Breathing assistance apparatus

Information

  • Patent Grant
  • 11291790
  • Patent Number
    11,291,790
  • Date Filed
    Thursday, May 14, 2020
    4 years ago
  • Date Issued
    Tuesday, April 5, 2022
    2 years ago
Abstract
Headgear for use with a respiratory mask is described. The headgear can include a continuous and substantially curved elongate member extending in use below a user's nose and at least two headgear straps capable of attachment to the ends of the elongate member. A mask attachment on the elongate member is disposed to sit below or on one of said user's nose, mouth, upper lip and an inlet to the mask. The attachment is capable of receiving the mask.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to apparatus for treating sleep apnoea. More specifically, the present invention provides a nasal interface for the supply of respiratory gases, but most particularly positive pressure gases.


Description of the Related Art

In the art of respiration devices, a variety of respiratory masks which cover the nose and/or mouth of a human user in order to provide a continuous seal around the nasal and/or oral areas of the face are well known. Masks that provide gas at positive pressure within the mask for consumption by the user are also well known. The uses for such masks range from high altitude breathing (i.e., aviation applications) to mining and fire fighting applications, to various medical diagnostic and therapeutic applications.


Obstructive Sleep Apnoea (OSA) is a sleep disorder that affects up to at least 5% of the population in which muscles that normally hold the airway open relax and ultimately collapse, sealing the airway. The sleep pattern of an OSA sufferer is characterised by repeated sequences of snoring, breathing difficulty, lack of breathing, waking with a start and then returning to sleep. Often the sufferer is unaware of this pattern occurring. Sufferers of OSA usually experience daytime drowsiness and irritability due to a lack of good continuous sleep.


In an effort to treat OSA sufferers, a technique known as Continuous Positive Airway Pressure (CPAP) was devised. A CPAP device consists of a gases supply (or blower) with a conduit connected to supply pressurised gases to a patient, usually through a nasal mask. The pressurised air supplied to the patient effectively assists the muscles to keep the patient's airway open, eliminating the typical OSA sleep pattern.


The procedure for administering CPAP treatment has been well documented in both the technical and patent literature. Briefly stated, CPAP treatment acts as a pneumatic splint of the airway by the provision of a positive pressure, usually in the range 4 to 20 cm H.sub.2O. The air is supplied to the airway by a motor driven blower whose outlet passes via an air delivery hose to a nose, full face, nose and mouth, or oral mask that is sealingly engaged to a patient's face, preferably by means of a harness or other headgear. An exhaust port is usually also provided in the delivery tube proximate to the mask or on the mask itself. More sophisticated forms of positive airway pressure devices, such as bi-level devices and auto-titrating devices, are described in U.S. Pat. No. 5,148,802 of Respironics, Inc. and U.S. Pat. No. 5,245,995 of Rescare Limited, respectively.


One requisite of respiratory masks has been that they provide an effective seal against the user's face to prevent leakage of the gas being supplied. Commonly, in prior mask configurations, a good mask-to-face seal has been attained in many instances only with considerable discomfort for the user. A common complaint of a user of CPAP therapy is pressure sores caused by the mask about the nose and face and in particular in the nasal bridge region of the user. This problem is most crucial in those applications, especially medical applications, which require the user to wear such a mask continuously for hours or perhaps even days. In such situations, the user will not tolerate the mask for long durations and optimum therapeutic or diagnostic objectives thus will not be achieved, or will be achieved with great difficulty and considerable user discomfort.


U.S. Pat. No. 5,477,852 of Airways Ltd, Inc. discloses a nasal positive airway pressure device that has a pair of nasal members each having a cannula tip to be inserted into the nares of the patient. Each cannula is tapered from a substantially circular cross section outside the patient's nostril to a substantially oval cross section at the tip inserted into the nostril. An inflatable cuff surrounds each cannula with the interior space of the cuff communicating with the lumen of the cannula through at least one aperture in the sidewall of the cannula. The nasal members are connected to one or more flexible hoses that; in turn, are connected to a source of positive air pressure. In use, positive air pressure is supplied to each cannula tip through the air hoses and nasal members. The positive air pressure inflates the cuffs to hold the nasal members in place and to effect treatment. The nasal device of U.S. Pat. No. 5,477,852 is attached to headgear that is located about a patient's head. This headgear could be considered by many patients as cumbersome and uncomfortable.


Conventional nasal masks used for administrating CPAP treatment are also considered uncomfortable and cumbersome, and prior art nasal masks can be noisy due to air leaks. These disadvantages in many cases are a formidable obstacle to patient acceptance of such treatment. Therefore, a substantial number of patients either cannot tolerate treatment or choose to forego treatment. It is believed a number of such patients might benefit from a nasal positive airway pressure apparatus that is more convenient to use and comfortable to wear, thereby resulting in increased treatment compliance.


Innomed Technologies, Inc. manufactures a nasal cannula device called the NASALAIRE™. In this device air or oxygen travels down a wide bore conduit to nasal cannula. The NASALAIRE™ creates a physical seal between the flares and itself, and relies on the absence of leaks around the cannula and the nares to deliver pressure supplied by a continuous positive airway pressure (CPAP) blower to the airway of the wearer.


U.S. Pat. No. 6,119,694 of Respironics Ga., Inc discloses a nasal mask having a nare seal and lateral support members to support the mask.


WO2004/073778 of ResMed Limited discloses a nasal mask including a frame where headgear is provided with rigid sections that extend to the nasal mask.


WO04/041341 of ResMed Limited discloses headgear for a patient mask that includes a sewn on rigid section to the back area of headgear straps to provide rigidity to the straps.


U.S. Pat. No. 6,907,882 of ResMed Limited discloses a nasal mask and headgear that is attachable to the frame of the nasal mask. The headgear straps have rigid sections integral with the releasable connectors that attach the headgear to the mask.


SUMMARY OF THE INVENTION

It is an object of the present invention to attempt to provide a patient interface that goes some way to overcoming the abovementioned disadvantages in the prior art or which will at least provide the industry with a useful choice.


In a first aspect the present invention consists in headgear for use with a respiratory mask comprising:


a continuous and substantially curved elongate member extending in use below a patient's nose,


at least two headgear straps capable of attachment to the ends of said elongate member, and


a mask attachment on said elongate member disposed to sit below or on one of said user's nose, mouth, upper lip and an inlet to the mask, said attachment capable of receiving said mask.


In a second aspect the present invention consists in a breathing assistance apparatus for use with delivery of respiratory gases to a user comprising:


a mask having a base and body, said body having two flexible nasal pillows that in use rest in a substantially sealed manner against said user's nares,


a continuous and substantially curved elongate member extending in use below a patient's nose,


at least two headgear straps capable of attachment to the ends of said elongate member, and


a mask attachment on said elongate member disposed below said user's nose, said attachment capable of receiving said mask.


In a third aspect the present invention consists in a breathing assistance apparatus for use with delivery of respiratory gases to a user comprising:


a mask comprising a body and a cushion, said cushion substantially forming a seal with said patient's airways,


headgear comprising substantially flexible, soft straps and a substantially continuous curved elongate member to which said mask is attached, said elongate member extending over said user's cheeks, and


wherein said mask has an inlet extension tube and said curved elongate member is attached or rests beneath said inlet extension tube, anchoring said mask to said user's face in use.


To those skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.


In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.


The invention consists in the foregoing and also envisages constructions of which the following gives examples.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred forms of the present invention will now be described with reference to the accompanying drawings.



FIG. 1 is a block diagram of a humidified continuous positive airway pressure system as might be used in conjunction with the nasal mask of the present invention.



FIG. 2 is a perspective view of a first form of a patient interface that is nasal mask and headgear of the present invention.



FIG. 3 is an exploded view of the nasal mask and headgear of FIG. 2.



FIG. 4 is a side view of a mask base of the nasal mask and headgear of FIG. 2.



FIG. 5 is a perspective end view of the mask base of FIG. 4.



FIG. 6 is an end view of a body of the nasal mask and headgear of FIG. 2, particularly showing two nasal pillows.



FIG. 7 is a perspective view of the body of FIG. 6,



FIG. 8 is a perspective view of a nasal mask of the first form of the present invention but having alternative headgear that includes additional rigid extensions.



FIG. 9 is perspective view of a second form of a patient interface and headgear of the present invention.



FIG. 10 is an exploded view of the patient interface and headgear of FIG. 9.



FIG. 11 is an exploded view of a third form of a patient interface and headgear of the present invention.



FIG. 12 is an exploded view of a fourth form of a patient interface and headgear of the present invention.



FIG. 13 is a perspective view of a fifth form of a patient interface and headgear of the present invention.



FIG. 14 is an exploded view of the patient interface and headgear of FIG. 13.



FIG. 15 is a perspective view of a sixth form of a patient interface and headgear of the present invention.



FIG. 16 is a perspective view of a seventh form of a patient interface and headgear of the present invention.



FIG. 17 is a cross-sectional view of the patient interface of FIG. 16.



FIG. 18 is a front view of a nasal pillow of FIG. 6.



FIG. 19a is a front view of the nasal pillows of FIG. 6.



FIGS. 19b to 19d are graphs of the gradients of various nasal pillow connecting surfaces.



FIG. 20 is a perspective view of an eighth form of a patient interface and headgear of the present invention.



FIG. 21 is a perspective view of the interface and headgear of FIG. 20 showing inner pads on the arms of the headgear.



FIG. 22 is an exploded view of the interface and headgear of FIG. 20.



FIG. 23 is a perspective view of a ninth form of a patient interface and headgear the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The breathing assistance apparatus of the present invention including masks and headgear as described in the preferred embodiments of this invention can be used in respiratory care generally or with a ventilator. It is described below with reference to use in a humidified CPAP system.


A humidified Continuous Positive Airway Pressure (CPAP) system is shown in FIG. 1. A patient 1 is receiving humidified and pressurised gases through a patient interface 2 connected to a humidified gases transportation pathway or inspiratory conduit 3. Alternative delivery systems may also be used such as, VPAP (Variable Positive Airway Pressure) and BiPAP (Bi-level Positive Airway Pressure) or numerous other forms of respiratory therapy. A nasal mask 2 is illustrated in FIG. 7 but other masks such as oral, full face or nasal cannula may be used.


An inspiratory conduit 3 is connected to an outlet 4 of a humidification chamber 5 that contains a volume of water 6. The inspiratory conduit 3 may contain heating means or heater wires (not shown) that heat the walls of the conduit to reduce condensation of humidified gases within the conduit 3.


The humidification chamber 5 is preferably formed from a plastics material and preferably has a highly heat conductive base (for example an aluminium base) that is in direct contact with a heater plate 7 of humidifier 8. The humidifier 8 is provided with control means or an electronic controller 9 that may comprise a microprocessor based controller executing computer software commands stored in associated memory.


The controller 9 preferably receives input from sources such as user input means or a dial 10 through which a user of the device may, for example, set a predetermined required value (preset value) of humidity or temperature of the gases supplied to patient 1. The controller 9 may also receive input from other sources, for example temperature and/or flow velocity sensors 11, 12, through a connector 13 and a heater plate temperature sensor 14. In response to the user set humidity or temperature value input via the dial 10 and the other inputs, the controller 9 determines when (or to what level) to energise the heater plate 7 to heat the water 6 within the humidification chamber 5. As the volume of the water 6 within the humidification chamber 5 is heated, water vapour begins to fill the volume of the chamber above the water's surface and is passed out of the humidification chamber 5 outlet 4 with the flow of gases (for example air) provided from a gases supply means or blower 15 that enters the chamber 5 through an inlet 16. Exhaled gases from the patient's mouth are passed directly to the ambient surroundings in FIG. 1.


The blower 15 is provided with variable pressure regulating means or variable speed fan 21 that draws air or other gases through a blower inlet 17. The speed of the variable speed fan 21 is controlled by an electronic controller 18 (or alternatively the function of the controller 18 may be carried out by the controller 9) in response to inputs from the controller 9 and a user set predetermined required value (preset value) of pressure or the fan speed via dial 19.



FIGS. 2 and 3 show a first embodiment of a patient interface of the present invention. This patient interface is a nasal mask 2. The nasal mask 2 is comprised of a mask base 22 and body 23. The body 23 is substantially tubular with two nasal pillows 24, extending from it. The nasal pillows 24, 25 are preferably frustoconical in shape and in use rest against a patient's nares, to substantially seal the patient's nares. The body 23 has an external lip 28 that frictionally fits in a channel in the mask base 22.


The body 23 and nasal pillows 24, 25 of the nasal mask of the present invention are shown in further detail in FIGS. 6 and 7. The body and pillows are preferably integrally moulded in a substantially flexible plastics material. In the preferred form this material is silicone, but other appropriate materials, such as, rubber, thermoset elastomer or thermoplastic elastomer, such as Kraton™ may be used.


The nasal pillows 24, 25 are preferably an elliptical cone and as such are tubular and allow for a passage of gases to flow from the tubing 3 and through the mask body 23. The pillows 24, 25 are preferably angled toward one another and each have a preferably elliptical outlet 26, 27 that may be slightly offset from the centre of each pillow 24, 25, as shown in FIG. 6.



