Breathing assistance apparatus

Information

  • Patent Grant
  • 6997186
  • Patent Number
    6,997,186
  • Date Filed
    Friday, October 22, 2004
    20 years ago
  • Date Issued
    Tuesday, February 14, 2006
    18 years ago
Abstract
A mouthpiece for oral delivery for oral delivery of CPAP treatment has a vestibular shield for location between the teeth and lips/cheeks of a wearer. The vestibular shield is formed from a very supple material and is dimensioned to extend laterally into the buccal vestibule and vertically to overlap the gums. A gases pathway is provided through the vestibular shield and may include a hard plastic insert through the shield. A connection for connecting the mouthpiece to a breathing circuit is provided which reduces the transfer of forces caused by movement therebetween.
Description
BACKGROUND OF THE INVENTION

1. Field of Invention


This invention relates to a system for oral delivery of gases pressurized above ambient, and in particular, to a system, including a novel mouthpiece, for the oral delivery of air in continuous positive airway pressure (CPAP) treatments of sleeping disorders such as sleep apnea.


2. Description of the Prior Art


Sleep apnea treatments have been significantly advanced with the introduction of continuous positive airway pressure (CPAP) treatments. These treatments, as introduced, involve the supply of gases from a gases supply or blower to a patient through a conduit and nasal mask to provide an elevated internal pressure in the users airways to assist the muscles to keep the airways open. This airstream is provided to the user through a nasal mask applied over the nose and held in place by a harness. This configuration has been almost universally adopted based on the well known observation that humans show a decided preference for nasal breathing during sleep. For this reason, little development has been undertaken into other possible methods of providing the pressurized airstream to a user.


Oral delivery is suggested in EP 818, 213, which shows an apparatus for oral delivery of air in a CPAP treatment. The apparatus includes a mouthpiece adapted to fit inside the mouth between the roof of the mouth, the hard palate, and the tongue, and having a periphery which can be gripped between the teeth. It is thought by the applicants that this is significantly more intrusive than is necessary and is liable to movement and consequent discomfort (although not outright removal) under the relaxation of sleep. It has the additional disadvantage that with the user fully relaxed, such as in the case of sleep, a distension in the user's jaw and subsequent opening of the mouth can reduce the sealing effectiveness of the mouthpiece and reduce the efficacy of the CPAP treatment.


Because the mouthpiece in EP 818,213 is gripped between the user's teeth, a further disadvantage results in that the mouthpiece requires custom orthodontic fitting to ensure that the mouthpiece matches the user's mouth and teeth layout. Custom orthodontic fitting is time consuming and removes the capability of effective mass manufacture. Consequently, the mouthpiece in EP 818,213 is expensive, creating a significant barrier to the patient adoption of the device.


A similar gases delivery mouthpiece, for use with a respirator, is shown in WO 90/03199. WO 90/03199 discloses an orthodontic device which is adapted to be gripped between the jaws of a user and to accommodate the user's teeth within a series of upper and lower cavities. A base member of the mouthpiece is shaped and fits against the hard palate of the user. This mouthpiece again has the disadvantage of requiring custom orthodontic fitting. Furthermore, as a result of the mouthpiece's substantial thickness and size, the mouthpiece is substantially rigid in the vestibule regions of the mouth. The mouthpiece is clamped in place by an outer shield which engages the outside of the user's lips.


A paper by E Veres entitled “Clinical trial of an oral vestibular shield for the control of snoring” (Journal of the Dental Association of South Africa, January 1993) describes the use of a shield intended to be retained in the vestibule of the mouth to seal the mouth and to promote nasal breathing which has been conventionally considered to be more beneficial than oral breathing. Humidified CPAP treatments delivered orally, however, actually derive greater benefit than those delivered nasally because secondary leakage through the nasal passages during oral delivery is significantly less than oral leakage during nasal delivery. The shield depicted in the paper is formed from flexible ethylene vinyl. The shield is custom trimmed and is custom fitted by heating to a malleable temperature and deformed by applied pressure.


