Breathing mask for feeding a breathing gas to a mask user and discharge device for discharging breathing gas

Information

  • Patent Grant
  • 10596342
  • Patent Number
    10,596,342
  • Date Filed
    Monday, April 24, 2017
    7 years ago
  • Date Issued
    Tuesday, March 24, 2020
    4 years ago
Abstract
Breathing mask for supplying a breathing gas to a user of a mask includes a sealing lip to seal a mask support zone, a mask base body to form a mask interior chamber and a connector to connect at least one breathing gas line. The mask base body and/or the connector is provided with at least one de-coupling structure formed of an elastomer material. The de-coupling structure allows a relative movement between a mask body-sided circumferential foot portion of the sealing lip and the breathing gas line in at a tilt angle of at least 5°.
Description

The present invention refers to a breathing mask for supplying a breathing air to a user of a mask and it refers to a discharge means for discharging breathing gas.


Breathing masks of this type are used in particular in the medical sector, e.g. in the sector of sleep medicine for treating breathing disorders relating to sleep.


Usually, these masks comprise a sealing lip means for sealing a mask rest zone against the atmosphere. In nose masks, the mask rest zone extends from the upper lip portion into the facial portion adjoining the side of the nose of the user of the mask and from there to the area of the bridge of the nose. The sealing lip means is usually made of an elastomer material and pressed against the mask rest zone via a head band arrangement by exerting a predetermined pressure.


In particular in the long-term use of breathing masks of this type, the problem occurs that the required sealing effect can only be achieved at comparatively high mask pressure forces. Due to the required high mask press forces, the comfort of wearing the mask is affected. Moreover, there is a risk of bruises being generated in the area of the mask rest zone.


Thus, the object of the invention is to provide a breathing mask for supplying a breathing gas, which is characterized by a sufficiently high tightness and by a high comfort when wearing the mask.


This object is achieved according to the invention by a breathing mask for supplying a breathing mask to a user of the mask, comprising a sealing lip means for sealing a mask rest zone, a mask base body for forming a mask interior space and a connection means for connecting at least one breathing gas line, wherein the mask base body and/or the connection means are provided with at least one de-coupling structure formed of an elastomer material, which allows a relative movement between a circumferential foot portion of the sealing lip means connected to the mask base body and the breathing gas line at a tilt angle range of less than 5°.


Thus, it is achieved in an advantageous manner to obtain a sufficient sealing effect at a reduced mask holding force in a reliable manner, since even when moving the head of the user of the mask, forces or momentums cannot be transferred via the breathing gas line onto the sealing lip means. In a further advantageous manner, a relative movement between the sealing lip means resting on the face of the user of the mask and a breathing gas line preferably fixed on the front end side (e.g. by a hose holding bracket formed on a reinforcement frame) becomes possible.


The de-coupling structure is according to an especially preferred embodiment of the invention formed by a bellows or roller bellows structure. This bellows or roller bellows structure is preferably formed by using a core element which is integral with the sealing lip means.


According to an especially preferred embodiment of the invention, the bellows or roller bellows structure is formed at the connection means. This bellows or roller bellows structure can be provided with hinge characteristics by zones with adapted wall thickness, by means of which rotational and tilt momentums as well as axial movements of the breathing gas mask do not lead to the generation of possible forces on the sealing lip means.


An also especially preferred embodiment of the invention is given in that the de-coupling structure is formed on the mask base body. This makes it possible to avoid the transfer of undesired forces onto the sealing lip means and at the same time to sufficiently de-couple possible movements of the mask base body relative to the sealing lip means.


An embodiment of the invention that is especially advantageous in view of low operating noises is given in that at least one channel means is provided in the area of the de-coupling structure. This channel means is responsible for creating a connection between the interior of the mask and the atmosphere.


The channel means is preferably formed by a passage opening. The passage opening preferably has a cross section which is adapted to predetermined pressure/volume flow characteristics.


An especially silent discharge is achieved according to the invention in that the channel means tapers step-wise or continuously in the flow direction regarding its cross section.


An embodiment of the invention that is also advantageous in view of a low noise emission is given in that a sharp opening edge is formed in an outlet opening section of the channel means. A section of the smallest cross section is preferably defined in the channel means, wherein the length of the section of the smallest cross section is smaller than 2 mm. It is possible in an advantageous manner that the channel geometry is designed in a manner that the smallest cross section of the channel means is formed in a membrane element. Thereby the coupling of possible body sound events into the mass structure is further reduced. The diameter of the membrane element is preferably 30% larger than the diameter of the throttle passage opening formed therein.


The movable coupling of the sealing lip means is preferably implemented in that the de-coupling structure extends in the mask base body in the circumferential direction of the sealing lip means along a transitional portion between a foot portion of the sealing lip means and is formed by at least one circumferential fold or a roller bellows structure.


According to a further aspect of the present invention, and preferably in combination with the above-described measure, a breathing mask adapted to the individual face structure of the user is provided, which has a forehead rest means for supporting the mask in the forehead or nose bridge area of the person, and which comprises a reinforcement element for reinforcing the breathing mask with a first reinforcement section associated to the portion of the sealing lip means and a second reinforcement section associated to the forehead rest portion, wherein the relative position of the two reinforcement sections to one another is adjustably variable.


Thus, it becomes possible in an advantageous manner to obtain an optimal surface pressure distribution for the respective face structure of the user of the mask in the area of the sealing lip zone and in the area of the forehead area.


An advantageous embodiment of the invention with respect to a simple handling is given in that both reinforcement sections are coupled to one another via a hinge means. The hinge means may in an advantageous manner be formed by a film hinge means.


According to an especially preferred embodiment of the invention, a fixing means is provided for fixing the two reinforcement section in a required relative position. The fixing means comprises in an advantageous manner a fixing mechanism, in particular a catch mechanism. Preferably, a plurality of predetermined catch positions can be selected. As an alternative, or in combination with this measure, it is also possible to form the fixing means by using means for fixing by adhesion, welding or chemical reaction.


An especially advantageous embodiment of the invention in view of manufacturing points of view is given in that the two reinforcement sections are formed integrally. Thus, it is possible to form the two reinforcement section e.g. of a thermoplastic plastic material by using an only two-piece shaping tool. The two reinforcement sections may be injection-molded in a direction advantageous in view of removal from the mold.


The reinforcement element is preferably shaped frame or skeleton-like or at least in the area of the sealing lip element in a bell-shaped manner. In the case of a skeleton or frame-like design, the individual web sections preferably have a substantially profile cross section. A high rigidity is achieved by a low dead weight of the reinforcement element.


The first reinforcement or frame section preferably has a contour substantially corresponding to the mask rest zone. The second reinforcement or frame section preferably extends up to a portion located in the application position of the mask above the eyebrow of the user of the mask.


An embodiment of the invention that is especially advantageous when using an elastomer mask base body is provided in that the reinforcement element is provided with coupling sections for coupling a head band means. This makes it possible to introduce the mask half forces without an inadmissible deformation of the mask.


The reinforcement element is preferably formed of a plastic material. As an alternative, or in combination therewith, it is possible to make the reinforcement element of a metal material in particular of a bendable wire or profile material. It is also possible to form the reinforcement element of an alt least locally thermo-deformable material, in particular a thermoplastic material having a rigid inset.


It is in particular possible to provide a wire inset in the area of the bending-neutral zone of the profile material.


The profile material preferably comprises at least one rigid lead, e.g. made of a wire material. It is possible to enable at least locally a deformation of the profile material, e.g. by heating up the material so that a further adaptability of the reinforcement or frame element to the face structure is possible.


An especially advantageous adaptability of the breathing mask to the face structure of the user of the mask is achieved according to an especially advantageous embodiment of the invention in that the breathing mask comprises a mask base body made of an elastomer material. Thus, it becomes possible to affect the course of the sealing lip zone and the surface pressing distribution in this zone by an arbitrary deformation of the first reinforcement section.


In an advantageous manner the forehead rest means comprises a rest element which is formed of an elastomer material.