FIGS. 18 and 19
a show a nasal pillow 24 with an offset outlet in more detail. The pillow 24 has an outer profile 200 and inner profile 201 with respective centre points 202, 203. The inner profile 201 (outlet of the nasal pillow 24) is offset inward, by a horizontal spacing 204 and vertical spacing 205. Meaning the outlet 201 of the nasal pillow is offset horizontally 204 towards the middle of the nose and vertically 205 towards the user's upper lip. Offsetting the outlet 201 downwards in this manner allows the outlet to be inserted into a user's nostril without the outer profile 200 pushing the user's upper lip. Offsetting the outlet 201 inwards allows the pillow to better seal on the septum of the user's nose in use.


The outlet 201 may also be angled compared to the outer profile 200. For example in FIG. 18, there is a horizontal angle difference between the outer profile 200 and outlet 201 shown as 206. A similar vertical angle difference between the outer profile 200 and outlet 201 is shown as 207.


With the outer profile and inner profile having different sections or offsets allows the gradient of the connecting surface between the profiles to be changeable. This is shown in the graphs of FIGS. 19b, 19c and 19d. The connecting surface between the inner 201 and outer 200 profiles can have differing gradients, 208, 209, 210. The different gradients 208, 209, 210 of the connecting surface are possible due to the difference in offset difference 211, 212 (horizontal, vertical or angled) between the inner 201 and outer 200 profiles.


There may also be a difference in the rate of change of the gradient (as illustrated in the difference between 208 and 210). This allows easier insertion of the pillow 24 into a user's nostrils due to more lead in and better sealing that may be achieved due to more ergonomic contouring of the connecting surface that contacts the user's nostril.


Referring back to FIG. 7, the external lip 28 on the mask body 23 is an area of reduced circumference around the tubular part of the body 23. A projection 47 may be provided on the lip 28 that fits with a corresponding recess or channel (discussed below) on the mask base 22 to ensure correct assembly of the nasal mask.


The mask base 22 is shown in further detail in FIGS. 4 and 5. The mask base 22 is a ring or sleeve type attachment. The base 22 is preferably made from a substantially hard (rigid) plastics material, such as polypropylene, polycarbonate or acetyl. However, other appropriate materials may be used. The base 22 has an internal circumferential recessed area or channel 45 on one side and a semi-tubular projection 29 on its other side. When assembling the mask body 23 to the mask base 22 the channel 45 receives the lip 28. These parts are maintained together by friction fit, however other types of fitting may be provided for, such as a snap or bump fitted part or the body may be over moulded to a clip that causes the fitting to the mask body 23. In this form the friction fitting of the lip 28 to the recessed area 45 is assisted by elongate projections 49 extending along the central part 50 of the mask base 22. The projection 47 on the mask body 23 allows for correct fitting or keying of the mask base to the mask body, such that when the lip 28 is fitted into the recessed area 45, the projection 47 enters the recess 48 formed in the mask base 22.


The semi-tubular projection 29 is curved in this embodiment such that a ball jointed connector end 46 such that a connector 30 can be fitted into it. The projection 29 forms a socket for the connector end 46 and the connector end can swivel within the socket. The connector 30 is attached to a tube 31 to allow for gases to be passed to the nasal mask 2. The tubing 31 may be attached to inspiratory conduit 3 or the tubing 31 may simply be the inspiratory conduit 3.


In alternative embodiments the projection 29 may not be semicircular but the inner surface of the base 22 may be curved and form a socket for receiving the connector end 46.


The base 22 has an extension or partial lip 32 extending beneath the semi-tubular projection (socket) 29. A slot 33 is created between the socket 29 and extension 32. The extension and slot is used to fit the mask base 22 to the headgear 21. In this embodiment the extension 32 is substantially curved to follow the shaped of the projection 29. However, in other forms the extension may be substantially straight or otherwise shaped.


In use, the nasal mask is assembled with headgear 21. The headgear 21 in the preferred form is comprised of headgear straps 35, 36, 37, 38 and a substantially curved and elongate member 34. The member 34 is curved and substantially rigid, or at least more rigid than the headgear straps.


The headgear straps 35, 36, 37, 38 are preferably made from a composite foam layered material, such as Breathoprene™. The headgear 21 preferably includes a first strap 35 and a second strap 36. The first strap 35 extends in use over the forehead or top front area of a patient's head. The second strap 36 extends around the back of the patient's head. The headgear 21 also has side straps 37, 38 that in use extend down the checks of a patient and the ends of the straps terminate in the upper lip area of the patient in use.


Referring to FIG. 2, the curved and elongate member 34 is comprised of a central section 42 and contoured side arms 41, 54. A substantial length of each of the side arms 41, 54 overlaps and is attached to the side straps 37, 38. However, the side straps 37, 38 only extend partially along the length of the side arms 41, 54 so as to terminate beneath the cheek or near the upper lip region. As the side straps 37, 38 are made from a soil foam type material they provide a comfortable fitting of the headgear and curved member 34, while the substantially rigid side arms 41, 54 provide rigidity and stability to the headgear 21 and nasal mask 2. The attachment between the side straps and rigid extension side arms may be made by gluing, sewing or other appropriate fastening.


Preferably the side arms of the curved member 34 are integrally moulded with the central section 42. The curved member 34 is preferably three dimensionally moulded to a shape to substantially match the cheek contours of a human. The side arms 41, 54 are preferably of thinner width (cross-section) than the central section 42. As the side arms 41, 54 are moulded of a plastics material to be substantially thin they are capable of being bent or adjusted to allow for better and more comfortable fit to a patient. The side arms 41, 54 may also include weakened or narrow areas 39 to allow for additional bending, moulding or twisting of the arms 41, 54 to better fit the headgear to individual patients. For example, in the embodiment shown in FIGS. 2 and 3, the narrowed area 39 corresponds to the cheek bone area of a patient and allows for the side arms 41, 54 to easier bend or twist to fit the contours of the patient's face.


In alternative embodiments the side arms may have weakened areas that are narrower in cross-section to that of the remainder of the side arms. A narrower cross-section area would also provide a weakened area that may be easily manipulated.


In alternative embodiments of the present invention the side straps of the headgear may not extend under and along the length of the curved member but be attached to the distal ends of the straps. This attachment may be by hook and loop material, as is known in the art, or by other attachment methods as known in the art. In this form, the arms of the curved member may have padding underneath them or no padding at all.


Referring to FIG. 3, the curved elongate member has a central section 42 that in an assembled form supports the mask base and body such that the pillows 24, 25 rest against the patient's nares. The central section 42 is a half circle that is integrally moulded with the side arms 41, 54. The central section 42 has a raised area 43 on its exterior, at the apex of the half circle. The raised area 43 is shaped to receive the mask base 22. To assemble, a patient merely needs to slide the mask base 22 into the central section 42 such that the raised area 43 fits into the slot 33 on the mask base 22.


The side arms 41, 54 of the curved member 34 preferably have varying cross-sectional thickness. The ends of the arms 41, 54 attached to the central section 42 are thicker over the most curved parts 55, 56 of the arms, whereas the straighter parts of the arms 57, 58 have a narrow cross-section. Therefore, the thicker ends 55, 56 hold their shape better.


In alternative embodiments, the mask base 22 may be formed integrally with the curved member 34. Therefore, the central section and base would be one and would not be able to be separated from one another.


An example of this is shown in FIGS. 20 to 22, the eighth embodiment of the patient interface and headgear 300. Here, the mask base 301 and the curved elongate member 302 are integrally formed, for example, by moulding or the like. The elongate member comprises arms 303, 304 similar to that described above. Also the mask body 305 has integral nasal pillows 306, 307 similar to that described above in relation to FIG. 2.


As can be seen in FIGS. 21 and 22 in this eighth embodiment the headgear straps 308, 309 do not extend down the arms 303, 304 as with other embodiments. In this embodiment the headgear straps 308, 309 attach through recesses 310, 313 at the end of the arms 303, 304 extending along the arms are inner pads 311,312 that rest against the patient's cheekbones in use and provide comfort to the patient's face. The pads 311, 312 only extend up to near the attachment recesses 309, 310. The pads are preferably made from a foam type material, such as the laminated material that the headgear straps are made from. The pads 311, 312 preferably do not extend beyond the edges of the arms 303,304.


Referring back to FIGS. 2 and 3, alternatively, the curved member 34 may be formed as two separate pieces. That is, the central section 42 may be formed as two parts with a central split seam, the two left and right halves joined in use. The two left and right parts could either be joined along a seam as described above, with the base 22 slotting into the slot 33 as described above, or alternatively, each of the two left and right arms may be attached one to each side of the base 22.


Where a “substantially continuous elongate member” or “curved member” is referred to in this specification, it refers to any of the options for the curved member 34 outlined above.


The side arms 41, 54 may also include a loop 40 or detached section. This is where a section of the side arms 41 is not attached to the strap 38, 37 lying underneath. Thus the detached section 40 of the side arms forms a loop to which a tubing attachment 44 (such as that shown attached to another strap in FIGS. 2 and 3) may be looped to the side arms 41, 54 and the tubing 31 attached to either of the side arms.


The connector 30 in the preferred form is a ball and socket jointed connector to allow for the tubing 31 to swivel in the mask base 22. The tubing 31 may be attached to any of the headgear straps. However, a tube attachment 44 is shown where the tubing is attached by fasteners, such as hook and loop fastener, to the first strap 35. In other embodiments the tubing 31 may be attached to either the side straps 37, 38 or merely allowed to fall freely from the nasal mask 2.


Although a ball and socket joint, as described above, between the mask base 22 and tubing 31 is preferred other connections may be utilised, such as a flexible piece of silicone, or other appropriate connection. The connection between the base and tubing must be able to be flexed or rotated to allow for the tubing to be moved without causing the dislodgement of the nasal mask 2 from the user's nares.


The mask body 23 may be provided with nasal pillows of various different sizes, such that user's may remove an existing mask body and simply attach a different sized body to the mask base 22.


Alternative headgear may be used with the patient interface of the present invention. In particular, alternative headgear is shown in use with the first form of the patient interface (of FIG. 2) in FIG. 8. Here the headgear may include an additional strap 53 extending from the cheek region of the side straps 41 and extending behind the user's head. This lower additional strap 53 may also include substantially rigid arms 51 similar to the arms 41 described above. Any number of connecting straps 52 may also be provided between the upper strap 36 and lower strap 53. Again, the arms 51 would provide stability and rigidity to the additional strap 53.


In the embodiment described above, when the patient interface of the first form is in use, the user's face causes the mask base 22 and body 23 to clip with the curved member 34. This is due to the angle of the curved member 34 and fixing of the mask base 22 and body 23 to the curved member 34.


Further, in all forms, the curved member 34 transfers the load of the patient interface away from the user's nose and to the cheek regions of the user.


A second form of the patient interface and headgear of the present invention is shown in FIGS. 9 and 10. In this embodiment a mouthpiece 100 is attached to the substantially tubular mask body 23 substantially below the nasal pillows 24, 25. The mouthpiece 100 is preferably a flap that is fittable within the patient's mouth. A gases pathway extends through the mask body 23 and through the centre of the mouthpiece 100, such that in use a patient or user is supplied with gases via the nasal pillows 24, 25 and the mouthpiece 100. The flap 100 is preferably made from a silicone plastics material but other appropriate materials such as rubber, thermoset elastomer or thermoplastic elastomer, such as Kraton™ may be used. The flap 100 is preferably integrally moulded with the mask body 23 and nasal pillows 24, 25. In use the flap 100 sits within the user's mouth between the user's teeth and lips.


In this second form the headgear and particularly the curved member 34 is substantially the same as that described in relation to the first embodiment.


A third form of the patient interface and headgear of the present invention is shown in FIG. 11. In this embodiment a mouthpiece as well as a nose blocking device is attachable to the mask base 22. The mouthpiece 110 and nose blocking device 111 are preferably integrally formed. The mouthpiece 110 has an inner vestibular shield 112 that is similar to the flap 100 described above. Therefore the vestibular shield 112 in use sits within the patient's mouth between the patient's teeth and lips and provides an at least partial seal between the user and the shield 112.


A tubular extension 113 extends through the mouthpiece 110 to the mask base 22 from the vestibular shield 112. The extension allows for gases to be passed to the patient from the conduit 31.


The nose blocking device 111 in use rests under the user's nose and blocks the user's nares.


In this third form the headgear and particularly the curved member 34 is substantially the same as that described in relation to the first embodiment.


A fourth embodiment of the patient interface and headgear of the present invention is shown in FIG. 12. In this embodiment a mouthpiece 120, 121 is attachable via a tubular extension 122 to the mask base 22. The mouthpiece is made up of an outer mouthpiece flap 120 and an inner vestibular shield 121. The shield 121 is substantially the same as that described in reference to the third embodiment. The outer mouthpiece flap 120 rests in use outside the user's mouth and substantially seals about the user's mouth. The outer mouthpiece flap 120 and an inner vestibular shield 121 are described in further detail in U.S. Pat. No. 6,679,257, the entire contents of which is herein incorporated by reference.


In the fourth form of the headgear and particularly the curved member 34 is substantially the same as that described in relation to the first embodiment.


A fifth form of the patient interface and headgear of the present invention is shown in FIGS. 13 and 14. This embodiment is very similar to the fourth embodiment except the mouthpiece is simply an outer mouthpiece flap 130. This flap 130 is liftable to the mask base 22 by way of the tubular extension 131. Again, as above, the headgear and particularly the curved member 34 are substantially the same as that described in relation to the first embodiment.