Other possible mouthpiece designs are shown for example by use in self contained underwater breathing apparatus systems, for example as depicted in U.S. Pat. No. 4,862,909. This mouthpiece is a mouth guard type and is clamped between the teeth. A flange extends both in front of and behind the teeth.


Prior art mouthpieces are not well adapted for use in CPAP treatments because they are intended for conscious gripping by the user, and have been found subject to accidental removal with a user in a completely relaxed state such as sleep. The present invention overcomes this problem and present several other advantages which will become apparent upon a reading of the attached specification, in combination with a study of the drawings.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a system for oral delivery of gases, and/or a mouthpiece for oral delivery of gases, which goes some way toward overcoming the above disadvantages or which will at least provide the public with a useful choice.


Accordingly in a first aspect the present invention consists in a system capable of being used for oral delivery of gases pressurized above ambient to a user comprising: a mouthpiece; a breathing tube; and decoupling means for connecting said mouthpiece to said breathing tube, said decoupling means comprising a connection tube being formed of a material which is more flexible than the material of which said breathing tube is formed.


In a second aspect the present invention consists in a mouthpiece comprising: a generally rectangularly-shaped vestibular shield having an inner surface and an outer surface, said vestibular shield having a predetermined height which will overlap a user's teeth and gums when positioned in the mouth vestibule of a user, said vestibular shield having a central portion which will extend over a user's front teeth and gums when said central portion of said vestibular shield is positioned between the lips and the teeth of the user, and outer portions extending from said central portion which extend along and overlan at least a portion of the user's back teeth and gums when said outer portions of said vestibular shield are positioned between the cheeks and the teeth of the user; and gases passageway means extending from said outer surface of said vestibular shield to said inner surface of said vestibular shield for allowing the passage of said gases through said mouthpiece.


In a third aspect the present invention consists in a mouthpiece comprising:


a vestibular shield having an inner surface and an outer surface, said vestibular shield having a predetermined height which will overlap a user's teeth and gums when positioned in the mouth vestibule of a user;


gases passageway means extending from said outer surface of said vestibular shield to said inner surface of said vestibular shield for allowing the passage of said gases through said mouthpiece; and


extra-oral sealing means associated with said gases passageway which may be adjusted into one of two configurations, a first condition when said mouthpiece is inserted into a user's mouth being substantially unengaged with a user's face, and a second condition when correctly positioned in a user's mouth being substantially engaged with a user's face and under compression thereupon.


In a fourth aspect in a first aspect the present invention consists in a system capable of being used for oral delivery of gases pressurized above ambient to a user comprising:


gases supply means,


a gases passageway in fluid communication with said gases supply means, and


a mouthpiece in fluid communication with said gases passageway including an intra-oral sealing means and an extra-oral sealing means.


To those skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.


The invention consists in the foregoing and also envisages constructions of which the following gives examples.





BRIEF DESCRIPTION OF THE DRAWINGS

One preferred form of the present invention will now be described with reference to the accompanying drawings in which;



FIG. 1 is a side elevational view of the system according to the present invention as being used by a patient,



FIG. 2 is a perspective view from above of a mouthpiece according to the preferred embodiment of the present invention,



FIG. 3 is a perspective view from one side and from an inward direction of the mouthpiece of FIG. 2,



FIG. 4 is a cross-section of the mouthpiece of FIG. 2,



FIG. 5 is a cross-sectional view of the mouthpiece of FIG. 2 and a user with the mouthpiece in place to demonstrate the location and positioning thereof in relation to the main features of the user's anatomy,



FIG. 6 is a perspective view of the mouthpiece with the outer flap in place,



FIG. 7 is a perspective view of the outer flap bent back,



FIG. 8 is a cutaway view of the present invention with the outer flap in use,



FIG. 9 is a perspective view of the outer flap including the ventilation apertures and moisture barrier, and



FIG. 10 is a block diagram of a respiratory system according to the preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

While the invention may be susceptible to embodiment in different forms, there is shown in the drawings, and herein will be described in detail, specific embodiments with the understanding that the present disclosure is to be considered an exemplification of the principles of the invention, and is not intended to limit the invention to that as illustrated and described herein.