An especially advantageous embodiment according to the invention in terms of hygiene is given in that the sealing lip means is formed integrally with the mask base body. This integral design can be achieved by the common formation in a shaping tool or by adhering the sealing lip means to the mask base body preferably by including a reinforcement means. It is also possible to form the mask base body and the sealing lip means and preferably also the padding members of the forehead rest means in the course of a vulcanization process.


According to a special aspect of the present invention, the padding members of the forehead means are preferably formed integrally with the sealing lip means and/or the mask base body. In the case of a multi-piece design of the mask it is possible to couple the sealing lip means to the mask body via the reinforcement element. The connection portion between the mask base body and the forehead rest means may be effective as an elastomer hinge structure.


The reinforcement element is, according to an especially preferred embodiment of the invention releasably coupled with the sealing lip means and/or the mask base body. Thus it becomes possible in an advantageous manner to use the reinforcement element a plurality of times. The reinforcement element is preferably coupled via a catch or engagement profile structure with the mask base body.


The reinforcement element preferably consists of a plurality of pieces. In an advantageous manner, the mask base body is made of a transparent or translucent elastomer material. An especially favorable embodiment of the invention in view of a high comfort of wearing the mask is given in that the sealing lip means has a satin-like mat surface. By the realization of so-called lotus flower structures, a cleaning structure improved in terms of hygiene is achieved.


The hinge fixation can preferably also be implemented reversibly, e.g. by hot glue or by chemically releasable adhesives. It is also, possible to provide thermo-deformable structure especially in the area of the hinge, portion, said structures being repeatedly plastically deformable and allowing another adjustment of the relative position of the two reinforcement or frame section e.g. by the supply of heat.


It is also possible to form a plurality of hinge or adjustment zones in the reinforcement element or in the frame structure thereof so that for instance also adjustment possibilities for adaptation to the individual curvature of the forehead, the width of the nose bridge and the upper lip structure are possible.


In particular when forming the reinforcement element as a locally deformable structure, a sufficient strength can be achieved at a small space in that the reinforcement element is formed of a compound material. A wire/thermoplastic compound material is particularly suitable as a compound material.


The adjustability of the at least two reinforcement or frame section with respect to each other can also be obtained according to the invention in that the two reinforcement or frame sections can be joined in different coupling positions, e.g. by corresponding permutatably connectable joining portions or selectable joining elements.





Further details can be derived from the following description in connection with the drawing.



FIG. 1 shows a perspective view of a preferred embodiment of a breathing mask comprising an elastomer mask base body and an integral forehead rest means, wherein a reinforcement element is provided through which the position of the forehead rest means is adjustably variable relative to a sealing lip means that is formed integral with the forehead rest means;



FIG. 2 shows a perspective view of a frame-like reinforcement element, as it is provided in the embodiment according to FIG. 1;



FIG. 3 shows a further perspective view of said reinforcement element, here with a view onto a fixing member that can be locked in a plurality of fixing positions;



FIG. 4 shows a simplified perspective view of a further embodiment of a breathing mask with an elastomer de-coupling structure formed in the area of the breathing gas conducting means;



FIG. 5 shows a perspective view of a third embodiment of a breathing mask comprising a mask base body formed of an elastomer material, and a de-coupling structure formed at the mask base body, said de-coupling structure being formed by bellows.



FIG. 6 shows a perspective view of a fourth embodiment of a breathing mask, also comprising a mask base body formed of an elastomer material, however, having a de-coupling structure formed according to the roller bellows principle;



FIG. 7 shows a side view of a fifth embodiment of a breathing mask, also comprising a mask base body formed of an elastomer material, and a connection means for the breathing gas line connected thereto, wherein a de-coupling structure is formed between the connection means and the mask base body and in the area of the sealing lip means;



FIG. 8 shows a preferred embodiment of a connection section for a breathing gas line with integrated gas discharge openings;



FIG. 9 shows a perspective view of a further embodiment of a connection means for a breathing gas line with a plurality of circumferential bellows and integrally formed discharge openings;



FIG. 10 shows a simplified sectional view for explaining a further embodiment of a channel means for discharging breathing gas;



FIG. 11a and FIG. 11b show sketches for explaining the structure of a deformable structure suitable as a power and/or pressure display means;



FIG. 12 shows a detailed sketch for explaining a preferred embodiment of reinforcement webs for preventing a locking of the passage openings.





The view according to FIG. 1 shows a breathing mask, as it may in particular be used for carrying out a CPAP therapy. The breathing mask comprises a mask base body 1, which in the embodiment shown is formed of a fully transparent elastomer silicone material. The mask base body 1 defines an interior of the mask sufficiently dimensioned for the accommodation of the nose of the user of the mask. The sealing of the interior of the mask space with respect to the facial surface of the user of the mask is carried out via a sealing lip means 2, which in this view is almost fully covered. The sealing lip means 2 comprises a sealing lip formed of an elastomer material, which rests on the half of the face of the mask user under elastic deformation and which defines a nose accommodation opening through which at least the nose tip area of the user of the mask may reach the mask interior defined by the mask base body 1.


The breathing mask is provided with a forehead rest means 3, which in this case comprises a forehead padding means 4. The forehead padding means 4 is in the embodiment shown also made of an elastomer material and is also formed integrally with the sealing lip means 2 and integrally with the mask base body 1. This integral design of mask base body 1, sealing lip 2 and forehead padding means 4 is achieved by forming a connection web section 5, which couples the forehead padding means 4 with the mask base body 1 in a manner that the position can be changed. In the circumferential portion of the mask body 1, a reinforcement element 6 is provided, which in this case is formed as a frame-like structure. The reinforcement element 6 comprises a first reinforcement section 6a following the circumferential contour of the sealing lip means 2 and a second reinforcement section 6b extending into the forehead rest means 3. The two reinforcement sections 6a, 6b are coupled in a manner movable with respect to each other. The coupling of the two reinforcement sections 6a, 6b, is implemented in the embodiment shown by a hinge means 7, which in this case is formed by a film hinge section 8. The relative position of the forehead padding means 4 relative to the mask base body 1 or to the sealing lip means 2 produced by pivoting the two reinforcement sections 6a, 6b with respect to each other, may permanently be defined via the fixing means 9.


The fixing means 9 in this case comprises a fixing element 10, which can be engaged with a holding element 11 in different fixing positions.


In the embodiment shown, the holding element 11 is substantially rigidly connected to the first connection section 6a. The fixing element 10 is pivotally connected to the second reinforcement section 6b. The coupling of the fixing element 10 and of the holding element 11 in selected coupling positions is carried out in this case via plug bores 12, which are formed in the fixing element 10. These plug bores 12 can be engaged with a fixing pin that cannot be seen in this case. The fixing pin is formed at a front end face of the holding element 11 facing the fixing element 10. As an alternative to the mechanism shown here, it is also possible to use other mechanisms for defining the relative position of the first reinforcement section 6a with respect to the second reinforcement section 6b.


The reinforcement means 6 is coupled to the mask base body 1 in a manner that the mask base body 1 and also the sealing lip means 2 have a shape also determined by the reinforcement element 6. In the embodiment shown, the coupling of the reinforcement element 6 with the mask base body 1 is performed by a circumferential groove 14 into which the frame-like reinforcement element 6 is inserted. For an improved coupling of the reinforcement element 6 with the mask base body 1 or with the sealing lip means 2, the circumferential groove is profiled in the area of the inner surfaces of the grooves complementary to the reinforcement element 6.


The reinforcement element 6 is provided with a coupling means 15 through which a band element below a head band arrangement can be coupled to the breathing mask. In the embodiment shown, the coupling means 15 is formed as a bracket-like flap, which is formed integrally with the reinforcement element. As an alternative, it is also possible to use constructively differently built coupling elements, e.g. catch or snap means for coupling the head band with the reinforcement element 6. By the direct introduction of the tensile forces of the head band into the reinforcement element 6 an inadmissible deformation of the mask base body 1 and of the sealing lip 2 is avoided.


In the area of the forehead rest means 3 a coupling means 16 is also provided, which in the embodiment shown basically corresponds to the coupling means 15 provided in the area of the mask-base body 1.