A sixth form of the patient interface and headgear of the present invention is shown in FIG. 15. In this embodiment the patient interface is a full face mask 140 that extends over a user's nose and mouth and under the user's chin in use. The mask 140 has a body 142 made from a substantially rigid plastics material and a cushion 144 made from a substantially soft plastics material. The mask and cushion are preferably similar to that described in more detail in U.S. patent application Ser. No. 11/368,004, the entire contents of which is incorporated herein by reference.


A tubular inlet port 143 is formed in the mask body 142. The tubing 31 is attachable to the port 143 to provide gases to the user wearing the mask.


The headgear is substantially similar to that described in relation to FIG. 2 (the second form); however, the curved member 141 differs. The curved member 141 does not have a mask base similar to that described in the second form in which to attach to. Therefore, the curved member 141 has a central section 145 that curves under the inlet port 143, effectively anchoring on the inlet port. The curved member 141 is moulded in substantially the same manner as described with reference to the second form.


A seventh form of the patient interface and headgear of the present invention is shown in FIGS. 16 and 17. Here, the headgear and curved member is similar to that described above in the sixth embodiment, where the curved member 141 has a central section that curves under and anchors onto an inlet port 151 on a patient interface 150. The patient interface 150 is an integral mouth mask 152 and nasal pillows 153. The mouth mask 152 preferably extends under the user's 155 chin, as shown in FIG. 17.


The interface 150 has a substantially rigid body 154 that has substantially soft cushion 156 attached to it. The cushion 156 is preferably of the type disclosed in U.S. Pat. No. 6,951,218 (the entire contents of which is incorporated herein by reference) having an inner 157 and outer 158 cushions.


Integrally formed in the outer cushion 158 are nasal pillows 153. Preferably two nasal pillows 159, 160 are formed in the cushion 158. These are substantially tubular and carry gases in use from the inside of the interface 150 to the user's 155 flares. The outer cushion 158 and nasal pillows 159, 160 are preferably made from a soft pliable plastics material such as silicone but other appropriate materials such as rubber or KRATON™ may be used.


A similar but slightly different embodiment to that of FIG. 16 is a ninth embodiment of the present invention, as shown in FIG. 23. Here the interface 400 is substantially the same as the interface 150 of FIGS. 16 and 17. The interface 400 has a body 401 with integral nasal pillows 402, 403. The nasal pillows may be integrally formed with the body or separately formed and simply assembled to the body before use. The nasal pillows 402, 403, as above, are substantially tubular and carry gases in use from the inside of the interface 400 to the user's mires. Again, nasal pillows are preferably made from a soft pliable plastics material such as silicone but other appropriate materials such as rubber or KRATON™ may be used.


In this embodiment the body 401 may be made of a more rigid material than the nasal pillows or simply be made from a soft pliable plastics material as are the nasal pillows.


Attached to an inlet 404 of the body 401 is an elongate member 405 similar to that described in any of the embodiments detailed above, but particularly that of FIGS. 20 to 22. The elongate member 405 has arms 406, 407 that extend along a user's cheekbones then up towards the user's ears when in use. The arms 406, 407 are preferably made from a substantially rigid material, preferably a plastics material. For the users comfort each of the arms 406, 407 have inner pads (only one pad 408 is shown in FIG. 23) extending along their inner sides, particularly where the arms are incident on the user's face.


The arms 406, 407 have recesses 409, 410 at the ends to which headgear straps 411, 412 are attached. The arms 406, 407 may also each have optional side hooks (of which only one side hook 413 is shown), again made out of a substantially rigid material, to which additional side headgear straps 414, 415 may be attached.


At the centre of the elongate member 405 is formed an integral inlet 416 that matches and attaches to the inlet 404 on the body. This integral inlet 416 receives a conduit or tube 417 that is connected in use to a supply of gases. Preferably the tube 417 has a swivelable elbow 418 (for example, a ball joint socket similar to the one described above). Preferably on the elbow 418 are a number of holes 419 that provide an exhaust vent for gases exhaled by the patient in use.


In this ninth embodiment of the patient interface and headgear the interface is a mouth mask and nasal pillows. In alternative forms the patient interface may be a full face mask that is attached to an elongate member and headgear similar in form to those described above and particularly in relation to FIG. 23.

Claims
  • 1. A mask assembly comprising: a cushion comprising a user contacting portion surrounding at least one aperture, the user contacting portion being adapted to rest in sealed manner about a respiratory orifice of a user, in use;an elbow connector comprising a proximal elbow portion extending along a first direction and a distal elbow portion extending along a second direction, the second direction extending at an angle relative to the first direction, the elbow connector further comprising an elbow connector inlet configured to be connected to an inspiratory tube and an elbow connector outlet configured to be fluidically connected to the cushion, wherein the elbow connector is configured to allow the elbow connector inlet to swivel relative to the cushion;a headgear strap comprising a first end portion, a second end portion, and a central portion, the headgear strap being flexible and formed of a composite foam layered material; anda headgear connector member supporting the cushion against the user in use, the headgear connector member comprising a central section integrally formed with a first headgear extension and a second headgear extension as one inseparable member, the first and second headgear extensions being configured to be connectable to the headgear strap and being less flexible than the headgear strap;the first headgear extension configured to extend over a left cheek of the user, in use, the first headgear extension having a first distal portion, a first weakened portion integrally moulded with the first distal portion, and a first proximal portion positioned proximally from the first weakened portion, the first distal portion comprising a first distal cross section, the first proximal portion comprising a first proximal cross section, and the first weakened portion comprising a first narrowed cross section smaller than the first distal cross section and the first proximal cross section, such that the first headgear extension is bendable to allow for a more comfortable fit for the user;the second headgear extension configured to extend over a right cheek of the user, in use, the second headgear extension having a second distal portion, a second weakened portion integrally moulded with the second distal portion, and a second proximal portion positioned proximally from the second weakened portion, the second distal portion comprising a second distal cross section, the second proximal portion comprising a second proximal cross section, and the second weakened portion comprising a second narrowed cross section smaller than the second distal cross section and the second proximal cross section, such that the second headgear extension is bendable to allow for a more comfortable fit for the user.
  • 2. The mask assembly according to claim 1, wherein both of the first and second headgear extensions comprise distal curved parts with larger cross-sections and proximal straighter parts with narrower cross-sections, the proximal straighter parts being straighter than the distal curved parts, and the larger cross-sections being larger than the narrower cross-sections, so that the distal curved parts hold their shape better than the proximal straighter parts.
  • 3. The mask assembly according to claim 1, wherein the first and second weakened portions are positioned to be over the user's cheek bone area in use.
  • 4. The mask assembly according to claim 1, wherein the first and second weakened portions comprise first and second cross-sections, respectively, that are smaller than cross-sections of portions of the first and second headgear extensions adjacent to the first and second weakened portions, respectively.
  • 5. The mask assembly according to claim 1, wherein the first and second weakened portions comprise smaller cross sections than remainders of the first and second headgear extensions, respectively.
  • 6. The mask assembly according to claim 1, wherein the first headgear extension comprises a first distal end portion and a first proximal end portion, the first distal portion extending proximally from the first distal end portion along a first direction, a first curved portion extending proximally from the first distal portion, wherein the first proximal portion extends proximally from the first curved portion to the first proximal end portion along a second direction at an upward angle relative to the first direction, in use, the first weakened portion being positioned between the first curved portion and the first proximal end portion.
  • 7. The mask assembly according to claim 1, wherein the first distal cross section comprises a first distal thickness and the first narrowed cross section comprises a first reduced thickness that is smaller than the first distal thickness.
  • 8. The mask assembly according to claim 1, wherein the elbow connector outlet is connected to the central section of the headgear connector member.
  • 9. A mask assembly comprising: a cushion comprising a respiratory gas inlet and a user contacting portion surrounding at least one aperture, the user contacting portion being adapted to rest in sealed manner about a respiratory orifice of a user, in use;an elbow connector comprising an elbow connector inlet configured to be connected to an inspiratory tube and an elbow connector outlet configured to be fluidically connected to the respiratory gas inlet of the cushion;a headgear strap comprising a first portion, a second portion, and a central portion, the headgear strap being flexible; anda headgear connector member supporting the cushion against the user in use, the headgear connector member comprising a central section, a first headgear extension and a second headgear extension integrally moulded with the central section, the headgear connector member being less flexible than the headgear strap;the first headgear extension extending from a left side of the central section to a first proximal end portion and configured to extend over a left cheek of a user, in use, the first proximal end portion being configured to be connectable to the first portion of the headgear strap, the first headgear extension comprising a thin material such that the first headgear extension is bendable for a better fit to a user, in use, the first headgear extension further comprising a first weakened portion configured to allow for additional bending of the first headgear extension, in use;the second headgear extension extending from a right side of the central section to a second proximal end portion and configured to extend over a right cheek of a user, in use, the second proximal end portion being configured to be connectable to the second portion of the headgear strap, the second headgear extension comprising a thin material such that the second headgear extension is bendable for a better fit to a user, in use, the second headgear extension further comprising a second weakened portion configured to allow for additional bending of the second headgear extension, in use.
  • 10. The mask assembly according to claim 9, wherein both of the first and second headgear extensions comprise distal curved parts with larger cross-sections and proximal straighter parts with narrower cross-sections, the proximal straighter parts being straighter than the distal curved parts, and the larger cross-sections being larger than the narrower cross-sections, so that the distal curved parts hold their shape better than the proximal straighter parts.
  • 11. The mask assembly according to claim 9, wherein the first headgear extension comprises a first distal end connected to the central section, the first weakened portion being positioned between the first distal end and the first proximal end portion.
  • 12. The mask assembly according to claim 9, wherein the first weakened portion is integrally moulded with the first headgear extension and spaced from the central section.
  • 13. The mask assembly according to claim 9, wherein the first and second weakened portions comprise first and second cross sections, respectively, that are smaller than cross sections of remainders of the first and second headgear extensions, respectively.
  • 14. The mask assembly according to claim 9, wherein the first and second weakened portions comprise narrower cross-sections than adjacent portions of the first and second headgear extensions that are adjacent to the first and second weakened portions.
  • 15. The mask assembly according to claim 9 additionally comprising a headgear connector inlet, wherein the central section, the first headgear extension and the second headgear extension are formed from a single moulded part extending over at least a portion of the headgear connector inlet.
  • 16. A mask assembly comprising: a cushion comprising a user contacting portion surrounding at least one aperture, the user contacting portion being adapted to rest in sealed manner about a respiratory orifice of a user, in use;an elbow connector comprising an elbow connector inlet configured to be connected to an inspiratory tube and an elbow connector outlet configured to be fluidically connected to the cushion, wherein the elbow, connector is configured to allow the elbow connector inlet to swivel relative to the cushion;a headgear strap comprising a first portion, a second portion, and a central portion disposed between the first and second portions; anda headgear connector member supporting the cushion against the user in use, the headgear connector member comprising a central section, a first headgear extension and a second headgear extension formed as one inseparable member, the first and second headgear extensions being configured to be connectable to the headgear strap and being less flexible than the headgear strap;the first headgear extension configured to extend over a left cheek of the user, in use, the first headgear extension having a first distal portion connected to the central section, a first proximal portion configured to be connectable to the first portion of the headgear strap, and a first curved portion positioned between the first distal portion and the first proximal portion at a location spaced away from the central section, the first distal portion extending from the central section along a first direction and the first proximal portion extending along a second direction at an angle relative to the first direction, the first headgear extension further comprising a first weakened portion configured to allow the first weakened portion to be more easily bent, the first distal portion, the first proximal portion, the first curved portion, and the first weakened portion being integrally moulded together;the second headgear extension configured to extend over a right cheek of the user, in use, the second headgear extension having a second distal portion connected to the central section, a second proximal portion configured to be connectable to the second portion of the headgear strap, and a second curved portion positioned between the second distal portion and second proximal portion, the second distal portion extending from the central section along a third direction and the second proximal portion extending along a fourth direction at an angle relative to the third direction, the second headgear extension further comprising a second weakened portion configured to allow the second weakened portion to be more easily bent the second distal portion, the second proximal portion, the second curved portion, and the second weakened portion being integrally moulded together.
  • 17. The mask assembly according to claim 16, wherein the first and second weakened portions comprise narrower cross sections than remainders of the first and second headgear extensions, respectively.
  • 18. The mask assembly according to claim 16, wherein the first and second weakened portions are disposed at the first and second curved portions, respectively.
  • 19. The mask assembly according to claim 16, wherein the first distal portion comprises a distal thickness, the first proximal portion comprises a proximal thickness, and the first weakened portion comprises a reduced thickness that is smaller than the distal thickness and the proximal thickness.
  • 20. The mask assembly according to claim 1, wherein the central section comprises an uppermost edge and wherein there are no headgear extensions extending from the uppermost edge of the central section.
  • 21. The mask assembly according to claim 1, wherein the central section comprises an uppermost edge, a left lateral side and a right lateral side, the first distal portion extending from the left lateral side of the central section lower than the uppermost edge of the central section and the first proximal portion positioned higher than the uppermost edge of the central section, in use, and wherein the second distal portion extends from the right lateral side of the central section lower than the uppermost edge of the central section, the second proximal portion being positioned higher than the uppermost edge of the central section, in use.
  • 22. The mask assembly according to claim 1, wherein the central section comprises an uppermost edge, a left lateral side and a right lateral side, and all headgear extensions of the headgear connector members extend from either the left or right lateral sides of the central section, below the uppermost edge of the central section.
  • 23. The mask assembly according to claim 9, wherein the central section comprises an uppermost edge and wherein there are no headgear extensions extending from the uppermost edge of the central section.
  • 24. The mask assembly according to claim 9, wherein the central section comprises an uppermost edge, the first proximal end portion being at a position higher than the uppermost edge of the central section, in use, and the second proximal end portion being at a position higher than the uppermost edge of the central section, in use.
  • 25. The mask assembly according to claim 9, wherein the central section comprises a left lateral side and a right lateral side, and all headgear extensions of the headgear connector member extend from either the left or right lateral sides of the central section.
  • 26. The mask assembly according to claim 16, wherein the central section comprises an uppermost edge and wherein there are no headgear extensions extending from the uppermost edge of the central section.
  • 27. The mask assembly according to claim 16, wherein the central section comprises an uppermost edge, a left lateral side and a right lateral side, the first distal portion connected to the left lateral side of the central section, lower than the uppermost edge of the central section, the first proximal portion configured to be at a position higher than the uppermost edge of the central section, in use, and the second distal portion being connected to the right lateral side of the central section, lower than the uppermost edge of the central section, the second proximal portion being configured to be at a position higher than the uppermost edge of the central section, in use.
  • 28. The mask assembly according to claim 16, wherein the central section comprises a left lateral side and a right lateral side, and wherein all headgear extensions of the headgear connector member extend from either left or right lateral sides of the central section.
Priority Claims (2)
Number Date Country Kind
548575 Jul 2006 NZ national
551103 Nov 2006 NZ national
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation application of U.S. patent application Ser. No. 15/372,293, filed Dec. 7, 2016 which is a continuation application of U.S. patent application Ser. No. 15/088,628, filed Apr. 1, 2016, which is a continuation application of U.S. patent application Ser. No. 14/887,212, filed Oct. 19, 2015, which is a continuation of U.S. patent application Ser. No. 14/812,167, filed Jul. 29, 2015, which is a continuation of U.S. patent application Ser. No. 12/633,135, filed Dec. 8, 2009, which is a continuation application of U.S. patent application Ser. No. 12/307,993 filed on Jun. 17, 2009, which is a 371 filing of PCT/NZ2007/000185 filed on Jul. 13, 2007 and published in English as WO 2008/007985 on Jan. 17, 2008, which claims priority from New Zealand Application No. 548575 filed on Jul. 14, 2006 and New Zealand Application No. 551103 filed on Nov. 6, 2006. All of these applications are hereby incorporated by reference in their entirety.