The present invention provides a novel system for oral delivery of gases pressurised above ambient to a user and is especially suited for use in the oral delivery of air in continuous positive airway pressure (CPAP) treatments of sleeping disorders such as sleep apnea. As shown in FIG. 1, the system includes a mouthpiece 1 which is connected by a connection 40 to a breathing circuit 41.


A preferred embodiment of the present invention is illustrated in FIGS. 2 to 5. In this embodiment, the mouthpiece 50 includes a vestibular shield 2 being a generally flat and generally rectangularly-shaped member in front elevation having a curved profile that reflects the curvature of a user's jaw and in turn the curvature of the labial vestibule region (the regions between the lips 5, 6 and the front teeth 7, 8 and the front gums 9, 10, as shown in FIG. 5). The vestibular shield has an inner surface 3 and outer surface 13. A gases passageway extends through the vestibular shield from an inlet 51 to an outlet 52 through the central portion 14 of the vestibular shield 2. The vestibular shield is dimensioned such that the outer portions 4 extend from the central portion 14 and around the sides of the labial vestibule into the buccal vestibule region (the region between the back teeth and the cheeks). As shown in FIG. 5, the vestibular shield 2 has a vertical dimension or predetermined height such that the upper and lower edges 73, 74 of the shield 2 extend beyond the margins of the users tooth 7, 8 to overlap the gums 9, 10 in the labial vestibule region. This vertical dimension is generally consistent along the horizontal length of the vestibular shield 2, such that the upper and lower edges 73, 74 of the vestibular shield 2 extend beyond the margins of the back teeth in the buccal vestibule region to overlap the gums of the back teeth. In the preferred embodiment the inlet 51 is provided by a flattened oval-shaped connector 53. The outlet 52 has an even more laterally extended flattened oval shape 54. The major differences between the mouthpiece 50 and the embodiments described above are provided on the inner surface 3 of the vestibular shield. Most prominently, the mouthpiece 50 includes a tongue depressor 55 extending from the inner face of the vestibular shield 2. The operation of the tongue depressor will be described further on with reference to FIG. 5. The tongue depressor includes a vertical stiffening flange 56 centrally located on its upper surface and extending from the gases outlet 52. In use, gases flow easily around the stiffening flange 56 effectively bifurcating the gases outlet 52. The tongue depressor 55 further includes a pair of vertically extending spacers 57 which in use may abut against the roof of the wearer's mouth and ensure that the tongue cannot completely block the air passageway. In the mouthpiece 50 the sealing effect of the vestibular shield 2 against the lips of the user is enhanced by providing teeth abutments of significantly increased thickness than the raised area 20 of the earlier embodiments. In particular, an upper teeth abutment 58 and a lower teeth abutment 59 are provided, with the lower teeth abutment 59 protruding further from the inner face of the vestibular shield 2 than the upper teeth abutment 58. This difference serves to match the typical over-bite of most users. The abutments 58 and 59 are not required to be wider than the gases outlet 52.


A notch 60 is provided centrally in the upper edge of the vestibular shield 2 to accommodate the upper frenal attachment. A slight bead 61 is provided around the edge of the vestibular shield 2 for user comfort, with the vestibular shield 2 otherwise being very thin for additional suppleness.