The reinforcement element 6 or its second reinforcement or frame section 6b formed in the area of the forehead rest means 3 is connected with the forehead padding means 4. In the embodiment shown, the coupling of the forehead padding means 4 with the second reinforcement section 6b is implemented similar as the coupling of the first reinforcement section 6a with the mask base body 1 in that the second reinforcement section 6b is inserted into a groove formed in the forehead padding means 4.


The forehead padding means 4 is formed of an elastomer material and comprises a plurality of pocket sections 17, 18. The padding properties of the forehead padding means 4 may be influenced in a defined manner by the pocket sections 17, 18.


A bellows structure 19 is provided on the mask base body 1 through which a breathing hose connection adapter 20 is pivotally coupled with the mask base body.


The bellows structure 19 in the embodiment shown is also formed integrally with the mask base body 1, which prevents the possible generation of gaps in a manner that is advantageous in terms of hygiene. A hose pin section 21 is connected to the bellows structure 19, said hose pin section being dimensioned regarding its inner diameter in a manner that the breathing hose connection adapter 20 can be inserted therein in a fixedly seated manner. Instead of the breathing hose connection adapter 20, it is also possible to provide a CO2 rinse adapter, as it is described in the applicant's German patent specification 198 40 760.2.



FIG. 2 shows the reinforcement element 6 in detail provided in the breathing mask according to FIG. 1. The first reinforcement section 6a assigned to the mask base body 1 of the breathing mask as well as the second reinforcement section 6b associated to the forehead rest means 3 (FIG. 1) are formed in this case by web-like elements, which have a substantially polygonal, in particular rectangular cross section. The coupling means 15, 16 already explained in connection with FIG. 1 are formed integrally with these web-like elements. In this view the coupling point formed in this case as a film hinge 22 can clearly be seen for coupling the two reinforcement sections 6a, 6b. The fixing element 10 is also supported via a film hinge portion 23 in a manner that, as shown by arrow P, it is pivotal in a sufficient angular range. By pivoting the fixing element 10 it is achieved that this fixing element releases a fixing pin 24, which is formed in the end portion of the holding element 11. As long as the fixing element 10 is not coupled to the holding element 11, it is possible to pivot the second reinforcement section 6b relative to the first reinforcement section 6a into a desired position. By engaging the engagement structure provided at the fixing element 10 with a corresponding complementary engagement structure of the holding element 11, it becomes possible to fix the two reinforcement sections 6a, 6b in the desired relative position with respect to each other. The fixing element 10, the holding element and the section of the second reinforcement element 6b extending between the film hinge 22 towards the film hinge 23 form, in the embodiment shown, a triangular structure, through which the relative position of the second reinforcement section 6b relative to the first reinforcement section 6a can be defined in an adjustable manner. As an alternative to this coupling structure that can be manufactured in a particular advantageous manner, it is also possible to use deviating coupling structures for coupling the two reinforcement sections 6a, 6b.


The first reinforcement section 6a comprises in the embodiment shown a substantially saddle-like outer contour. In a direction perpendicular with respect to the mask rest surface, the first reinforcement section 6a is drawn upwards in the nose bridge portion in a manner that this nose bridge portion does not fall below a predetermined minimum distance to the face half of the user of the mask.



FIG. 3 shows the mask frame according to FIG. 2 in another perspective. The fixing element 10 in this case comprises four catch bores 26, 27, 28 and 29.


The fixing element 10 is coupled with the holding element 11 in a manner that the catch bore 29 can be engaged with the fixing pin 24 of the holding element 11. When coupling the fixing element 10 with the holding element 11 by using the catch bore 29, the second reinforcement section 6b is pivoted towards the forehead portion of the user of the mask in a manner that the portion of the first reinforcement section 6a traversing the nose bridge is lifted up to the greatest extent. By selecting the catch bore 28 a configuration is chosen, in which the portion of the first reinforcement section 6a traversing the nose bridge is already approximated to the nose bridge of the patient. Even flatter configurations are obtained by the catch bores 27 and 26.


It is possible to introduce an adhesive in the area of the coupling element formed as a film hinge 22 in this case between the two reinforcement sections, which causes the relative position of the two reinforcement sections 6a, 6b to be durably fixed with respect to each other. The fixing element 10 and possibly also the holding element 11 may be removed after curing of the adhesive material. The adjustment of the breathing mask is performed in an advantageous manner by using the fully assembled breathing mask. It is also possible to adapt the reinforcement element in the disassembled state to the face structure of the user of the mask and to subsequently couple it to the mask base body. In an advantageous manner, further adjustment alternatives are provided, though which for instance the position of the forehead padding means can be adjusted in vertical and/or horizontal direction. As an alternative to the formation of the coupling portion between the two reinforcement sections as a hinge point, it is also possible to provide coupling alternatives through which for instance an adjustment alternative of the two reinforcement elements 6a, 6b e.g. by the supply of heat, is given.


The breathing mask shown in FIG. 4 comprises a connection means 32 integrally formed with the mask base body 31 for a breathing gas line (not shown). In a transitional area between the connection means 32 and the mask base body 31, a de-coupling structure 33 is provided, which is formed in the embodiment shown by a bellows means. The bellows means comprises a first fold collar 34 and a second fold collar 35. In particular the first fold collar 34 comprises two circumferential walls 36, 27 extending in the radial direction. These two circumferential walls 36, 37 are formed as surfaces forming the envelope of a cone, and have a wall thickness distribution selected in view of a predetermined system rigidity. The de-coupling structure is formed rotational-symmetrical. An especially large breathing gas passage cross section at a comparatively small disturbance of the field of vision is achieved in an advantageous manner in that the breathing gas line section in the area of the nose bridge has an elliptical or polygonal cross section. The de-coupling structure is in this case formed in a rotational-symmetrical manner. As an alternative it is also possible to form the flanks of the fold collars in a manner that they have different depths and possible changing wall thickness in the circumferential direction.


In the embodiment shown, at least one breathing gas passage opening 38 is formed in the circumferential wall 36 facing the forehead portion of the mask user in the application position of the breathing mask. Through this breathing gas passage opening, a discharge of at least partially used breathing gas to the atmosphere can take place. In the area of the second fold collar 35 a plurality of breathing gas passage openings 39 are formed through which a breathing gas discharge can also take place across the forehead portion of the user of the mask. The breathing gas passage openings 38 and 39 are aligned in a manner that breathing gas exiting therefrom does not directly collide with the wall sections of the de-coupling structure or the connection means. The breathing gas passage openings 38 are preferably arranged in a manner that the air exiting cannot hit the forehead portion of the user of the mask.


It is also possible to form the de-coupling structure in a manner that an abutment characteristics is achieved so that a de-coupling is only permitted within a predetermined area of movement.


In the breathing mask shown in this case, a forehead rest means 40 integrally formed with the mask base body 31 is shown. The sealing lip means 2 for sealing the face rest zone is also formed integrally with the mask base body 31 or it is formed integrally with the forehead rest means 40 in the embodiment shown. The position of the forehead rest means 40 with respect to the mask base body 31 or with respect to the sealing lip means 2 is variable means of an adjustment means.


In the embodiment of a breathing mask shown in FIG. 5, the mask base body 31 is also formed of an elastomer material, but contrary to the above-described embodiment it is provided with a plurality of folds, through which a substantially mechanical de-coupling of the connection means 32 from the sealing lip is achieved. In this embodiment, the breathing mask also comprises a forehead rest means 40, which similar to the above-described embodiment may be formed integrally with the mask base body 31.


The folds 41, 42, 43 are aligned in a manner that they bridge over the nose bridge portion in an arc-like manner in application position of the breathing mask. As an alternative to the embodiment shown with three comparatively deep folds, it is also possible to provide the mask base body 31 with a larger amount of corresponding folds, wherein the elastic properties of the individual folds are preferably adapted in a manner that predetermined properties with respect to the coupling of the connection means 32 and the sealing lip means 2 result.


The breathing mask shown in FIG. 6 comprises, similar to the above-described breathing mask, a de-coupling structure formed in the area of the mask base body 31. In the embodiment shown, the de-coupling structure is formed by a plurality of roller bellows zones 44, 45, 46. In addition to these roller bellows zones 44, 45, 46, a further de-coupling structure 33 is provided in the area of the connection means 32, which similar to the embodiment described in FIG. 4, comprises two fold collars 34, 35.