US Referenced Citations (617)
Number Name Date Kind
301111 Genese Jul 1884 A
472238 Van Orden Apr 1892 A
577926 Miller Mar 1897 A
718470 Jones Jan 1903 A
751091 Moran Feb 1904 A
770013 Linn Sep 1904 A
1635545 Drager Jul 1927 A
2126755 Dreyfus Aug 1938 A
2228218 Schwartz Jan 1941 A
2241535 Boothby et al. May 1941 A
2296150 Dockson et al. Sep 1942 A
2353643 Bulbulian Jul 1944 A
2359506 Battley et al. Oct 1944 A
2388604 Eisenbud Nov 1945 A
2452845 Fisher Nov 1948 A
2508050 Valente May 1950 A
2693800 Caldwell Nov 1954 A
2738788 Matheson et al. Mar 1956 A
2843121 Hudson Jul 1958 A
2859748 Hudson Nov 1958 A
2875759 Galleher Mar 1959 A
2894506 Rose Jul 1959 A
2939458 Lundquist Jun 1960 A
3424633 Corrigall et al. Jan 1969 A
3490452 Greenfield Jan 1970 A
3599635 Kenneth Aug 1971 A
3682171 Dali et al. Aug 1972 A
3834682 McPhee Sep 1974 A
3850171 Ball et al. Nov 1974 A
3894562 Mosley et al. Jul 1975 A
3972321 Proctor Aug 1976 A
3977432 Vidal Aug 1976 A
3992720 Nicolinas Nov 1976 A
4090510 Segersten May 1978 A
D250047 Lewis et al. Oct 1978 S
D250131 Lewis et al. Oct 1978 S
4127130 Naysmith Nov 1978 A
4150464 Tracy Apr 1979 A
D252322 Johnson Jul 1979 S
4201205 Bartholomew May 1980 A
4258710 Reber Mar 1981 A
4266540 Panzik et al. May 1981 A
4278082 Blackmer Jul 1981 A
4354488 Bartos Oct 1982 A
4367735 Dali Jan 1983 A
4378011 Warncke et al. Mar 1983 A
4437462 Piljay Mar 1984 A
4454880 Muto et al. Jun 1984 A
4574799 Warncke et al. Mar 1986 A
4603602 Montesi Aug 1986 A
4621632 Bartels et al. Nov 1986 A
4644974 Zingg Feb 1987 A
4676241 Webb et al. Jun 1987 A
D293613 Wingler Jan 1988 S
4753233 Grimes Jun 1988 A
4782832 Trimble et al. Nov 1988 A
4836200 Clark et al. Jun 1989 A
4856508 Tayebi Aug 1989 A
4907584 McGinnis Mar 1990 A
4915104 Marcy Apr 1990 A
4915105 Lee Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4938209 Fry Jul 1990 A
4941467 Takata Jul 1990 A
4944310 Sullivan Jul 1990 A
D310431 Bellm Sep 1990 S
4958658 Zajac Sep 1990 A
4971051 Toffolon Nov 1990 A
4986269 Hakkinen Jan 1991 A
5010925 Atkinson et al. Apr 1991 A
5016625 Hsu et al. May 1991 A
5031261 Fenner Jul 1991 A
5042478 Kopala et al. Aug 1991 A
D320677 Kumagai et al. Oct 1991 S
D321419 Wallace Nov 1991 S
5062421 Burns et al. Nov 1991 A
5065756 Rapoport Nov 1991 A
D322318 Sullivan et al. Dec 1991 S
5074297 Venegas Dec 1991 A
5094236 Tayebi Mar 1992 A
5113857 Dickerman et al. May 1992 A
5121745 Israel et al. Jun 1992 A
5148802 Sanders et al. Sep 1992 A
5164652 Johnson et al. Nov 1992 A
5231979 Rose Aug 1993 A
5243971 Sullivan et al. Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
D340317 Cole Oct 1993 S
5259377 Schroeder Nov 1993 A
5267556 Feng Dec 1993 A
5269296 Landis et al. Dec 1993 A
5315859 Schommer May 1994 A
5349949 Schegerin Sep 1994 A
5366805 Fujiki et al. Nov 1994 A
D354128 Rinehart Jan 1995 S
D355484 Rinehart Feb 1995 S
5400776 Bartholomew Mar 1995 A
5429683 Le Mitouard Jul 1995 A
5438979 Johnson et al. Aug 1995 A
5441046 Starr et al. Aug 1995 A
5449206 Lockwood Sep 1995 A
5449234 Gipp et al. Sep 1995 A
5458202 Fellows et al. Oct 1995 A
5460174 Chang Oct 1995 A
5461932 Hall Oct 1995 A
5477852 Landis et al. Dec 1995 A
5513634 Jackson May 1996 A
5518802 Colvin et al. May 1996 A
5533506 Wood Jul 1996 A
5542128 Lomas Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5558090 James Sep 1996 A
5570689 Starr et al. Nov 1996 A
5588423 Smith Dec 1996 A
5595174 Gwaltney Jan 1997 A
5601078 Schaller et al. Feb 1997 A
D378610 Reischel et al. Mar 1997 S
5649532 Griffiths Jul 1997 A
5657752 Landis et al. Aug 1997 A
5662101 Ogden et al. Sep 1997 A
5664566 Mcdonald et al. Sep 1997 A
5687715 Landis Nov 1997 A
5690097 Howard et al. Nov 1997 A
5724677 Bryant et al. Mar 1998 A
5724965 Handke et al. Mar 1998 A
5752510 Goldstein May 1998 A
5755578 Contant et al. May 1998 A
5789660 Kofoed Aug 1998 A
5806727 Joseph Sep 1998 A
5807295 Hutcheon et al. Sep 1998 A
5746201 Kidd Dec 1998 A
5857460 Popitz Jan 1999 A
5884624 Barnett et al. Mar 1999 A
5904278 Barlow et al. May 1999 A
5918598 Belfer Jul 1999 A
5921239 McCall et al. Jul 1999 A
5924420 Reischel Jul 1999 A
5941245 Hannah et al. Aug 1999 A
5943473 Levine Aug 1999 A
5953763 Gouget Sep 1999 A
5966745 Schwartz et al. Oct 1999 A
6016804 Gleason et al. Jan 2000 A
6017315 Starr et al. Jan 2000 A
6019101 Cotner et al. Feb 2000 A
6021528 Jurga Feb 2000 A
6039044 Sullivan Mar 2000 A
6050260 Daniell et al. Apr 2000 A
6112746 Kwok et al. Sep 2000 A
6116235 Walters et al. Sep 2000 A
6119693 Kwok et al. Sep 2000 A
6119694 Correa et al. Sep 2000 A
6135109 Blasdell et al. Oct 2000 A
6135432 Hebblewhite et al. Oct 2000 A
6192886 Rudolph Feb 2001 B1
D440302 Wolfe Apr 2001 S
6272933 Gradon et al. Aug 2001 B1
6298850 Argraves Oct 2001 B1
6302105 Wickham et al. Oct 2001 B1
6341606 Bordewick et al. Jan 2002 B1
6347631 Hansen et al. Feb 2002 B1
D455891 Biedrzycki Apr 2002 S
6398197 Dickinson et al. Jun 2002 B1
6412487 Gunaratnam et al. Jul 2002 B1
6412488 Barnett Jul 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6427694 Hecker et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6435181 Jones, Jr. et al. Aug 2002 B1
6439234 Curti et al. Aug 2002 B1
6457473 Brostrom et al. Oct 2002 B1
6467483 Kopacko et al. Oct 2002 B1
6470886 Jestrabek-Hart Oct 2002 B1
6478026 Wood Nov 2002 B1
6484725 Chi et al. Nov 2002 B1
6488664 Solomon et al. Dec 2002 B1
6491034 Gunaratnam et al. Dec 2002 B1
6513526 Kwok et al. Feb 2003 B2
6526978 Dominguez Mar 2003 B2
6530373 Patron et al. Mar 2003 B1
6561188 Ellis May 2003 B1
6561190 Kwok May 2003 B1
6561191 Kwok May 2003 B1
6581594 Drew et al. Jun 2003 B1
6581601 Ziaee Jun 2003 B2
6581602 Kwok et al. Jun 2003 B2
6584977 Serowski Jul 2003 B1
6588424 Bardel Jul 2003 B2
6615832 Chen Sep 2003 B1
6629531 Gleason et al. Oct 2003 B2
6631718 Lovell Oct 2003 B1
6634358 Kwok et al. Oct 2003 B2
6637434 Noble Oct 2003 B2
6644315 Ziaee Nov 2003 B2
6651658 Hill et al. Nov 2003 B1
6651663 Barnett et al. Nov 2003 B2
6659102 Sico Dec 2003 B1
6662803 Gradon et al. Dec 2003 B2
6668828 Figley et al. Dec 2003 B1
D485905 Moore Jan 2004 S
6679257 Robertson et al. Jan 2004 B1
6679265 Strickland et al. Jan 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6712072 Lang Mar 2004 B1
6736139 Wix May 2004 B1
6772761 Rucker, Jr. Aug 2004 B1
6796308 Gunaratnam et al. Sep 2004 B2
6817362 Gelinas et al. Nov 2004 B2
6823869 Raje et al. Nov 2004 B2
6851425 Jaffre et al. Feb 2005 B2
6851428 Dennis Feb 2005 B2
6883177 Ouellette et al. Apr 2005 B1
6892729 Smith et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6907882 Ging et al. Jun 2005 B2
6918390 Lithgow et al. Jul 2005 B2
6951218 Gradon et al. Oct 2005 B2
6953354 Edirisuriya et al. Oct 2005 B2
6997187 Wood et al. Feb 2006 B2
7004165 Salcido Feb 2006 B1
7007696 Palkon et al. Mar 2006 B2
7021311 Gunaratnam et al. Apr 2006 B2
D520140 Chaggares May 2006 S
7051765 Kelley May 2006 B1
7066179 Eaton et al. Jun 2006 B2
7077126 Kummer et al. Jul 2006 B2
D526094 Chen Aug 2006 S
7096864 Mayer et al. Aug 2006 B1
D533269 McAuley et al. Dec 2006 S
7178525 Matula, Jr. et al. Feb 2007 B2
7178528 Lau Feb 2007 B2
7201169 Wilkie et al. Apr 2007 B2
7207333 Tohara Apr 2007 B2
7210481 Lovell et al. May 2007 B1
7219669 Lovell et al. May 2007 B1
7225811 Ruiz et al. Jun 2007 B2
7255106 Gallem et al. Aug 2007 B2
7261104 Kiefer Aug 2007 B2
7287528 Ho et al. Oct 2007 B2
7290546 Sprinkle et al. Nov 2007 B2
7296575 Radney Nov 2007 B1
7318437 Gunaratnam et al. Jan 2008 B2
7353827 Geist Apr 2008 B2
7357136 Ho et al. Apr 2008 B2
7406966 Wondka et al. Aug 2008 B2
7448386 Ho et al. Nov 2008 B2
7487772 Ging et al. Feb 2009 B2
7493902 White et al. Feb 2009 B2
D589139 Guney Mar 2009 S
7523754 Lithgow et al. Apr 2009 B2
D595841 McAuley et al. Jul 2009 S
7562658 Madaus et al. Jul 2009 B2
7597100 Ging Oct 2009 B2
7640934 Zollinger et al. Jan 2010 B2
7658189 Davidson et al. Feb 2010 B2
7665464 Kopacko et al. Feb 2010 B2
D612933 Prentice Mar 2010 S
7681575 Wixey et al. Mar 2010 B2
7694677 Tang Apr 2010 B2
7703457 Barnett et al. Apr 2010 B2
7708017 Davidson May 2010 B2
7753051 Burrow et al. Jul 2010 B2
D623288 Lubke Sep 2010 S
7814911 Bordewick et al. Oct 2010 B2
7827990 Melidis et al. Nov 2010 B1
7856982 Matula et al. Dec 2010 B2
7877817 Ho Feb 2011 B1
7896003 Matula et al. Mar 2011 B2
7931024 Ho et al. Apr 2011 B2
7934501 Fu May 2011 B2
7942150 Guney et al. May 2011 B2
7992560 Burton et al. Aug 2011 B2
8042539 Chandran et al. Oct 2011 B2
8042541 Amarasinghe et al. Oct 2011 B2
8109271 Vandine et al. Feb 2012 B2
8136524 Ging et al. Mar 2012 B2
8136525 Lubke et al. Mar 2012 B2
8171933 Xue et al. May 2012 B2
D661796 Andrews et al. Jun 2012 S
8245711 Matula et al. Aug 2012 B2
8371302 Ging et al. Feb 2013 B2
8397727 Ng et al. Mar 2013 B2
8443807 McAuley et al. May 2013 B2
D686313 Matula et al. Jul 2013 S
8479726 McAuley Jul 2013 B2
8479741 McAuley et al. Jul 2013 B2
8567404 Davidson et al. Oct 2013 B2
8631793 Omura et al. Jan 2014 B2
8631799 Davenport Jan 2014 B2
8636005 Gradon et al. Jan 2014 B2
8701667 Ho et al. Apr 2014 B1
8714157 McAuley et al. May 2014 B2
8720444 Chang May 2014 B2
8757157 Price et al. Jun 2014 B2
8783257 McAuley et al. Jul 2014 B2
8869797 Davidson et al. Oct 2014 B2
8869798 Wells et al. Oct 2014 B2
8875709 Davidson et al. Nov 2014 B2
8944061 D'Souza et al. Feb 2015 B2
8950404 Formica et al. Feb 2015 B2
8960196 Henry Feb 2015 B2
9010331 Lang et al. Apr 2015 B2
9027556 Ng et al. May 2015 B2
9032955 Lubke et al. May 2015 B2
9032956 Scheiner et al. May 2015 B2
9072852 McAuley et al. Jul 2015 B2
9095673 Barlow et al. Aug 2015 B2
9119929 McAuley et al. Sep 2015 B2
9119931 D'Souza et al. Sep 2015 B2
9138555 McAuley et al. Sep 2015 B2
9149596 Valcic et al. Oct 2015 B2
9186474 Rollins Nov 2015 B1
9242062 Melidis et al. Jan 2016 B2
9292799 McAuley et al. Mar 2016 B2
9295799 McAuley et al. Mar 2016 B2