Referring particularly to FIG. 4, in its preferred form the mouthpiece 50 is preferably formed by over-moulding a soft and supple material part 70 over a stiffer material part 67. These can generally be termed the shield part and the passageway-forming insert. The passageway-forming insert preferably includes a pair of upper and lower vertical flanges 63 and 64 to fully engage within the supple material. The passageway-forming insert 67 includes the vertically extending stiffening flange 56 of the tongue depressor 55, together with a curved planar portion 71 forming the backbone of the tongue depressor 55. The vertically extending spacers 57 are of the soft and supple material and are part of the over-moulding 70, as are the upper and lower teeth abutments 58 and 59.


Referring now to FIG. 5, use of the mouthpiece according to FIGS. 2 to 4 is depicted. With the present mouthpiece 50, the upper and lower lips 5, 6 are further distended by the abutment action of the abutments 75, 76 against the upper and lower teeth 7, 8 respectively, thus forming a seal of greater pressure between the lips 5, 6 and the upper and lower portions respectively of the vestibular shield 2. A lower face 77 of the tongue depressor 55 impinges if necessary on the upper surface 72 of the tongue 25 and retains the tongue in the lower portion of the mouth. This ensures a clear gases outlet 52 from the gases passageway through the vestibular shield. The vertically extending spacers 57, if forced by pressure from the tongue, will engage against the roof of the user's mouth and maintain a clear air passageway. This stops the sleeping patient unconsciously blocking the oral passageway and reverting to nasal breathing.


Attention is now directed to FIG. 1. It has been found that an additional factor in the effectiveness of any mouthpiece, including mouthpiece 1, is the manner in which the mouthpiece is connected to the breathing circuit 41. The weight of the breathing circuit 41, and any attempted movement of one other of the breathing circuit 41 and the mouthpiece 1 relative to the other, is one of the largest influences tending to dislodge a mouthpiece 1 from the mouth of a user. It must be noted that the mouthpiece 1 must remain in position and maintain a seal during all sleep, when the user has no muscle tone.


The connection 40 as provided in the present invention between the breathing circuit 41 and the mouthpiece 1 decouples the mouthpiece 1 from the breathing circuit 41. As a result, the connection 40 is effective in reducing the forces placed on the mouthpiece 1 by the breathing circuit 41 when the user moves around during sleep. In the preferred sleeping position, the breathing circuit 41 is laid across the chest 43 of the user, and may be secured to the user's bed clothes or sleeping garments. The breathing circuit 41 is preferably laid on the chest of the user to take the weight of the breathing circuit 41 off of the mouthpiece 1.


To connect between the gases outlet 14 which is vertical when the user is laying on his or her back and the breathing circuit 41 which is generally horizontal, an L-shaped elbow 45 is incorporated in the connection 40. The elbow 45 may be incorporated in the mouthpiece 1, however, it is preferred that the mouthpiece 1 be kept small to provide for easier cleaning. The elbow 45 is formed at a right angle and provides a positive pressure on the mouthpiece 1 to maintain the mouthpiece 1 in the user's mouth. The elbow 45 may include a swivel joint and may be disconnected from gaseous outlet 14. The connection 40 further includes an extremely flexible connecting tube 46 provided between the elbow 45 and the breathing circuit 41. The connecting tube 46 is preferably connected to the breathing circuit 41 by a swivel joint 48 for reasons described herein. The breathing circuit 41, while flexible, will necessarily be stiff enough to maintain its integrity over comparatively long turns, while the connecting tube 46, being only a short length, for example 10 centimetres, merely has to span between the user's mouth and chest, and can thereby be made in a manner that would not be suitable for long runs. Furthermore, as a result of the short length of the connecting tube 46, the connecting tube 46 does not need to incorporate significant insulation or heating capability. The connecting tube 46 may be formed from a thin plastic membrane supported over a helical or double helical or corrugated supporting ribs. In such a case, the support makes the connection tube 46 laterally flexible and resistant to torsion. The elbow swivel joint 45 allows for movement of the connection tube 46 relative to the mouthpiece 1. The swivel joint 48 allows for movement of the connection tube 46 relative to the breathing circuit 41. It is to be understood that one or both of the swivel joints 45, 48 could be eliminated, but the preferred embodiment includes swivel joint 48.