The support of this breathing mask in the forehead portion of a user of a mask is in this case also implemented by a forehead rest means 40 which in this case is formed integrally with the mask base body 31.


The connection means 32 in this case is formed integrally with the mask base body 31 and is also made of an elastomer material. The connection means 32 comprises a circumferential bead 47 through which an improved coupling with a breathing as line is achieved.


The breathing mask shown in FIG. 7 comprises a mask base body 31 made of an elastomer material having a connection means 32 that is also made of an elastomer material. The connection means 32 is formed integrally with the mask base body, wherein a de-coupling structure 33, in this case formed by one single bellows, is formed in a transitional portion of the connection means 32 in the mask base body 31. A plurality of breathing gas passage openings 39 are formed in the area of the de-coupling structure for discharging breathing gas from the interior of the mask defined by the mask base body 31. The breathing gas passages 39 have channel cross, sections formed with respect to a predetermined discharge flow behavior. The breathing gas passages 39 may, as shown as an example, not only have round cross sections, as explained above, but they also may have polygonal, cross-shaped or other arbitrarily chosen geometries. The breathing gas passage openings are, however, preferably formed in a manner that the air flow therethrough is not directed towards the forehead portion of a user of a mask, but that it is directed in the hose direction in particular along the side of the hose wall opposite to the user of the mask.



FIG. 8 shows a discharge means 50 for discharging breathing gas. The discharge means 50 in this case forms a connection means 32 for connecting a breathing gas line and a de-coupling structure 33, which in this case comprises a plurality of fold collars 34, 35. On a side opposite to the connection means 32, the discharge means 50 is provided with an attachment structure 51 through which the discharge means 50 can be coupled in a sealing manner to a mask base body of a breathing mask or with a further breathing gas coupling section. Breathing gas passages 39 through which a discharge of breathing gas from the interior defined by the discharge means 50 to the atmosphere can take place are formed in an area of a circumferential section of the first fold collar 34 extending at an angle of approx. 120°.



FIG. 9 shows a further embodiment of a discharge means 50 for discharging at least partially used breathing gas. The discharge means 50 comprises a connection means 32 provided for connecting a breathing gas line, and a connection structure 52 formed on the side opposite to the connection means 32, through which said connection structure the discharge means can be coupled to the mask base body 31 or to a further breathing gas line section. A de-coupling structure 33 is provided between the connection structure 52 and the connection means 32, through which a relative movement between the connection means 32 and the connection structure 52 in a predetermined area of movement is admitted. In the embodiment shown, axial movements in an area of movement of up to 10 mm and tilt movements in an angular range of approx. 30 degrees are allowed. In a circumferential section of a circumferential wall 36 of the first fold collar 34, breathing gas passage openings 39 are formed similar to the above-described embodiment. The breathing gas passage openings 39 are formed as narrow, substantially radially aligned slots. The wall thickness of the circumferential walls of the two fold collars 34 are chosen thinner in the area of the fold portions than in the wall portion extending between the fold portions. The embodiment of a discharge means shown comprises in the area of the connection means 32 an inner diameter of 18 mm and in the area of the de-coupling structure 33 an outer diameter of 35 mm. The axial length of the discharge means 50 is 54 mm in unloaded condition. The discharge means 50 is formed of an elastomer material—in this case a fully transparent silicone rubber. The maximum wall thickness of the discharge means 50 is 4 mm.



FIG. 10 shows the sketch of a preferred embodiment of a channel means for discharging breathing gas. The breathing gas path defined in this case extends through a passage opening 53 in a first intermediate chamber 54, which communicates with the atmosphere via a gap portion 55. A plurality of web portions 56 are formed in this gap portion, through which said web portions the throttle characteristics of the gap portion are influenced. The flow behavior of the breathing gas path can be influenced in a defined manner by the length of the gap portion 55 in particular in connection with the webs 56. Such a breathing gas path for discharging breathing gas from a mask interior to the atmosphere can directly be formed in the area of a connection means for connecting a breathing gas line. The structure shown in this case is preferably formed integrally of a fully elastomer material. For cleaning purposes it is possible to turn up an upper lid wall 57 towards the top. A required minimum gap measure in the gap portion 55 can be achieved by web sections that are not shown, which extend section-wise up to the inner surface of the lid wall 57.



FIG. 11 shows an elastomer structure, which in connection with a breathing mask is directly suitable for display of the deformation taking place when applying the breathing mask. It is for instance possible to provide a color mark in the area of the inner wall of a fold or bellows structure 60, said color mark becoming visible depending on the deformation of the fold or bellows structure. If for instance the fold or bellows structure 60, as shown in FIG. 11, is upset at a maximum, the color mark arranged in the area of the inner wall of the fold or bellows structure can no longer be seen from the outside. This results for instance in an inadmissibly high surface pressure in the area of the forehead rest and/or in the area of the sealing lip means of a correspondingly designed breathing mask. It is also possible to check by means of such a fold or bellows structure 60, whether a sufficient mask holding force is exerted onto the breathing mask. In such an embodiment, the colored mark can for instance be arranged in a manner that it is visible in the case of insufficient mask holding forces and is covered when the mask holding forces are sufficient.



FIG. 12 shows a section of a discharge means for discharging breathing gas, which is formed of an elastomer material. The discharge means comprises a circumferential wall 70, formed in this case as a fold collar 73. The circumferential wall is provided with a plurality of passage openings 38 for discharging breathing gas. Webs 71 are formed in the interior of the fold collar 73, said webs being formed integrally with the circumferential wall 70. The webs 71 act as a fold safety means and ensure that the passage openings 38 are open permanently. A division of the gas flow is further achieved by the webs 71, which leads to a low-noise discharge of the breathing gas to the atmosphere (U). The passage openings in this case have a circular cross section. A further fold collar is connected to the fold collar 73 that is provided with the passage openings 38. This fold collar 74 is comparatively rigidly coupled with the first fold collar 73 and also has a small height so that a covering of the passage opening 38 by a further fold collar 74 is not possible. A hinge fold collar 75 is connected to the further fold collar 74. This hinge fold collar defines a circumferential hinge zone 76 in the area of its maximum diameter and an inner hinge zone 77 in the inner portion. In the area of the inner hinge zone 77 and the circumferential hinge zone 76, the wall thickness of the circumferential wall 70 is formed so small that a comparatively easy movability of the two sections of the discharge means opposing each other is given. The circumferential walls 78 of the fold collar 74 and the circumferential wall 79 of the hinge fold collar 75 together restrict the maximum pivot angle of the two fold collars with respect to each other.


The function of the above-described breathing mask is not described in detail by means of the following example.


To carry out a CPAP therapy, the breathing mask is removed from a sterile packaging, and the fixing element 10 is pivoted into a release position so that the reinforcement section 6b can be pivoted with respect to the first reinforcement section 6a around the film hinge point. A breathing gas hose is connected to the breathing mask via a rotary or quick-snap adapter, in that this breathing gas hose is connected to the quick-snap adapter and this quick-snap adapter is inserted into the breathing hose connection adapter 20. Breathing gas at a predetermined excess pressure of e.g. 8 mbar is supplied via the breathing gas hose. Now the breathing mask is applied onto the nose portion of the user of the mask. For this purpose, a lower head band arrangement is passed through. The tensile stress in the lower head band arrangement is adjusted in a manner that a sufficient tightness of the sealing lip means 2 is ensured. Now the breathing mask is tilted in the application position away from the nose back or towards the nose back until an optimal abutment of the sealing lip means 2 in the area of the nose back is achieved. Now the upper forehead padding means 4 is slightly pressed against the forehead of the user of the mask. The relative position of the first reinforcement section 6a achieved thereby is fixed relative to the second reinforcement section 6b, in that the fixing element 10 is engaged with the holding element 11.


As a result of the excess pressure prevailing in the breathing gas line, CO2 flows through the passage openings formed in the fold collar The passage openings are dimensioned and formed in a manner that a predetermined pressure/volume characteristic is achieved so that a sufficient discharge of the breathing air exhaled into the breathing mask or into the breathing bas line to the atmosphere is achieved.