9302065 Smith et al. Apr 2016 B2
9320566 Alston, Jr. Apr 2016 B1
9320866 McAuley et al. Apr 2016 B2
9333315 McAuley et al. May 2016 B2
9339622 McAuley et al. May 2016 B2
9339624 McAuley May 2016 B2
9375545 Darkin et al. Jun 2016 B2
9381316 Ng et al. Jul 2016 B2
9457162 Ging et al. Oct 2016 B2
9486601 Stallard et al. Nov 2016 B2
9517317 McAuley et al. Dec 2016 B2
9522246 Frater et al. Dec 2016 B2
9539405 McAuley et al. Jan 2017 B2
9550038 McAuley et al. Jan 2017 B2
9561338 McAuley et al. Feb 2017 B2
9561339 McAuley et al. Feb 2017 B2
9744385 Henry et al. Aug 2017 B2
9884160 McAuley et al. Feb 2018 B2
9901699 Veliss et al. Feb 2018 B2
9901700 McAuley et al. Feb 2018 B2
9907925 McAuley et al. Mar 2018 B2
9974914 McAuley May 2018 B2
10080856 McLaren et al. Sep 2018 B2
10137271 McAuley et al. Nov 2018 B2
10201678 Guney et al. Feb 2019 B2
10252015 McAuley et al. Apr 2019 B2
10258757 Allan et al. Apr 2019 B2
10272218 McAuley et al. Apr 2019 B2
10328226 Allan et al. Jun 2019 B2
10363387 Allan et al. Jul 2019 B2
10384029 McAuley et al. Aug 2019 B2
10413694 Allan et al. Sep 2019 B2
10463825 McAuley et al. Nov 2019 B2
20010017134 Bahr Aug 2001 A1
20010020474 Hecker et al. Sep 2001 A1
20010029952 Curran Oct 2001 A1
20020005198 Kwok et al. Jan 2002 A1
20020014241 Gradon et al. Feb 2002 A1
20020020416 Namey Feb 2002 A1
20020026934 Lithgow et al. Mar 2002 A1
20020029780 Frater et al. Mar 2002 A1
20020039867 Curro et al. Apr 2002 A1
20020046755 Voss Apr 2002 A1
20020053347 Ziaee May 2002 A1
20020059935 Wood May 2002 A1
20020069467 Immediato et al. Jun 2002 A1
20020096176 Gunaratnam et al. Jul 2002 A1
20020096178 Ziaee Jul 2002 A1
20020100474 Kellner et al. Aug 2002 A1
20020100479 Scarberry et al. Aug 2002 A1
20020108613 Gunaratnam et al. Aug 2002 A1
20030005509 Kelzer Jan 2003 A1
20030005931 Jaffre et al. Jan 2003 A1
20030005933 Izuchukwu Jan 2003 A1
20030019495 Palkon et al. Jan 2003 A1
20030019496 Kopacko et al. Jan 2003 A1
20030029454 Gelinas et al. Feb 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030075180 Raje Apr 2003 A1
20030075182 Heidmann et al. Apr 2003 A1
20030079749 Strickland et al. May 2003 A1
20030084996 Alberg et al. May 2003 A1
20030089373 Gradon et al. May 2003 A1
20030094177 Smith et al. May 2003 A1
20030121519 Estes et al. Jul 2003 A1
20030149384 Davis et al. Aug 2003 A1
20030164170 Drew et al. Sep 2003 A1
20030172936 Wilkie et al. Sep 2003 A1
20030196655 Ging et al. Oct 2003 A1
20030196656 Moore Oct 2003 A1
20030196658 Ging et al. Oct 2003 A1
20030196659 Gradon et al. Oct 2003 A1
20030196664 Jacobson Oct 2003 A1
20030200970 Stenzler et al. Oct 2003 A1
20030217746 Gradon et al. Nov 2003 A1
20030221691 Biener Dec 2003 A1
20040011087 Rebouillat et al. Jan 2004 A1
20040025882 Madaus et al. Feb 2004 A1
20040035427 Bordewick et al. Feb 2004 A1
20040065328 Amarasinghe et al. Apr 2004 A1
20040067333 Amarasinghe Apr 2004 A1
20040092999 Lojewski May 2004 A1
20040094157 Dantanarayana et al. May 2004 A1
20040107968 Griffiths Jun 2004 A1
20040112377 Amarasinghe et al. Jun 2004 A1
20040112384 Lithgow et al. Jun 2004 A1
20040112385 Drew Jun 2004 A1
20040118212 Orr Jun 2004 A1
20040118406 Lithgow Jun 2004 A1
20040118412 Piletti-Reyes Jun 2004 A1
20040139973 Wright Jul 2004 A1
20040149280 Semeniuk Aug 2004 A1
20040182398 Sprinkle et al. Sep 2004 A1
20040211427 Jones et al. Oct 2004 A1
20040221850 Ging et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040255949 Lang et al. Dec 2004 A1
20040261797 While Dec 2004 A1
20050011521 Sprinkle et al. Jan 2005 A1
20050011524 Thomlinson et al. Jan 2005 A1
20050016532 Farrell Jan 2005 A1
20050028822 Sleeper et al. Feb 2005 A1
20050033247 Thompson Feb 2005 A1
20050045182 Wood et al. Mar 2005 A1
20050051177 Wood Mar 2005 A1
20050066976 Wondka Mar 2005 A1
20050076913 Ho et al. Apr 2005 A1
20050092327 Fini et al. May 2005 A1
20050098183 Nash et al. May 2005 A1
20050121037 Wood Jun 2005 A1
20050133038 Rutter Jun 2005 A1
20050150497 Eifler et al. Jul 2005 A1
20050155604 Ging et al. Jul 2005 A1
20050172969 Ging Aug 2005 A1
20050199239 Lang et al. Sep 2005 A1
20050199242 Matula et al. Sep 2005 A1
20050205096 Matula Sep 2005 A1
20050235999 Wood et al. Oct 2005 A1
20050241644 Guney et al. Nov 2005 A1
20060032504 Burton et al. Feb 2006 A1
20060042629 Geist Mar 2006 A1
20060042632 Bishop et al. Mar 2006 A1
20060054169 Han et al. Mar 2006 A1
20060060200 Ho Mar 2006 A1
20060076019 Ho Apr 2006 A1
20060081250 Bordewick et al. Apr 2006 A1
20060081256 Palmer Apr 2006 A1
20060096598 Ho et al. May 2006 A1
20060102185 Drew et al. May 2006 A1
20060107958 Sleeper May 2006 A1
20060118117 Berthon-Jones et al. Jun 2006 A1
20060124131 Chandran Jun 2006 A1
20060130844 Ho et al. Jun 2006 A1
20060137690 Gunaratnam et al. Jun 2006 A1
20060169286 Eifler et al. Aug 2006 A1
20060174887 Chandran Aug 2006 A1
20060196511 Lau et al. Sep 2006 A1
20060201514 Jones et al. Sep 2006 A1
20060207599 Busch Sep 2006 A1
20060225740 Eaton et al. Oct 2006 A1
20060231103 Matula et al. Oct 2006 A1
20060237017 Davidson et al. Oct 2006 A1
20060237018 McAuley et al. Oct 2006 A1
20060249159 Ho Nov 2006 A1
20060254593 Chang Nov 2006 A1
20060266361 Hernandez Nov 2006 A1
20060283458 Woodard Dec 2006 A1
20060283459 Geiselhart et al. Dec 2006 A1
20060283461 Lubke Dec 2006 A1
20070000492 Hansel et al. Jan 2007 A1
20070010786 Casey et al. Jan 2007 A1
20070044804 Matula et al. Mar 2007 A1
20070062536 McAuley Mar 2007 A1
20070089749 Ho et al. Apr 2007 A1
20070107733 Ho May 2007 A1
20070125384 Zollinger et al. Jun 2007 A1
20070125385 Ho et al. Jun 2007 A1
20070125387 Zollinger et al. Jun 2007 A1
20070137653 Wood Jun 2007 A1
20070142785 Lundgaard et al. Jun 2007 A1
20070157353 Guney et al. Jul 2007 A1
20070163594 Ho Jul 2007 A1
20070163600 Hoffman Jul 2007 A1
20070174952 Jacob Aug 2007 A1
20070175480 Gradon et al. Aug 2007 A1
20070209663 Marque et al. Sep 2007 A1
20070215161 Frater et al. Sep 2007 A1
20070221227 Ho Sep 2007 A1
20070227541 Van Den Oct 2007 A1
20070272249 Chandran Nov 2007 A1
20070295335 Nashed Dec 2007 A1
20080035152 Ho et al. Feb 2008 A1
20080041388 McAuley et al. Feb 2008 A1
20080041393 Bracken Feb 2008 A1
20080047560 Veliss et al. Feb 2008 A1
20080060648 Thornton et al. Mar 2008 A1
20080060653 Hallett et al. Mar 2008 A1
20080060657 McAuley et al. Mar 2008 A1
20080083412 Henry et al. Apr 2008 A1
20080092905 Gunaratnam Apr 2008 A1
20080099024 Gunaratnam et al. May 2008 A1
20080105257 Klasek et al. May 2008 A1
20080110464 Davidson et al. May 2008 A1
20080135050 Hitchcock Jun 2008 A1
20080142019 Lewis Jun 2008 A1
20080149104 Ho Jun 2008 A1
20080171737 Fensome Jul 2008 A1
20080178875 Henry Jul 2008 A1
20080178886 Lieberman et al. Jul 2008 A1
20080190432 Blochlinger et al. Aug 2008 A1
20080190436 Jaffe et al. Aug 2008 A1
20080196728 Ho Aug 2008 A1
20080210241 Schulz et al. Sep 2008 A1
20080223370 Kim Sep 2008 A1
20080236586 Mcdonald et al. Oct 2008 A1
20080257354 Davidson Oct 2008 A1
20080264422 Fishman Oct 2008 A1
20080271739 Facer et al. Nov 2008 A1
20080276937 Davidson et al. Nov 2008 A1
20080302366 McGinnis et al. Dec 2008 A1
20080314388 Brambilla et al. Dec 2008 A1
20080319334 Yamamori Dec 2008 A1
20090014007 Brambilla et al. Jan 2009 A1
20090032024 Burz et al. Feb 2009 A1
20090044808 Guney et al. Feb 2009 A1
20090078267 Burz et al. Mar 2009 A1
20090107504 McAuley et al. Apr 2009 A1
20090114227 Gunaratnam et al. May 2009 A1
20090120442 Ho May 2009 A1
20090126739 Ng May 2009 A1
20090133697 Kwok et al. May 2009 A1
20090139527 Ng et al. Jun 2009 A1
20090145429 Ging et al. Jun 2009 A1
20090151729 Judson Jun 2009 A1
20090173349 Hernandez et al. Jul 2009 A1
20090183734 Kwok et al. Jul 2009 A1
20090183739 Wondka Jul 2009 A1
20090211583 Carroll Aug 2009 A1
20090223519 Eifler et al. Sep 2009 A1
20090320842 Doherty Dec 2009 A1
20100000538 Edwards et al. Jan 2010 A1
20100000539 Woodard Jan 2010 A1
20100000543 Berthon-Jones et al. Jan 2010 A1
20100051031 Lustenberger et al. Mar 2010 A1
20100051034 Howard Mar 2010 A1
20100083969 Crumblin Apr 2010 A1
20100108072 D'Souza May 2010 A1
20100132717 Davidson et al. Jun 2010 A1
20100154798 Henry et al. Jun 2010 A1
20100170516 Grane Jul 2010 A1
20100199992 Ho Aug 2010 A1
20100229868 Rummery et al. Sep 2010 A1
20100229872 Ho Sep 2010 A1
20100258132 Moore Oct 2010 A1
20100258136 Doherty et al. Oct 2010 A1
20100294281 Ho Nov 2010 A1
20100307502 Rummery et al. Dec 2010 A1
20100313891 Veliss et al. Dec 2010 A1
20100319700 Ng et al. Dec 2010 A1
20100326445 Veliss et al. Dec 2010 A1
20110067704 Kooij Mar 2011 A1
20110072553 Ho Mar 2011 A1
20110088699 Skipper Apr 2011 A1
20110126838 Alberici Jun 2011 A1
20110146685 Allan et al. Jun 2011 A1
20110162654 Carroll Jul 2011 A1
20110232649 Collazo et al. Sep 2011 A1
20110259337 Hitchcock Oct 2011 A1
20110265796 Amarasinghe et al. Nov 2011 A1
20110290253 McAuley Dec 2011 A1
20120125339 Ho et al. May 2012 A1
20120132208 Judson et al. May 2012 A1
20120132209 Rummery May 2012 A1
20120138061 Dravitzki et al. Jun 2012 A1
20120204879 Cariola et al. Aug 2012 A1
20120285457 Mansour et al. Nov 2012 A1
20120304999 Swift et al. Dec 2012 A1
20120318265 Amirav et al. Dec 2012 A1
20130133659 Ng et al. May 2013 A1
20130133664 Startare May 2013 A1
20130152918 Rummery et al. Jun 2013 A1
20130160769 Ng et al. Jun 2013 A1
20140026888 Matula Jan 2014 A1
20140083428 Rothermel et al. Mar 2014 A1
20140083430 Matula, Jr. et al. Mar 2014 A1
20140137870 Barlow et al. May 2014 A1
20140261432 Eves et al. Sep 2014 A1
20140311492 Stuebiger et al. Oct 2014 A1
20140338672 D'Souza et al. Nov 2014 A1
20150033457 Tryner et al. Feb 2015 A1
20150090266 Melidis et al. Apr 2015 A1
20150246198 Bearne et al. Sep 2015 A1
20150335846 Romagnoli et al. Nov 2015 A1
20150352308 Cullen et al. Dec 2015 A1
20150374944 Edwards et al. Dec 2015 A1
20160001028 McAuley et al. Jan 2016 A1
