodiments, it will be appreciated that it is not limited to those embodiments and may be embodied in other forms.
Number | Date | Country | Kind |
---|---|---|---|
2015900096 | Jan 2015 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2016/050015 | 1/14/2016 | WO | 00 |