It is ensured by the webs formed in the fold bellows that the openings are not closed due to a compensation movement allowed by the de-coupling structure.


The breathing mask is now adjusted ready for use. By coupling the coupling means 16 in the area of the forehead rest means 3, the breathing mask is also fixed in the forehead portion of the user of the mask by the upper head band arrangement on the user of the mask.


It is possible to fix the relative positioning achieved in this case by additional measure e.g. an element blocking in a locking manner (e.g. safety element). If these additional fixing means are able to take a load it is possible to remove the fixing element 10 and possibly also the holding element 11.


It is also possible to chose a reinforcement element from a reinforcement element set by means of the ideal configuration of the breathing mask detected via the fixing means 9, which provides the desired relative position by renouncing the fixing means 9 of the sealing lip means and the forehead padding means 4, and to exchange such a reinforcement element by the above-mentioned reinforcement element.

Claims
  • 1. A breathing mask arrangement for delivering breathable gas to a patient for treatment of sleep disordered breathing, the breathing mask arrangement comprising: a frame including a main body and a forehead support movably coupled to the main body, the forehead support including a pair of upper head band coupling structures and the main body including a pair of lower head band coupling structures;a mask configured to releasably couple with the frame, the mask including a body portion and a sealing portion,the body portion forming a mask interior breathing chamber pressurizable to a therapeutic pressure, and the body portion including an inlet opening structured to receive a flow of gas at the therapeutic pressure for breathing by the patient,the body portion includes an inside surface exposed to said therapeutic pressure in use and an outside surface exposed to ambient pressure, and the main body of the frame includes a side wall arranged along the outside surface of the body portion so that the side wall is outside the mask interior breathing chamber, andthe sealing portion is constructed and arranged to form a seal with at least nasal bridge and cheek regions of a patient's face, the sealing portion including a hole therein adapted to receive a patient's nose such that the flow of gas at the therapeutic pressure is delivered to the patient's nose;an adjustment arrangement to allow selective adjustment of the forehead support relative to the main body, the adjustment arrangement including a fixing mechanism to positively lock the forehead support relative to the main body in one of a plurality of predetermined or fixed positions;a gas hose connector structured to connect to a breathing gas hose to deliver the flow of gas at the therapeutic pressure to the mask interior breathing chamber of the mask, wherein the gas hose connector is configured to communicate with the mask through the inlet opening of the body portion; anda head band assembly to maintain the breathing mask arrangement in position on a patient's head, the head band assembly including an upper head band arrangement adapted to connect to the pair of upper head band coupling structures of the frame and a lower head band arrangement adapted to connect to the pair of lower head band coupling structures of the frame.
  • 2. The breathing mask arrangement according to claim 1, wherein the body portion and the sealing portion comprise two pieces that are fixedly attached to one another.
  • 3. The breathing mask arrangement according to claim 1, wherein the forehead support is structured to support forehead padding.
  • 4. The breathing mask arrangement according to claim 1, wherein the fixing mechanism comprises a plurality of recesses and a projection.
  • 5. The breathing mask arrangement according to claim 4, wherein the fixing mechanism comprises four recesses.
  • 6. The breathing mask arrangement according to claim 1, wherein the frame forms an opening through which at least a portion of the outside surface of the body portion is exposed towards a front side of the breathing mask arrangement when the mask is releasably coupled with the frame.
  • 7. The breathing mask arrangement according to claim 1, wherein the body portion comprises an adhesive connection to the sealing portion.
  • 8. The breathing mask arrangement according to claim 1, wherein the mask includes a decoupling structure structured to decouple movement of the body portion relative to the sealing portion.
  • 9. The breathing mask arrangement according to claim 8, wherein the decoupling structure comprises a bellows structure.
  • 10. The breathing mask arrangement according to claim 1, wherein the forehead support is T-shaped.
  • 11. The breathing mask arrangement according to claim 10, wherein the forehead support has a cross portion structured to support forehead padding and a leg portion movably coupled to the main body.
  • 12. The breathing mask arrangement according to claim 1, further comprising a plurality of discharge openings for discharge of gas from the mask interior breathing chamber.
  • 13. The breathing mask arrangement according to claim 1, wherein the body portion and the sealing portion comprise two pieces that are fixedly attached to one another, wherein the forehead support is structured to support forehead padding,wherein the fixing mechanism comprises a plurality of recesses and a projection,wherein the frame forms an opening through which at least a portion of the outside surface of the body portion is exposed towards a front side of the breathing mask arrangement when the mask is releasably coupled with the frame,wherein the mask includes a decoupling structure structured to decouple movement of the body portion relative to the sealing portion,wherein the forehead support is T-shaped,wherein the forehead support has a cross portion structured to support the forehead padding and a leg portion movably coupled to the main body, andfurther comprising a plurality of discharge openings for discharge of gas from the mask interior breathing chamber.