20160008558 Huddart et al. Jan 2016 A1
20160015922 Chodkowski et al. Jan 2016 A1
20160038707 Allan et al. Feb 2016 A1
20160051786 McAuley et al. Feb 2016 A1
20160213873 McAuley et al. Jul 2016 A1
20160213874 Davidson et al. Jul 2016 A1
20160296720 Henry et al. Oct 2016 A1
20170143925 McAuley et al. May 2017 A1
20170239438 McAuley et al. Aug 2017 A1
20170246411 Mashal et al. Aug 2017 A1
20170296770 Gunaratnam et al. Oct 2017 A1
20170304574 McAuley et al. Oct 2017 A1
20170368288 Stephens et al. Dec 2017 A1
20180250483 Olsen et al. Sep 2018 A1
20180256844 Galgali et al. Sep 2018 A1
20190001095 Rose et al. Jan 2019 A1
20190030273 McAuley et al. Jan 2019 A1
20190232010 Mcauley et al. Aug 2019 A1
20200016357 McAuley et al. Jan 2020 A1
20200046928 Allan Mar 2020 A1
20200108219 McAuley et al. Apr 2020 A1
20200164169 McAuley et al. May 2020 A1
20200171260 McLaren Jun 2020 A1
20200197644 McAuley et al. Jun 2020 A1
20200268997 McAuley et al. Aug 2020 A1
20210008319 McAuley et al. Jan 2021 A1
20210228829 McAuley et al. Jul 2021 A1
Foreign Referenced Citations (179)
Number Date Country
2003246441 Dec 2003 AU
1311662 Dec 1992 CA
2648690 Nov 2007 CA
000966064-0001 Sep 2008 CD
000966064-0002 Sep 2008 CD
000966064-0003 Sep 2008 CD
000966064-0004 Sep 2008 CD
000966064-0017 Sep 2008 CD
2172538 Jul 1994 CN
1780265 Dec 2005 CN
1751149 Mar 2006 CN
1784250 Jun 2006 CN
1901961 Jan 2007 CN
1905917 Jan 2007 CN
101115521 Jan 2008 CN
100502972 Jun 2009 CN
101516300 Aug 2009 CN
101541380 Sep 2009 CN
101991897 Mar 2011 CN
895692 Nov 1953 DE
29723101 Jul 1998 DE
19603949 Nov 1998 DE
10312881 May 2004 DE
102005041717 Apr 2006 DE
102006011151 Sep 2007 DE
10 2009 016150 Oct 2010 DE
0 350 322 Jan 1990 EP
0 427 474 May 1991 EP
0 462 701 Dec 1991 EP
0 747 078 Dec 1996 EP
1 099 452 May 2001 EP
0 830 180 Mar 2002 EP
1 258 266 Nov 2002 EP
1 488 820 Dec 2004 EP
1 582 231 Oct 2005 EP
2 042 209 Apr 2009 EP
2 130 563 Dec 2009 EP
2 145 645 Jan 2010 EP
1 753 495 Sep 2010 EP
1 481 702 Sep 2012 EP
2 749 176 Jul 2014 EP
1 646 910 Aug 2015 EP
2 022 528 Mar 2016 EP
2 451 518 Oct 2017 EP
2658725 Aug 1991 FR
2749176 Dec 1997 FR
190224431 Dec 1902 GB
880824 Oct 1961 GB
979357 Jan 1965 GB
1467828 Mar 1977 GB
2133275 Jul 1984 GB
2173274 Oct 1986 GB
2186801 Aug 1987 GB
62-024721 Feb 1987 JP
H09-010311 Jan 1997 JP
2000-325481 Nov 2000 JP
2004-016488 Jan 2004 JP
2005-529687 Oct 2005 JP
2005-537906 Dec 2005 JP
2007-516750 Jun 2007 JP
531332 Feb 2004 NZ
534606 Aug 2004 NZ
528029 Mar 2005 NZ
548575 Jul 2006 NZ
551103 Nov 2006 NZ
WO 82003548 Oct 1982 WO
WO 9732494 Sep 1997 WO
WO 9804310 Feb 1998 WO
WO 9804311 Feb 1998 WO
WO 98018514 May 1998 WO
WO 98024499 Jun 1998 WO
WO 98048878 Nov 1998 WO
WO 9857691 Dec 1998 WO
WO 9904842 Feb 1999 WO
WO 9943375 Sep 1999 WO
WO 99058181 Nov 1999 WO
WO 99058198 Nov 1999 WO
WO 00050122 Aug 2000 WO
WO 00057942 Oct 2000 WO
WO 00069497 Nov 2000 WO
WO 0074509 Dec 2000 WO
WO 00074758 Dec 2000 WO
WO 00078384 Dec 2000 WO
WO 0100266 Jan 2001 WO
WO 0132250 May 2001 WO
WO 01041854 Jun 2001 WO
WO 01058293 Aug 2001 WO
WO 01062326 Aug 2001 WO
WO 0194721 Dec 2001 WO
WO 0197892 Dec 2001 WO
WO 01097892 Dec 2001 WO
WO 01097893 Dec 2001 WO
WO 02005883 Jan 2002 WO
WO 02011804 Feb 2002 WO
WO 02047749 Jun 2002 WO
WO 02074372 Sep 2002 WO
WO 03035156 May 2003 WO
WO 03092755 Nov 2003 WO
WO 04007010 Jan 2004 WO
WO 04096332 Jan 2004 WO
WO 04012803 Feb 2004 WO
WO 04022147 Mar 2004 WO
WO 04030736 Apr 2004 WO
WO 04041341 May 2004 WO
WO 04041342 May 2004 WO
WO 04071565 Aug 2004 WO
WO 04073777 Sep 2004 WO
WO 04073778 Sep 2004 WO
WO 05010608 Feb 2005 WO
WO 05016403 Feb 2005 WO
WO 05018523 Mar 2005 WO
WO 05021075 Mar 2005 WO
WO 05051468 Jun 2005 WO
WO 05063326 Jul 2005 WO
WO 05063328 Jul 2005 WO
WO 05079726 Sep 2005 WO
WO 05086943 Sep 2005 WO
WO 05086946 Sep 2005 WO
WO 05097247 Oct 2005 WO
WO 05123166 Dec 2005 WO
WO 06000046 Jan 2006 WO
WO 06050559 May 2006 WO
WO 06069415 Jul 2006 WO
WO 06074513 Jul 2006 WO
WO 06074514 Jul 2006 WO
WO 06074515 Jul 2006 WO
WO 06096924 Sep 2006 WO
WO 06130903 Dec 2006 WO
WO 06138346 Dec 2006 WO
WO 06138416 Dec 2006 WO
WO 07006089 Jan 2007 WO
WO 07009182 Jan 2007 WO
WO 07021777 Feb 2007 WO
WO 07022562 Mar 2007 WO
WO 07041751 Apr 2007 WO
WO 07041786 Apr 2007 WO
WO 07045008 Apr 2007 WO
WO 07048174 May 2007 WO
WO 07053878 May 2007 WO
WO 07114492 Oct 2007 WO
WO 07147088 Dec 2007 WO
WO 08007985 Jan 2008 WO
WO 08011682 Jan 2008 WO
WO 08014543 Feb 2008 WO
WO 08030831 Mar 2008 WO
WO 08036625 Mar 2008 WO
WO 08060295 May 2008 WO
WO 08068966 Jun 2008 WO
WO 08070929 Jun 2008 WO
WO 08106716 Sep 2008 WO
WO 08148086 Dec 2008 WO
WO 09026627 Mar 2009 WO
WO 09022248 Apr 2009 WO
WO 09052560 Apr 2009 WO
WO 09059353 May 2009 WO
WO 09092057 Jul 2009 WO
WO 09139647 Nov 2009 WO
WO 10066004 Jun 2010 WO
WO 10073142 Jul 2010 WO
WO 10131189 Nov 2010 WO
WO 10135785 Dec 2010 WO
WO 11014931 Feb 2011 WO
WO 11059346 May 2011 WO
WO 11060479 May 2011 WO
WO 11077254 Jun 2011 WO
WO 12040791 Apr 2012 WO
WO 12045127 Apr 2012 WO
WO 12052902 Apr 2012 WO
WO 12143822 Oct 2012 WO
WO 14020469 Feb 2014 WO
WO 14109749 Jul 2014 WO
WO 14175752 Oct 2014 WO
WO 14175753 Oct 2014 WO
WO 15033287 Mar 2015 WO
WO 16000040 Jan 2016 WO
WO 17049356 Mar 2017 WO
WO 17049357 Mar 2017 WO
WO 18007966 Jan 2018 WO
WO 18064712 Apr 2018 WO
Non-Patent Literature Citations (221)
Entry
U.S. Appl. No. 60/493,515, filed Aug. 8, 2002, Sleeper et al.
U.S. Appl. No. 60/496,059, filed Aug. 18, 2003, Ho et al.
U.S. Appl. No. 60/529,696, filed Dec. 16, 2003, Lithgow et al.
U.S. Appl. No. 61/064,406, filed Mar. 4, 2008, Wehbeh.
U.S. Appl. No. 61/071,893, filed May 22, 2008, Wehbeh et al.
U.S. Appl. No. 61/136,617, filed Sep. 19, 2008, Wehbeh et al.
Fisher & Paykel HC200 Series Nasal CPAP Blower & Heated Humidifier User Manual, 17 pp., May 1998.
Fisher & Paykel Healthcare, FlexiFit™ 431 Full Face Mask, specification sheet, 2004, 2 pp.
Fisher & Paykel MR810 Manual, Rev. C, 2004, 43 pp.
HomeDepot.com—Ring Nut Sales Page (Retrieved Oct. 16, 2015 from http://www.homedepot.com/p/Everbilt-1-2-in-Galvanized-HexNut-804076/20464- 7893), 4 pp.
Malloy, 1994, Plastic Part Design for Injection Molding, Hanswer Gardner Publications, Inc, Cincinnati, OH, 14 pp.
Merriam-Webster's Collegiate Dictionary, Eleventh Edition, 2004, pp. 703, 905, 1074, 1184.
Philips Respironics ‘System One Heated Humidifier—User Manual’, 2011, pp. 1-16, [retrieved on Nov. 25, 2013] from the internet: URL: http://www.cpapxchange.com/cpap-machines-biap-machines/system-one-60-seri- es-cpap-humidifier-manual.pdf front cover, pp. 3-4 and 6.
ResMed Exhibit, FlexiFit™ 431, product brochure, web pages (Wayback Machine), 2006, 23 pp.
ResMed Origins Brochure (Retrieved Apr. 17, 2016 from http://www.resmed.com/us/dam/documents/articles/resmedorigins.pdf), 64 pp.
ResMed Ultra Mirage™ Full Face Mask, product brochure, 2004, 2 pp.
ResMed Ultra Mirage™ Full Face Mask, product brochure, web pages (Wayback Machine), 2006, 9 pp.
ResMed, Jun. 29, 1997, Mask Frames (Source: Wayback Machine Internet Archive); http://web.archive.org/web/19970629053430/http://www.resmed.com- /maskframes/mask.htm, 2 pp.
ResMed, Mirage Swift™ Nasal Pillows System from ResMed, product brochure, 2004, 6 pp.
ResMed, Mirage Swift™ Nasal Pillows System: User's Guide, product brochure, 2004, 11 pp.
ResMed, Mirage Vista™ Nasal Mask: Components Card, product brochure, 2005, 1 p.
The American Heritage Dictionary of the English Language, Fourth Edition, 2006, pp. 1501, 1502, 1650.
WeddingBands.com—Men's Wedding Ring Shopping Page (Retrieved Oct. 16, 2015 from http://www.weddingbands.com/ProductPop.sub.--wedding.sub.--band- s.sub.--metal/48214W.html), 3 pp.
Australian Examination Report in patent application No. 2012265597 dated Dec. 19, 2013, 5 pages.
Australian Examination Report in patent application No. 2015201920, dated Jul. 20, 2015, 3 pages.
Australian Examination Report in patent application No. 2007273324, dated May 22, 2012, 3 pages.
Australian Examination Report in patent application No. 2010241390, dated Jan. 9, 2015, 4 pages.
Australian Examination Report in patent application No. 2010246985, dated Mar. 4, 2014, 5 pages.
Australian Examination Report in patent application No. 2015202814, dated Aug. 14, 2015, 8 pages.
Australian Examination Report in patent application No. 2016202799, dated May 31, 2016, 2 pages.
Australian examination report in patent application No. 2016202801, dated Jun. 20, 2016, 2 pages.
Canadian Examination Report in patent application No. 2655839, dated Oct. 4, 2013, 2 pages.
Canadian Examination Report in patent application No. 2890556, dated Jan. 27, 2016, 3 pages.
Chinese Examination Report in patent application No. 2007800266164, dated Feb. 17, 2011, 5 pages.
Chinese Examination Report in patent application No. 201080028029.0, dated Mar. 27, 2014, 16 pages.
Chinese Second Office Action in patent application No. 201080028029.0, dated Jan. 19, 2015, 16 pages.
Chinese Examination Report in patent application No. 201080028029.0, dated Sep. 14, 2015, 3 pages.
Chinese Examination Report in patent application No. 201080061122.1, dated Jul. 17, 2015, 10 pages.
Chinese Examination Report in patent application No. 201080061122.1, dated Sep. 3, 2015, 10 pages.
Chinese First Office Action in patent application No. 201210080441.8, dated Mar. 24, 2014, 4 pages.
Chinese Second Office Action for Chinese Patent Application No. 201210080441.8 dated Dec. 1, 2014 in 11 pages (with English translation).
European Extended Search Report; dated Apr. 2, 2014; Application No. 09819444.2; 8 pages.
European Examination Report in patent application No. 07808683.2, dated Jul. 8, 2015, 8 pages.
European Extended Search Report in patent application No. 10774623.2, dated Sep. 8, 2015, 7 pages.
European Extended Search Report in patent application No. 10830251.4, dated Sep. 4, 2015, 7 pages.