Referring now to FIG. 6 of the present invention is illustrated including an extra-oral sealing means 100. The extra oral sealing means is preferably a flap 100 which in its natural bias is tapered, the wide open end of which is shaped to conform to the facial contours around the outside of the mouth of a user. The narrow end joins to a cylindrical section, which is designed to slide over the inlet port 104 of the mouthpiece 102. While this is one method of attachment the flap 100 might also be constructed as an integral part of the mouthpiece 102. Therefore, the flap 100 is detachable from the mouthpiece 102. The flap 100 needs to be constructed of flexible material, therefore materials such as silicone rubber can be employed to fashion the flap.


The outer flap 100 is seen in FIG. 7, in a bent back position. It will be appreciated that when the mouthpiece 102 is being inserted into the mouth of a user, the outer flap 100 is intended to be in this bent back position to aid insertion. Prior to insertion, the outer flap is bent back by simply pressing on its outer periphery 106, until it snaps into the bent back position, in which it will stay unaided.


In FIG. 8 we see the outer flap 100 in use with the mouthpiece 102 in the mouth 107 of a user 110. Once correctly positioned in the mouth 107, the outer flap 100 may be adjusted into its operational position by pressing on its outer periphery 106 until it snaps back to press against the outside of the mouth 108. Due to the relative position of the vestibular shield 112 and the outer flap 100, the outer flap 100 is unable to fully reach its natural bias and thereby inflicts a compressive force on the outside of the mouth 108.


It will be appreciated that as well as providing a substantially airtight seal the addition of the outer flap provides enough compressive force on the mouth to keep the mouthpiece and conduit in place without the need for straps. This allows the administering of CPAP therapy to be considerably less obtrusive than traditional methods.


In a further additional improvement shown in FIG. 9, the outer flap 300 is shown in perspective. Included are ventilation apertures 302, 303 either side of the gases port 304, which are surrounded by a ridge 306 acting as a moisture barrier. The apertures 302,303 are provided such that any excess moisture leaking from the mouth will migrate to the apertures where they may evaporate. Small vents in the conduit may be used to direct small amounts of pressurised gas at the apertures to aid evaporation. The ridge 306 is included to ensure that no moisture migrates further into the sealing region 308, as this would be detrimental to the sealing properties of the flap.


A typical respiratory humidification circuit such as might employ the present invention is shown diagrammatically in FIG. 10, and includes the respirator 230, humidifier 231, and the associated respiratory breathing tubes 233 and 234. A patient 236 under treatment is shown, with the present invention 237, located in the mouth of the patient 236.


From the above it can be seen that the present invention provides a system including mouthpiece 1 for oral delivery of CPAP treatment which at once is low cost and effective. Unlike other appliances the mouthpiece 1 used in the present invention does not require custom orthodontic fitting as the mouthpiece 1 does not rely on accurate alignment with the user's teeth or the user's palate to provide location and retention within the user's mouth, but instead resides in the vestibule between the teeth and lips and the teeth and cheeks, and the lateral and vertical extension of the vestibular shield 2 requires that the user's lips be actively manipulated for the vestibular shield 2 to be removed. Furthermore the improved connection 40 to the breathing circuit 41 reduces the forces which tend to pull at the mouthpiece 1. With the addition of the extra-oral flap 100, the mouthpiece and associated tubing is held securely in place without the need for external strapping, and an effective seal is created around the users mouth.