  • 14. The breathing mask arrangement according to claim 13, wherein the fixing mechanism comprises four recesses, and wherein the decoupling structure comprises a bellows structure.
Priority Claims (2)
Number Date Country Kind
100 51 891 Oct 2000 DE national
200 17 940 U Oct 2000 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/263,234, filed Apr. 28, 2014, now allowed, which is a continuation of U.S. application Ser. No. 13/751,479, filed Jan. 28, 2013, now U.S. Pat. No. 8,746,250, which is continuation of U.S. application Ser. No. 12/805,058, filed Jul. 9, 2010, now U.S. Pat. No. 8,371,301, which is a continuation of U.S. application Ser. No. 11/491,964, filed Jul. 25, 2006, now U.S. Pat. No. 7,775,209, which is a divisional of U.S. application Ser. No. 10/221,574, filed Jan. 28, 2003, now U.S. Pat. No. 7,100,610, which is the National Phase of International Application PCT/EP01/11954, filed Oct. 16, 2001, which designated the U.S., and claims the benefit of German Application Nos. DE 200 17 940.3, filed Oct. 19, 2000, and DE 100 51 891.5, filed Oct. 19, 2000, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (610)
Number Name Date Kind
4429 Cooke Mar 1846 A
35724 Wilcox Jun 1862 A
364394 Bright Jun 1887 A
428592 Chapman May 1890 A
463351 Elliott Nov 1891 A
715611 Schnenker et al. Dec 1902 A
716530 Giddens Dec 1902 A
781516 Guthrie Jan 1905 A
812706 Warbasse Feb 1906 A
1070986 Richter Aug 1913 A
1081745 Johnston et al. Dec 1913 A
1176886 Ermold Mar 1916 A
1192186 Greene Jul 1916 A
1206045 Smith Nov 1916 A
1333075 Hill et al. Mar 1920 A
1371236 Geer Mar 1921 A
1381826 Hansen Jun 1921 A
1502450 Wood Jul 1924 A
1610793 Kaufman Dec 1926 A
1632449 McKesson Jun 1927 A
1653572 Jackson Dec 1927 A
1672165 Lewis Jun 1928 A
1733020 Jones Oct 1929 A
1837591 Shindel Dec 1931 A
1926027 Biggs Sep 1933 A
2029129 Schwartz Jan 1936 A
2033448 James Mar 1936 A
2123353 Catt Jul 1938 A
2130555 Malcom Sep 1938 A
2133699 Heidbrink Oct 1938 A
2141222 Pioch Dec 1938 A
2149067 Otero Feb 1939 A
2245658 Erickson Jun 1941 A
2245969 Francisco et al. Jun 1941 A
2248477 Lombard Jul 1941 A
2254854 O'Connell Sep 1941 A
2287353 Minnick Jun 1942 A
2317608 Heidbrink Apr 1943 A
2359506 Battley et al. Oct 1944 A
2371965 Lehmberg Mar 1945 A
2376871 Fink May 1945 A
2382364 Yant Aug 1945 A
2415846 Randall Feb 1947 A
2428451 Emerson Oct 1947 A
2438058 Kincheloe Mar 1948 A
2454103 Swidersky Nov 1948 A
2473518 Garrard et al. Jun 1949 A
D156060 Wade Nov 1949 S
D161337 Hill Dec 1950 S
2540567 Bennett Feb 1951 A
2578621 Yant Dec 1951 A
2590006 Gordon Mar 1952 A
2617751 Bickett Nov 1952 A
2625155 Engelder Jan 1953 A
2638161 Jones May 1953 A
2664084 Hammermann Dec 1953 A
2693178 Gilroy Nov 1954 A
2706983 Matheson et al. Apr 1955 A
2747464 Bowerman May 1956 A
2820651 Phillips Jan 1958 A
2823671 Garelick Feb 1958 A
2832015 Ortega Apr 1958 A
2837090 Bloom et al. Jun 1958 A
2868196 Stampe Jan 1959 A
2875757 Galleher, Jr. Mar 1959 A
2893387 Gongoll et al. Jul 1959 A
2902033 Galleher, Jr. Sep 1959 A
2917045 Schildknecht et al. Dec 1959 A
2931356 Schwarz Apr 1960 A
D188084 Garelick May 1960 S
2939458 Lundquist Jun 1960 A
3013556 Galleher Dec 1961 A
3042035 Coanda Jul 1962 A
3117574 Replogle Jan 1964 A
3141213 Nicholas Jul 1964 A
3182659 Blount et al. May 1965 A
3189027 Bartlett Jun 1965 A
3193624 Webb et al. Jul 1965 A
3238943 Holley Mar 1966 A
3288138 Sachs Nov 1966 A
3315672 Cunningham et al. Apr 1967 A
3315674 Bloom et al. Apr 1967 A
3330273 Bennett Jul 1967 A
3362420 Blackburn et al. Jan 1968 A
3363833 Laerdal Jan 1968 A
3474783 Ulmann Oct 1969 A
3494072 Olson Feb 1970 A
3523534 Nolan Aug 1970 A
3535810 Baehrle Oct 1970 A
3555752 Bogaert Jan 1971 A
3556122 Laerdal Jan 1971 A
3580051 Blevins May 1971 A
3700000 Hesse et al. Oct 1972 A
3720235 Schrock Mar 1973 A
3725953 Johnson et al. Apr 1973 A
3726275 Jackson et al. Apr 1973 A
3750333 Vance Aug 1973 A
3752157 Malmin Aug 1973 A
3779164 Study Dec 1973 A
3796216 Schwarz Mar 1974 A
D231803 Huddy Jun 1974 S
3824999 King Jul 1974 A
3830230 Chester Aug 1974 A
3978854 Mills, Jr. Sep 1976 A
4034426 Hardwick et al. Jul 1977 A
4049357 Hamisch, Jr. Sep 1977 A
4062357 Laerdal Dec 1977 A
4064875 Cramer et al. Dec 1977 A
4069516 Watkins, Jr. Jan 1978 A
4077404 Elam Mar 1978 A
D248497 Slosek Jul 1978 S
4111197 Warncke et al. Sep 1978 A
D250131 Lewis et al. Oct 1978 S
4120302 Ziegler Oct 1978 A
4121580 Fabish Oct 1978 A
4156426 Gold May 1979 A
4161946 Zuesse Jul 1979 A
4164942 Beard et al. Aug 1979 A
4167185 Lewis Sep 1979 A
4201205 Bartholomew May 1980 A
4226234 Gunderson Oct 1980 A
4231363 Grimes Nov 1980 A
4233972 Hauff et al. Nov 1980 A
4245632 Houston Jan 1981 A
4248218 Fischer Feb 1981 A
4265239 Fischer, Jr. et al. May 1981 A
4266540 Panzik et al. May 1981 A
4274404 Molzan et al. Jun 1981 A
4275908 Elkins et al. Jun 1981 A
D262322 Mizerak Dec 1981 S
4304229 Curtin Dec 1981 A
4328797 Rollins et al. May 1982 A
4337767 Yahata Jul 1982 A
4347205 Stewart Aug 1982 A
4354488 Bartos Oct 1982 A
4369284 Chen Jan 1983 A
4378011 Warncke Mar 1983 A
4380102 Hansson Apr 1983 A
4402316 Gadberry Sep 1983 A
4412537 Tiger Nov 1983 A
4414973 Matheson et al. Nov 1983 A
4417575 Hilton et al. Nov 1983 A
4437462 Piljay Mar 1984 A
4446576 Hisataka May 1984 A
4454880 Muto et al. Jun 1984 A
4454881 Huber et al. Jun 1984 A
4458679 Ward Jul 1984 A
4467799 Steinberg Aug 1984 A
4494538 Ansite Jan 1985 A
4506665 Andrews et al. Mar 1985 A
4522639 Ansite et al. Jun 1985 A
4549334 Miller Oct 1985 A
4558710 Eichler Dec 1985 A
4572323 Randall Feb 1986 A
4574799 Warncke Mar 1986 A
4579113 McCreadie et al. Apr 1986 A
4580556 Kondur Apr 1986 A
4593688 Payton Jun 1986 A
4606340 Ansite Aug 1986 A
D285496 Berman Sep 1986 S
4616647 McCreadie Oct 1986 A
4622964 Flynn Nov 1986 A
4633972 DeRocher Jan 1987 A
4655213 Rapoport et al. Apr 1987 A
4657010 Wright Apr 1987 A
4665570 Davis May 1987 A
4671271 Bishop et al. Jun 1987 A
4674134 Lundin Jun 1987 A
4676241 Webb et al. Jun 1987 A
4677975 Edgar et al. Jul 1987 A
4677977 Wilcox Jul 1987 A
4686977 Cosma Aug 1987 A
4707863 McNeal Nov 1987 A
4713844 Westgate Dec 1987 A
H397 Stark Jan 1988 H
D293613 Wingler Jan 1988 S
4732147 Fuller Mar 1988 A
4739755 White et al. Apr 1988 A
4770169 Schmoegner et al. Sep 1988 A
4772760 Graham Sep 1988 A
4774941 Cook Oct 1988 A