Great Britain Combined Search and Examination Report in patent application No. GB1406401.8, dated May 7, 2014, 4 pages.
Great Britain Combined Search and Examination Report in patent application No. GB1406402.6, dated May 7, 2014, 6 pages.
Great Britain Examination Report in patent application No. GB1119385.1, dated May 9, 2013, 4 pages.
Great Britain Search and Examination Report, in patent application No. GB1210075.6, dated Mar. 14, 2013, 2 pages.
International Search Report for application No. PCT/NZ2005/000062 dated May 27, 2005.
International Search Report for International application No. PCT/NZ2007/000185, dated Oct. 31, 2007, in 3 pages.
International Search Report, PCT/NZ2009/000072, dated Jul. 28, 2009, 4 pages.
International Search Report, International application No. PCT/NZ2009/000219, dated Feb. 2, 2010, 3 pages.
International Preliminary Report on Patentability (IPRP), International application No. PCT/NZ2009/000219, dated Apr. 12, 2011, 9 pages.
International Search Report, PCT/NZ2010/000229, dated Mar. 18, 2011, 8 pages.
International Preliminary Report on Patentability and Written Opinion of the ISA, International application No. PCT/NZ2010/000229, dated May 22, 2012, 14 pages.
Written Opinion of the International Searching Authority, PCT/NZ2010/000229, dated Mar. 18, 2011, 13 pages.
International Search Report, application No. PCT/NZ2013/000138, dated Nov. 1, 2013, 7 pages.
Written Opinion of the International Searching Authority, PCT/NZ2013/000139, dated Nov. 1, 2013.
Japanese Examination Report in patent application No. 2012-510418, dated Feb. 10, 2014, 4 pages.
Japanese Examination Report in patent application No. 2012-538784, dated Aug. 25, 2014, 3 pages.
Japanese Examination Report in patent application No. 2012-538784, dated Aug. 5, 2015, 8 pages.
Japanese Examination Report in patent application No. 2015-098324, dated Jul. 22, 2015, 8 pages.
Petition for Inter Partes Review of U.S. Pat. No. 8.479,741 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01714, dated Sep. 7, 2016.
Declaration of Dr. John Izuchukwu, Ph.D., P.E., U.S. Pat. No. 8,443,807, IPR Nos. 2016-1726 & 2016-1734, dated Sep. 7, 2016.
Declaration of Dr. John Izuchukwu, Ph.D., P.E., U.S. Pat. No. 8,479,741, IPR Nos. 2016-1714 & 2016-1718, dated Sep. 7, 2016.
Petition for Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01718, dated Sep. 7, 2016.
Petition for Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01726, dated Sep. 7, 2016.
Petition for Inter Partes Review of U.S. Pat. No. 8.443,807 Pursuant to 35 U.S.C. §§ 311-19, 37 C.F.R. § 42, IPR2016-01734, dated Sep. 7, 2016.
File History of U.S. Pat. No. 8,479,741 to McAuley et al., published Oct. 1, 2009.
File History of U.S. Pat. No. 8,443,807 to McAuley et al., published Jan. 7, 2010.
Patent Owner's Complaint for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 2:16-cv-06099-R-AJW (C.D. Cal.), dated Aug. 15, 2016.
Patent Owner's Notice of Voluntary Dismissal Without Prejudice for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 2:16-cv-06099-R-AJW (C.D. Cal.), dated Aug. 16, 2016.
Patent Owner's Complaint for Fisher & Paykel Healthcare Ltd. v. ResMed Corp., Case No. 3:16-cv-02068-GPC-WVG (S.D. Cal.), dated Aug. 16, 2016.
Petitioners' Complaint for ResMed Inc., et al. v. Fisher & Paykel Healthcare Corp. Ltd., et al., Case No. 3:16-cv-02072-JAH-MDD (S.D. Cal.), dated Aug. 16, 2016.
Petitioners' Notice of Voluntary Dismissal Without Prejudice for ResMed Inc., et al. v. Fisher & Paykel Healthcare Corp. Ltd., et al., Case No. 3:16-cv-02072-JAH-MDD (S.D. Cal.), dated Aug. 18, 2016.
Statutory Declaration made by Alistair Edwin McAuley, Apr. 9, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
Resmed Mirage Swift™ II Nasal Pillows System product page (http://www.resmed.com/en-us/products/masks/miraqe_swift_II_nasal_pillows._system/Miraqe-Swift-II-Nasal-Pillows-System.html?menu=products); archived Jul. 21, 2008, 2 pp.
Resmed Mirage Swift™ II user brochure (http://www.resmed.com/en us/products/masks/mirage-swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-brochure-patient-english-usa.pdf) copyright 2007, 4 pp.
ResMed Mirage Swift II Fitting guide (http://www:resmed.com/en-us/products/masks/miraqe_swift_II_nasal_pillows_system/documents/mirage-swift_ii_np-fitting_English.pdf) copyright 2006, 2 pp.
ResMed Mirage Swift II comparison to older Swift patient interface (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-comparison-guide.pdf, 2007, 6 pp.
ResMed Mirage Swift II user guide (http://www.resmed.com/en-us/products/service_and_support/documents/60893rl_mirage_swiftII_nasal_userglide_us_multi.pdf) copyright 2006, 1 p.
ResMed Mirage Swift II component card (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-cc-usa.pdf); copyright 2006, 2 pp.
Resmed Swift™ LT Nasal Pillows System, product page, (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/Mirage-Swift-II-Nasal_Pillows-System.html?menu=products), Jul. 3, 2008, 2 pp.
Resmed Swift LT user brochure, (http://www.resmed.com/en-us/products/masks/mirage_swift_II_nasal_pillows_system/documents/mirage-swift-ii-np-brochure-patient-english-usa.pdf), copyright 2008, 4 pp.
Resmed Swift™ LT component card (http://www.resmed.com/en-us/assets/documents/product/swift_It/components_card/1012463_swift-It_components-card_usa_eng.pdf) copyright 2008, 46 pp.
Resmed Swift™ LT fitting guide, (http://www.resmed.com/en-us/assets/documents/product/swift-II/clinical_fact_sheet/1012406 swift-ii_fact-sheet_usa_eng.pdf), 2008, 2 pp.
Resmed Swift™ LT fact sheet (http://www.resmcd.com/en-us/assets/documents/product/swift-It/clinical_fact_sheet/1012406 swiftIt_fact-sheet_usa_eng.pdf, copyright 2008, 4 pp.
Resmed Swift™ LT image gallery (http://www.resmed.com/en-us/products/masks/swift_It_nasal_pillows_system/imagegallery.html?menu=products, Apr. 25, 2008, 2 pp.
Resmed Swift™ LT interactive fitting guide—screenshot from troubleshooting part (http://www.resmed.com/enus/assets/multimedia/product/swift-It/flash/swift-It-fitting-eng.swf), Jul. 3, 2008, 2 pp.
Puritan Bennett Breeze® SleepGear® CPAP Interface, product page (http:/puritanbennett.com/prod/product.aspx?id=233); archived Oct. 19, 2007, 2 pp.
Puritan Bennett Breeze® SleepGear® User's Guide (http://puritanbennett.com/_catalog/pdf/dfu/107598a00[I].pdf); copyright 2007, 18 pp.
Puritan Bennett Breeze® SleepGear® sales sheet (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeSleepGear.pdf) copyright 2016, 7 PP.
Puritan Bennett mask coding matrix (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeSlpGear(ST03700).pdf) copyright 2006, 3 pp.
Puritan Bennett Breeze fitting guide (http://www.puritanbennett.com/_Catalog/PDF/Product/BreezeFittingPoster.pdf, Oct. 19, 2007, 1 p.
Respironics Optilife Pillows mask product page (http://optilife.respironics.com:80/); archived Nov. 21, 2007, 2 pp.
Respironics Optilife Pillows mask part numbers page (http://optilife.respironics.com:80/Parts.aspx); archived Nov. 23, 2007, 4 pp.
Respironics Optilife Pillows mask FAQ (http;//optilife.respironics.com:80/fags.aspx); archived Nov. 23, 2007, 6 pp.
Respironics Optilife Pillows mask feature page (http://opti1ife.respironics.com:80/features.aspx); archived Nov. 23, 2007, 4 pp.
Respironics Optilife Pillows mask fitting guide screen shot (http://optilife.respironics.com:80/fittingGuide.aspx); archived Aug. 7, 2008, 1 p.
Respironics Optilife Pillows mask adjustment video screenshots, https://www.youtube.com/watch?v=shjcNmvvcBA); uploaded Aug. 3, 2008, 2 pp.
Puritan Bennett Breeze description; copyright 2000 by Mallinckrodt Inc., 4 pp.
Fisher & Paykel Opus product page, archived Sep. 3, 2009, 2 pp.
Fisher & Paykel Opus patient interface product photographs, Jul. 2007, 6 pp.
Photographs of Opus 360 nasal pillows mask patient instructions RevB, Jul. 2007, 4 pp.
Respironics Optilife brochure detailing updates; copyright 2008; dated Mar. 26, 2008, 3 pp.
Fisher & Paykel Opus product page, archived Sep. 7, 2009, 2 pp.
Fisher & Paykel Opus “Off-the-lips” pillows explanation page, archived Aug. 23, 2009, 2 pp.
Fisher & Paykel Opus “Off-the-lips” patient interface brochure, archived Oct. 14, 2009, 6 pp.
Fisher & Paykel Opus user-guide, archived Nov. 17, 2009, 2 pp.
Fisher & Paykel Healthcare, FlexiFit® 431 Full Face Mask instructions, 2010, 4 pp.
Fisher & Paykel Healthcare, Interface Solutions Product Profile, 2006, 12 pp.
Australian Examination Report No. 1, in patent application No. AU 2013300237, dated Jun. 8, 2017, in 4 pages.
Australian Examination Report in patent application No. 2016238904 dated May 4, 2018, 5 pages.
Australian Examination Report in patent application No. 2010241390, dated Sep. 28, 2016, 4 pages.
Australian Examination Report in patent application No. 2016204384, dated Aug. 5, 2016, 2 pages.
Australian examination report in patent application No. 2017200991, dated Oct. 13, 2017, 3 pages.
Australian examination report in patent application No. 2017201021, dated Apr. 7, 2017, 6 pages.
Australian examination report in patent application No. 2018202409, dated Jan. 21, 2019, 4 pages.
Australian examination report in patent application No. 2018201975, dated Mar. 30, 2019, 4 pages.
Australian examination report in patent application No. 2018217307, dated Mar. 4, 2019, 4 pages.
Australian examination report in patent application No. 2018236891, dated Jun. 25, 2019, 3 pages.
Australian Examination Report No. 2 for patent application No. 2018217307, dated Mar. 3, 2020, 4 pp.
Brazilian office action dated Jul. 11, 2019 in patent application No. BR11201211420-4.
Canadian Examination Report in patent application No. 2780310, dated Jul. 26, 2016, 4 pages.
Canadian Examination Report in patent application No. 2780310, dated Jan. 25, 2018 4 pages.