Claims
  • 1. A system capable of being used for oral delivery of gases pressurized above ambient to a user comprising: gases supply means, a gases passageway in fluid communication with said gases supply means, and a mouthpiece in fluid communication with said gases passageway including an intra-oral portion which seals to the mouth of the user and an extra-oral portion capable of engaging in use with said user's face and causing compression thereupon.
  • 2. A system as claimed in claim 1 wherein said extra-oral portion may be adjusted into one of two configurations, a first configuration when said mouthpiece is inserted into said user's mouth being substantially unengaged with said user's face, and a second configuration when correctly positioned in said user's mouth being substantially engaged with said user's face.
  • 3. A system as claimed in claim 1 wherein said intra-oral portion comprises: vestibular shield having an inner surface and an outer surface, said vestibular shield having a predetermined height which will overlap a user's teeth and gums when positioned in the mouth vestibule of a user, gases passageway means extending from said outer surface of said vestibular shield to said inner surface of said vestibular shield for allowing the passage of said gases through said mouthpiece.
  • 4. A system as claimed in claim 1 wherein said extra-oral portion is detachable from said mouthpiece.
  • 5. A system as claimed in claim 1 wherein, said extra-oral portion is constructed of silicon rubber.
  • 6. A system as claimed in claim 1 wherein said extra-oral portion comprises at least one tapered flap.
  • 7. A system as claimed in claim 6 wherein said flap has a wide end and a narrow end, said narrow end being attached to said gases passageway.
  • 8. A system as claimed in claim 6 wherein said first condition comprises said wide end being distal to said user relative to said narrow end being proximal to said user.
  • 9. A system as claimed in claim 6 wherein said second condition comprises said wide end being proximal to a user relative to said narrow end being distal to said user.
  • 10. A system as claimed in claim 7 wherein said wide end is adapted to conform to the facial contours of said user.
  • 11. A system as claimed in claim 6 wherein said flap includes at least one ventilation means, proximal to said narrow end.
  • 12. A system as claimed in claim 11 wherein said narrow end and said at least one ventilator means are surrounded by a ridge on the side of said flap which in use faces a user.
  • 13. A system as claimed in claim 11 wherein said at least one ventilator means comprises two apertures either side of said narrow end.
  • 14. A system as claimed in claim 13 wherein said mouthpiece includes means which are adapted to direct a small amount of pressurised gases in the vicinity of said apertures.
  • 15. A system as claimed in claim 1 wherein said system further comprises humidification means disposed in the flow path at said gases between said gases supply means and said mouthpiece, adapted to humidify said gases to a desired level of humidity.
Priority Claims (3)
Number Date Country Kind
331355 Aug 1998 NZ national
43458/99 Aug 1999 AU national
500000 Sep 1999 NZ national
Parent Case Info

This is a continuation application of U.S. patent application Ser. No. 10/331,431, filed on Dec. 30, 2002, now U.S. Pat. No. 6,820,617, which is a divisional application of U.S. patent application Ser. No. 09/629,536, filed on Jul. 31, 2000 now U.S. Pat. No. 6,679,257, which is a continuation-in-part application of U.S. patent application Ser. No. 09/326,478, filed on Jun. 4, 1999.