4782832 Trimble et al. Nov 1988 A
4783029 Geppert et al. Nov 1988 A
4799477 Lewis Jan 1989 A
4807617 Nesti Feb 1989 A
4809692 Nowacki et al. Mar 1989 A
4811730 Milano Mar 1989 A
4819629 Jonson Apr 1989 A
4821713 Bauman Apr 1989 A
4827924 Japuntich May 1989 A
4832017 Schnoor May 1989 A
4835820 Robbins, III Jun 1989 A
4841953 Dodrill Jun 1989 A
4848334 Bellm Jul 1989 A
4848366 Aita et al. Jul 1989 A
4850346 Michel et al. Jul 1989 A
4856118 Sapiejewski Aug 1989 A
D304384 Derobert Oct 1989 S
4870963 Carter Oct 1989 A
4875714 Lee Oct 1989 A
4875718 Marken Oct 1989 A
4886058 Brostrom et al. Dec 1989 A
4898174 Fangrow, Jr. Feb 1990 A
4899614 Katamui Feb 1990 A
4905683 Cronjaeger Mar 1990 A
4905686 Adams Mar 1990 A
4907584 McGinnis Mar 1990 A
4910806 Baker et al. Mar 1990 A
4915105 Lee Apr 1990 A
4915106 Aulgur et al. Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4938210 Shene Jul 1990 A
4938212 Snook et al. Jul 1990 A
4944310 Sullivan Jul 1990 A
4946202 Perricone Aug 1990 A
D310431 Bellm Sep 1990 S
4960121 Nelson et al. Oct 1990 A
4971051 Toffolon Nov 1990 A
4974586 Wandel et al. Dec 1990 A
4974921 Miyata et al. Dec 1990 A
4986269 Hakkinen Jan 1991 A
4989271 Sapiejewski et al. Feb 1991 A
4989596 Macris et al. Feb 1991 A
4989599 Carter Feb 1991 A
4997217 Kunze Mar 1991 A
5002050 McGinnis Mar 1991 A
5003631 Richardson Apr 1991 A
5003633 Itoh Apr 1991 A
5005568 Loescher et al. Apr 1991 A
5005571 Dietz Apr 1991 A
5018519 Brown May 1991 A
5027809 Robinson Jul 1991 A
5038776 Harrison et al. Aug 1991 A
5042473 Lewis Aug 1991 A
5042478 Kopala et al. Aug 1991 A
5046200 Feder Sep 1991 A
5054482 Bales Oct 1991 A
5062421 Burns et al. Nov 1991 A
5063922 Hakkinen Nov 1991 A
5069205 Urso Dec 1991 A
5074297 Venegas Dec 1991 A
D323908 Hollister et al. Feb 1992 S
5093940 Nishiyama Mar 1992 A
5109839 Blasdell et al. May 1992 A
5109840 Daleiden May 1992 A
5121745 Israel Jun 1992 A
5133347 Huennebeck Jul 1992 A
5136760 Sano et al. Aug 1992 A
5138722 Urella et al. Aug 1992 A
5140980 Haughey et al. Aug 1992 A
5140982 Bauman Aug 1992 A
5146914 Sturrock Sep 1992 A
5149980 Haughey et al. Sep 1992 A
5156146 Corces et al. Oct 1992 A
5159938 Laughlin Nov 1992 A
5178138 Walstrom et al. Jan 1993 A
5181506 Tardiff, Jr. et al. Jan 1993 A
D333015 Farmer Feb 1993 S
D334633 Rudolph Apr 1993 S
5199424 Sullivan et al. Apr 1993 A
D335322 Jones May 1993 S
5215336 Worthing Jun 1993 A
5220699 Farris Jun 1993 A
5231983 Matson et al. Aug 1993 A
5233978 Callaway Aug 1993 A
5243971 Sullivan Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
5253641 Choate Oct 1993 A
5265595 Rudolph Nov 1993 A
5269296 Landis Dec 1993 A
5279289 Kirk Jan 1994 A
5280784 Kohler Jan 1994 A
5291880 Almovist et al. Mar 1994 A
5301689 Wennerholm Apr 1994 A
5311862 Blasdell et al. May 1994 A
5322057 Raabe et al. Jun 1994 A
5322059 Walther Jun 1994 A
5331691 Runckel Jul 1994 A
5334646 Chen Aug 1994 A
5343878 Scarberry et al. Sep 1994 A
5349949 Schegerin Sep 1994 A
5357945 Messina Oct 1994 A
5357951 Ratner Oct 1994 A
5372130 Stern et al. Dec 1994 A
5388273 Sydor et al. Feb 1995 A
5388571 Roberts et al. Feb 1995 A
5390373 Flory Feb 1995 A
5391248 Brain Feb 1995 A
5398673 Lambert Mar 1995 A
5400781 Davenport Mar 1995 A
5404871 Goodman et al. Apr 1995 A
5411021 Gdulla et al. May 1995 A
5419317 Blasdell et al. May 1995 A
5419318 Tayebi May 1995 A
5429126 Bracken Jul 1995 A
5429683 Le Mitouard Jul 1995 A
5431158 Tirotta Jul 1995 A
5438981 Starr et al. Aug 1995 A
5441046 Starr et al. Aug 1995 A
D362061 McGinnis et al. Sep 1995 S
5477852 Landis et al. Dec 1995 A
5479920 Piper et al. Jan 1996 A
5481763 Brostrom et al. Jan 1996 A
5485837 Soles Bee et al. Jan 1996 A
5488948 Dubruille et al. Feb 1996 A
5492116 Scarberry et al. Feb 1996 A
5501214 Sabo Mar 1996 A
5509404 Lloyd et al. Apr 1996 A
5511541 Dearstine Apr 1996 A
5517986 Starr et al. May 1996 A
5522382 Sullivan et al. Jun 1996 A
5538000 Rudolph Jul 1996 A
5538001 Bridges Jul 1996 A
5540223 Starr et al. Jul 1996 A
5542128 Lomas Aug 1996 A
5546936 Virag et al. Aug 1996 A
5558090 James Sep 1996 A
RE35339 Rapoport Oct 1996 E
5560354 Berthon-Jones et al. Oct 1996 A
5570682 Johnson Nov 1996 A
5570684 Behr Nov 1996 A
5570689 Starr et al. Nov 1996 A
5575278 Bonhomme et al. Nov 1996 A
D377089 Starr et al. Dec 1996 S
5592937 Freund Jan 1997 A
5592938 Scarberry et al. Jan 1997 A
5608647 Rubsmen et al. Mar 1997 A
5617849 Springett et al. Apr 1997 A
5642730 Baran Jul 1997 A
5645049 Foley et al. Jul 1997 A
5645054 Cotner et al. Jul 1997 A
5647355 Starr et al. Jul 1997 A
5647357 Barnett et al. Jul 1997 A
5649532 Griffiths Jul 1997 A
5649533 Oren Jul 1997 A
5655527 Scarberry et al. Aug 1997 A
5657493 Ferrero et al. Aug 1997 A
5657752 Landis et al. Aug 1997 A
5660174 Jacobelli Aug 1997 A
5662101 Ogden et al. Sep 1997 A
5666946 Langenback Sep 1997 A
5676133 Hickle et al. Oct 1997 A
D385960 Rudolph Nov 1997 S
5685296 Zdrojkowski et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5704345 Berthon-Jones Jan 1998 A
5709204 Lester Jan 1998 A
5715814 Ebers Feb 1998 A
5724964 Brunson et al. Mar 1998 A
5724965 Handke et al. Mar 1998 A
5732695 Metzger Mar 1998 A
5740795 Brydon Apr 1998 A
5743414 Baudino Apr 1998 A
5746201 Kidd May 1998 A
5794617 Brunell et al. Aug 1998 A
D398987 Cotner et al. Sep 1998 S
5813423 Kirchgeorg Sep 1998 A
5832918 Pantino Nov 1998 A
5839436 Fangrow et al. Nov 1998 A
D402755 Kwok Dec 1998 S
5860677 Martins et al. Jan 1999 A
RE36165 Behr Mar 1999 E
5884624 Barnett et al. Mar 1999 A
5896857 Hely et al. Apr 1999 A
5906199 Budzinski May 1999 A
5909732 Diesel et al. Jun 1999 A
5921239 McCall et al. Jul 1999 A
5924420 Reischel Jul 1999 A
5935136 Hulse et al. Aug 1999 A
5937851 Serowski et al. Aug 1999 A
5966745 Schwartz et al. Oct 1999 A
5975079 Hellings et al. Nov 1999 A
5979025 Horng Nov 1999 A
6006748 Hollis Dec 1999 A
D419658 Matchett et al. Jan 2000 S
6016804 Gleason et al. Jan 2000 A
D421298 Kenyon et al. Feb 2000 S
6019101 Cotner et al. Feb 2000 A
6029660 Calluaud et al. Feb 2000 A
6029665 Berthon-Jones Feb 2000 A
6029668 Freed Feb 2000 A
6039044 Sullivan Mar 2000 A
D423096 Kwok Apr 2000 S
6044844 Kowk et al. Apr 2000 A
6062148 Hodge et al. May 2000 A
6062221 Brostrom et al. May 2000 A
6082360 Rudolph et al. Jul 2000 A
6091973 Colla et al. Jul 2000 A
D428987 Kwok Aug 2000 S