Canadian Examination Report in patent application No. 2780310, dated Oct. 9, 2018, 3 pp.
Canadian Examination Report in patent application No. 2890556, dated Nov. 28, 2016, 4 pages.
Canadian Examination Report in patent application No. 2918167, dated Oct. 3, 2016, 4 pages.
Canadian Examination Report in patent application No. 2998247, dated Jan. 8, 2019, 4 pages.
Canadian Examination Report in patent application No. 3010066, dated May 3, 2019, 4 pages.
Canadian Examination Report in patent application No. 3010066, dated Dec. 19, 2019, 4 pages.
Canadian Examination Report in patent application No. 2880749, dated May 16, 2019, 5 pages.
Canadian Examination Report in patent application No. 3017161, dated Aug. 21, 2019, 3 pp.
Canadian Examination Report for patent application No. 2880749, dated Feb. 28, 2020, 4 pp.
Chinese Office Action in patent application No. 201610116121.1, dated Sep. 28, 2017, 5 pages.
Chinese Third Office Action in patent application No. 201610116121.1, dated Apr. 28, 2019, 16 pages.
Chinese Fourth Office Action in patent application No. 201610116121.1, dated Sep. 30, 2019, 12 pages.
Chinese Third Office Action in patent application No. 201080061122.1, dated Apr. 1, 2016, 5 pages.
Chinese Examination Report in patent application No. 201610114706.X, dated Jul. 30, 2018, 9 pp., with translation.
Chinese Second Examination Report in patent application No. 201610114706.X, dated Apr. 24, 2019 8 pp., with translation.
Chinese Third Examination Report in patent application No. 201610114706.X, dated Jan. 16, 2020, with translation.
Chinese Examination Report dated Feb. 22, 2019 in patent application No. 201611251618.0.
Chinese First Office Action in patent application No. 201710824612.6, dated Sep. 30, 2019, 25 pp.
European Examination Report in patent application No. 07808683.2, dated May 9, 2018, 3 pages.
European Search Report and Written Opinion dated May 12, 2016 in patent application No. 09746823.5; 11 pages.
European Summons to Attend Oral Proceedings and Written Opinion dated Dec. 13, 2017 in patent application No. 09746823.5; 7 pages.
European Examination Report in patent application No. 09746823.5, dated Apr. 3, 2017, 2 pages.
European Examination Report, European Application 13828380.9, dated Apr. 7, 2017, 7 pp.
European Examination Report, European Application 13828380.9, dated Jul. 27, 2018, 8 pp.
European Examination Report, European Application 13828380.9, dated Mar. 3, 2020, 8 pp.
European extended search report dated Jul. 23, 2018 in patent application No. 18163847.9, 7 pp.
European examination report dated Sep. 5, 2019 in patent application No. 18163847.9, 5 pp.
European extended search report dated Sep. 21, 2018 in patent application No. 18178220.2, 7 pp.
European extended search report dated Oct. 31, 2018 in patent application No. 18171619.2, 9 pp.
European Extended Search Report in patent application No. 17179765.7, dated Dec. 11, 2017.
European Extended Search Report dated Feb. 14, 2019 in patent application No. 18195537.8.
European Examination Report dated Mar. 16, 2020 in patent application No. 18195537.8.
European Search Report in patent application No. 11830981.4, dated Aug. 24, 2015, 6 pages.
European Search Report in patent application No. 191976761.1, dated Mar. 3, 2020, 10 pages.
Great Britain Combined Search and Examination Report in patent application No. GB1719334.3, dated Nov. 30, 2017, in 9 pages.
Great Britain examination report dated May 30, 2018 in patent application No. GB1719334.3, 4 pp.
Great Britain examination report dated Jul. 20, 2018 in patent application No. GB1719334.3, 3 pp.
Great Britain combined search and examination report dated May 11, 2018 in patent application No. GB 1805606.9, 7 pp.
Great Britain examination report dated Jul. 5, 2018 in patent application No. GB1805606.9, 3 pp.
Great Britain examination report dated May 11, 2018 in patent application No. GB1803255.7, 7 pp.
Great Britain examination report dated May 11, 2018 in patent application No. GB1805605.1, 7 pp.
Great Britain examination report in patent application No. GB1501499.6, dated Jun. 1, 2017, in 8 pages.
Great Britain Combined Search and Examination Report under Section 18(3), Application No. GB1501499.6, dated Oct. 12, 2017, in 4 pages.
Indian Examination Report dated Mar. 14, 2019 in patent application No. 1431/KOLNP/2012.
Indian Examination Report dated Mar. 14, 2019 in patent application No. 8767/CHENP/2011.
International Search Report, PCT/NZ2011/000211, dated Feb. 17, 2012, 4 pages.
Written Opinion, PCT/NZ2011/000211, dated Feb. 17, 2012, 7 pages.
International Search Report for International application No. PCT/NZ2014/000021, filed Feb. 21, 2014.
Indian Office Action in Patent Application No. 5250/KOLNP/2008, dated May 23, 2017, 8 pages.
Japanese Examination Report in patent application No. 2012-538784, dated Jul. 25, 2016, 2 pages.
Japanese Examination Report in patent application No. 2017-040092, dated Feb. 5, 2018.
Japanese Official Action dated Sep. 3, 2018 in patent application No. 2017-238259.
Japanese examination report in patent application No. 2015-526496, dated Apr. 17, 2017, in 13 pages.
Japanese Examination Report in patent application No. 2015-526496, dated Feb. 28, 2018, 2 pp.
Japanese Decision for Final Rejection dated Jul. 1, 2019 in patent application No. 2017-238259, 2 pp.
Japanese office action dated Sep. 1, 2019 in patent application No. 2018-188040.
Japanese Pretrial Examination Report dated Jan. 7, 2020 in patent application No. 2017-238259.
U.S. Appl. No. 61/064,406, 34 pages, provided by USPTO on Feb. 23, 2009.
U.S. Appl. No. 61/071,893, 43 pages, provided by USPTO on Feb. 23, 2009.
U.S. Appl. No. 61/136,617, 82 pages, provided by USPTO on Feb. 23, 2009.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,479,741, IPR2016-01714, filed Dec. 14, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 37 C.F.R. §42.108, IPR2016-01714, entered Mar. 10, 2017.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,479,741, IPR2016-01718, filed Dec. 16, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,479,741 Pursuant to 37 C.F.R. § 42.108, IPR2016-01718, entered Mar. 13, 2017.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,443,807, IPR2016-01726, filed Dec. 13, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 37 C.F.R. § 42.108, IPR2016-01726, entered Mar. 6, 2017.
Patent Owner Preliminary Response to Petition for Inter Partes Review of U.S. Pat. No. 8,443,807, IPR2016-01734, filed Dec. 22, 2016.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 8,443,807 Pursuant to 37 C.F.R. § 42.108, IPR2016-01734, entered Mar. 13, 2017.
Statutory Declaration made by Alistair Edwin McAuley, Apr. 14, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
Statutory Declaration made by Alistair Edwin McAuley, Apr. 17, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
Statutory Declaration made by Alistair Edwin McAuley, Sep. 16, 2015, in the matter of an Opposition by Fisher & Paykel Healthcare Limited of Australian patent application 2009221630 in the name of ResMed Limited.
First Affidavit of Alistair Edwin McAuley, Dec. 5, 2016, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia.
Second Affidavit of Alistair Edwin McAuley, Dec. 21, 2016, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia.
Third Affidavit of Alistair Edwin McAuley, Jan. 31, 2017, in the matter of Fisher and Paykel Healthcare Limited v. ResMed Limited filed in the Federal Court of Australia, 284 pp.
Declaration of Anthony Michael Ging in IPR 2019-000172, IPR 2019-000173, IPR 2019-000177, IPR 2019-000178, dated Nov. 8, 2018, 329 pp.
McGraw-Hill Dictionary of Scientific and Technical Terms, Sixth Edition, 2003, Tube, p. 2200.
Claim Chart for AirFit P10, U.S. Pat. No. 9,333,315, dated Nov. 7, 2018, 3 pp.
Scheduling Order dated Jul. 16, 2019 in IPR2019-00180, 12 pp.
Decision to Institute dated Jul. 16, 2019 in IPR2019-00180, 34 pp.
Decision Denying Institute of Inter Partes Review dated Jul. 16, 2019 in IRP2019-00179, 32 pp.
Australian examination report in patent application No. 2018236891, dated Jun. 9, 2020, 3 pages.
Australian Examination Report No. 1 in patent application No. 2019280016, dated Jul. 22, 2020.
Brazilian office action dated Aug. 28, 2020 in patent application No. PI1012207-9.
Chinese Fourth Examination Report in patent application No. 201610114706.X, dated Aug. 28, 2020, with translation.
Chinese Second Office Action in patent application No. 201710824612.6, dated May 25, 2020.
European examination report dated Jun. 16, 2020 in patent application No. 18163847.9, 5 pp.
European Extended Search Report dated Jul. 7, 2020 in patent application No. 19217524.8, 13 pp.
German examination report dated Aug. 31, 2020 in patent application No. 11 2010 011 994.0, 18 pp.
Canadian Examination Report in patent application No. 3010066, dated Nov. 9, 2020, 3 pages.
Canadian Examination Report in patent application No. 3017161, dated Nov. 25, 2020, 4 pp.
Canadian Examination Report for patent application No. 2880749, dated Oct. 5, 2020, 4 pp.
European Examination Report dated Jan. 13, 2021 in patent application No. 18195537.8.
European Examination Report in patent application No. 191976761.1, dated Dec. 11, 2020, 6 pages.
European Extended Search Report dated Oct. 6, 2020 in patent application No. 20184447.9, 9 pp.
Japanese Notification of Reason for Rejection dated Nov. 2, 2020 in patent application No. 2017-238259.
Related Publications (1)
Number Date Country
20200268998 A1 Aug 2020 US
Continuations (6)
Number Date Country
Parent 15372293 Dec 2016 US
Child 16874532 US
Parent 15088628 Apr 2016 US
Child 15372293 US
Parent 14887212 Oct 2015 US
Child 15088628 US
Parent 14812167 Jul 2015 US
Child 14887212 US
Parent 12633135 Dec 2009 US
Child 14812167 US
Parent 12307933 US
Child 12633135 US