US Referenced Citations (91)
Number Name Date Kind
1177383 Claren Mar 1916 A
1592345 Drager Jul 1926 A
3013554 Safar et al. Dec 1961 A
3060927 Gattone Oct 1962 A
3079916 Marsden Mar 1963 A
3139088 Galleher, Jr. Jun 1964 A
3303845 Detmer, III Feb 1967 A
3670726 Mahon et al. Jun 1972 A
3682164 Miller Aug 1972 A
3692025 Greenberg Sep 1972 A
3963856 Carlson et al. Jun 1976 A
4068657 Kobzan Jan 1978 A
4169473 Samelson Oct 1979 A
4170230 Nelson Oct 1979 A
4222378 Mahoney Sep 1980 A
4230106 Geeslin et al. Oct 1980 A
4233972 Hauff et al. Nov 1980 A
4270531 Blachly, et al. Jun 1981 A
4304227 Samelson Dec 1981 A
D263166 Bushman Feb 1982 S
4331141 Pokhis May 1982 A
4360017 Barlett Nov 1982 A
4495945 Liegner Jan 1985 A
D295797 Bono et al. May 1988 S
4862903 Campbell Sep 1989 A
4881540 Vigilia Nov 1989 A
5031611 Moles Jul 1991 A
5062422 Kinkade Nov 1991 A
5117816 Shapiro et al. Jun 1992 A
5174284 Jackson Dec 1992 A
5195513 Sinko et al. Mar 1993 A
5203324 Kinkade Apr 1993 A
5253658 King Oct 1993 A
5265591 Ferguson Nov 1993 A
5277202 Hays Jan 1994 A
5284134 Vaughn et al. Feb 1994 A
5333608 Cummins Aug 1994 A
5353810 Kittelsen et al. Oct 1994 A
5389024 Chen Feb 1995 A
5438978 Hardester, III Aug 1995 A
5471976 Smith Dec 1995 A
5492114 Vroman Feb 1996 A
5513634 Jackson May 1996 A
5533523 Bass, Jr. et al. Jul 1996 A
5560354 Berthon-Jones et al. Oct 1996 A
5566683 Thornton Oct 1996 A
5570702 Forman Nov 1996 A
5579284 May Nov 1996 A
5590643 Flam Jan 1997 A
5620011 Flowers Apr 1997 A
5624257 Farrell Apr 1997 A
5626128 Bradley et al. May 1997 A
5638811 David Jun 1997 A
5642737 Parks Jul 1997 A
5666974 Hiro et al. Sep 1997 A
5682878 Ogden Nov 1997 A
5682904 Stinnett Nov 1997 A
5706251 May Jan 1998 A
5720656 Savage Feb 1998 A
5752510 Goldstein May 1998 A
5792067 Karell Aug 1998 A
5797627 Salter et al. Aug 1998 A
5814074 Branam Sep 1998 A
D399950 Shepard Oct 1998 S
5865170 Moles Feb 1999 A
5868130 Stier Feb 1999 A
5884625 Hart Mar 1999 A
5906199 Budzinski May 1999 A
5921241 Belfer Jul 1999 A
5947116 Gamow et al. Sep 1999 A
5950624 Hart Sep 1999 A
5957133 Hart Sep 1999 A
5983892 Thornton Nov 1999 A
6012455 Goldstein Jan 2000 A
6073626 Riffe Jun 2000 A
6076526 Abdelmessih Jun 2000 A
6079410 Winefordner et al. Jun 2000 A
6089225 Brown et al. Jul 2000 A
6123071 Berthon-Jones et al. Sep 2000 A
6148818 Pagan Nov 2000 A
6192886 Rudolph Feb 2001 B1
6244865 Nelson et al. Jun 2001 B1
6257238 Meah Jul 2001 B1
6263877 Gall Jul 2001 B1
6405729 Thornton Jun 2002 B1
6427696 Stockhausen Aug 2002 B1
6446628 Chen Sep 2002 B1
6494209 Kulick Dec 2002 B1
6514176 Norton Feb 2003 B1
6536424 Fitton Mar 2003 B1
6536428 Smith et al. Mar 2003 B1
Foreign Referenced Citations (13)
Number Date Country
199943458 Mar 2000 AU
200048919 Oct 2000 AU
3543931 Jun 1987 DE
4445652 Jun 1996 DE
818213 Jan 1998 EP
845277 Jun 1998 EP
979662 Feb 2000 EP
1075848 Feb 2001 EP
200051357 Feb 2000 JP
200179091 Mar 2001 JP
WO 9003199 Apr 1990 WO
WO 9100075 Jan 1991 WO
WO 9603173 Feb 1996 WO
Related Publications (1)
Number Date Country
20050056282 A1 Mar 2005 US
Divisions (1)
Number Date Country
Parent 09629536 Jul 2000 US
Child 10331431 US
Continuations (1)
Number Date Country
Parent 10331431 Dec 2002 US
Child 10970959 US
Continuation in Parts (1)
Number Date Country
Parent 09326478 Jun 1999 US
Child 09629536 US