6098205 Schwartz et al. Aug 2000 A
6112746 Kwok et al. Sep 2000 A
6119693 Kwok et al. Sep 2000 A
6123071 Berthon-Jones et al. Sep 2000 A
6152137 Schwartz et al. Nov 2000 A
6189532 Hely et al. Feb 2001 B1
6192886 Rudolph Feb 2001 B1
D439326 Hecker et al. Mar 2001 S
6196223 Belfer et al. Mar 2001 B1
D443355 Gunaratnam et al. Jun 2001 S
6240605 Stevens et al. Jun 2001 B1
6250375 Lee et al. Jun 2001 B1
6256846 Lee Jul 2001 B1
6257237 Suzuki Jul 2001 B1
6272722 Lai Aug 2001 B1
6321421 Lim Nov 2001 B1
6341606 Bordewick et al. Jan 2002 B1
6347631 Hansen et al. Feb 2002 B1
6357441 Kwok et al. Mar 2002 B1
6374826 Gunaratnam et al. Apr 2002 B1
6381813 Lai May 2002 B1
6388640 Chigira et al. May 2002 B1
6397847 Scarberry et al. Jun 2002 B1
6412487 Gunaratnam et al. Jul 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6422238 Lithgow Jul 2002 B1
6427694 Hecker et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6435181 Jones, Jr. et al. Aug 2002 B1
6439230 Gunaratnam et al. Aug 2002 B1
6449817 Hsu Sep 2002 B1
6463931 Kwok et al. Oct 2002 B1
6467483 Kopacko et al. Oct 2002 B1
6491034 Gunaratnam Dec 2002 B1
6494207 Kwok Dec 2002 B1
D468823 Smart Jan 2003 S
6513206 Banitt et al. Feb 2003 B1
6513526 Kwok et al. Feb 2003 B2
6520182 Gunaratnam Feb 2003 B1
6530373 Patron et al. Mar 2003 B1
6532961 Kwok et al. Mar 2003 B1
6536435 Fecteau et al. Mar 2003 B1
6557556 Kwok May 2003 B2
6561190 Kwok May 2003 B1
6561191 Kwok May 2003 B1
6581601 Ziaee Jun 2003 B2
6595214 Hecker Jul 2003 B1
6615830 Serowski et al. Sep 2003 B1
6615832 Chen Sep 2003 B1
6615834 Gradon et al. Sep 2003 B2
6626177 Ziaee Sep 2003 B1
6631718 Lovell Oct 2003 B1
D484237 Lang et al. Dec 2003 S
6655520 Schuster Dec 2003 B2
6662101 Adachi Dec 2003 B2
6679260 Her Jan 2004 B2
6679261 Lithgow Jan 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6691708 Kwok et al. Feb 2004 B2
6701535 Dobbie et al. Mar 2004 B2
6701927 Kwok et al. Mar 2004 B2
6705647 Palmer Mar 2004 B1
6712072 Lang Mar 2004 B1
6729333 Barnett et al. May 2004 B2
D492992 Guney et al. Jul 2004 S
D493521 Guney Jul 2004 S
6789543 Cannon Sep 2004 B2
6796308 Gunaratnam et al. Sep 2004 B2
6805117 Ho et al. Oct 2004 B1
6823869 Raje et al. Nov 2004 B2
6832615 Hensel Dec 2004 B2
D502260 Lang et al. Feb 2005 S
6851425 Jaffre Feb 2005 B2
6851428 Dennis Feb 2005 B2
6907882 Ging Jun 2005 B2
6918390 Lithgow et al. Jul 2005 B2
6926004 Schumacher Aug 2005 B2
6968844 Liland et al. Nov 2005 B2
6973929 Gunaratnam Dec 2005 B2
6986352 Frater et al. Jan 2006 B2
D515698 Lang et al. Feb 2006 S
6997188 Kwok et al. Feb 2006 B2
7000614 Lang et al. Feb 2006 B2
7005414 Barnikol et al. Feb 2006 B2
7007696 Palkon et al. Mar 2006 B2
7011090 Drew et al. Mar 2006 B2
7021311 Gunaratnam et al. Apr 2006 B2
7036508 Kwok May 2006 B2
7047965 Ball May 2006 B1
7047972 Ging et al. May 2006 B2
7059326 Heidmann et al. Jun 2006 B2
7066379 Eaton et al. Jun 2006 B2
7089939 Walker et al. Aug 2006 B2
7095938 Tolstikhin Aug 2006 B2
7100610 Biener et al. Sep 2006 B2
7107989 Frater et al. Sep 2006 B2
7112179 Bonutti et al. Sep 2006 B2
7178525 Matula, Jr. et al. Feb 2007 B2
7185652 Gunaratnam et al. Mar 2007 B2
7201169 Wilkie Apr 2007 B2
7207334 Smart Apr 2007 B2
7207335 Kwok et al. Apr 2007 B2
7210481 Lovell May 2007 B1
7216647 Lang et al. May 2007 B2
7219670 Jones et al. May 2007 B2
7234466 Kwok et al. Jun 2007 B2
7234773 Raftery et al. Jun 2007 B2
7290546 Ho et al. Nov 2007 B2
7296574 Sprinkle et al. Nov 2007 B2
7318437 Gunaratnam et al. Jan 2008 B2
7318439 Raje et al. Jan 2008 B2
7353826 Sleeper et al. Apr 2008 B2
7353827 Geist Apr 2008 B2
7406965 Kwok et al. Aug 2008 B2
7461656 Gunaratnam et al. Dec 2008 B2
7472704 Gunaratnam Jan 2009 B2
7487772 Ging et al. Feb 2009 B2
7503327 Gunaratnam Mar 2009 B2
7509958 Amarasinghe et al. Mar 2009 B2
7523754 Lithgow Apr 2009 B2
7610916 Kwok et al. Nov 2009 B2
7614400 Lithgow et al. Nov 2009 B2
7621274 Sprinkle et al. Nov 2009 B2
7654263 Lang et al. Feb 2010 B2
7743767 Ging et al. Jun 2010 B2
7762259 Gunaratnam Jul 2010 B2
7775209 Biener et al. Aug 2010 B2
7779832 Ho Aug 2010 B1
7814911 Bordewick et al. Oct 2010 B2
7819119 Ho Oct 2010 B2
7827987 Woodard et al. Nov 2010 B2
7827990 Melidis et al. Nov 2010 B1
7841345 Guney et al. Nov 2010 B2
7856698 Lang et al. Dec 2010 B2
7856980 Lang et al. Dec 2010 B2
7856982 Matula, Jr. et al. Dec 2010 B2
7861715 Jones et al. Jan 2011 B2
7874293 Gunaratnam et al. Jan 2011 B2
7878199 Ging et al. Feb 2011 B2
7882837 Kwok et al. Feb 2011 B2
7900635 Gunaratnam et al. Mar 2011 B2
7942148 Davidson et al. May 2011 B2
7942149 Gunaratnam May 2011 B2
7967013 Ging et al. Jun 2011 B2
7992559 Lang et al. Aug 2011 B2
8042538 Ging et al. Oct 2011 B2
8042546 Gunaratnam et al. Oct 2011 B2
8051850 Kwok et al. Nov 2011 B2
8091553 Bordewick et al. Jan 2012 B2
8113203 Lithgow et al. Feb 2012 B2
8136524 Ging et al. Mar 2012 B2
8186348 Kwok et al. May 2012 B2
8186352 Gunaratnam et al. May 2012 B2
8210180 Gunaratnam Jul 2012 B2
8220459 Davidson et al. Jul 2012 B2
8230855 Raje et al. Jul 2012 B2
8365731 Ho Feb 2013 B2
8371301 Biener et al. Feb 2013 B2
20020023649 Gunaratnam Feb 2002 A1
20030019496 Kopacko et al. Jan 2003 A1
20030034034 Kwok et al. Feb 2003 A1
20030062048 Gradon Apr 2003 A1
20030075180 Raje et al. Apr 2003 A1
20030075182 Heidmann et al. Apr 2003 A1
20030084904 Gunaratnam May 2003 A1
20030089373 Gradon May 2003 A1
20030115662 Dobbie et al. Jun 2003 A1
20030196656 Moore et al. Oct 2003 A1
20030221691 Biener et al. Dec 2003 A1
20040045550 Lang et al. Mar 2004 A1
20040045551 Eaton Mar 2004 A1
20040094157 Dantanarayana et al. May 2004 A1
20040112385 Drew Jun 2004 A1
20040112387 Lang et al. Jun 2004 A1
20040118406 Lithgow et al. Jun 2004 A1
20040144386 Frater et al. Jul 2004 A1
20040177850 Gradon Sep 2004 A1
20040211428 Jones, Jr. et al. Oct 2004 A1
20040216747 Jones et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040255949 Heidmann et al. Dec 2004 A1
20050098183 Nash et al. May 2005 A1
20050199239 Lang et al. Sep 2005 A1
20050211252 Lang et al. Sep 2005 A1
20060081250 Bordewick et al. Apr 2006 A1
20060118117 Berthon-Jones et al. Jun 2006 A1
20060169286 Eifler et al. Aug 2006 A1
20060191538 Lang et al. Aug 2006 A1
20060219246 Dennis Oct 2006 A1
20060254593 Chang Nov 2006 A1
20060283461 Lubke et al. Dec 2006 A1
20070044804 Matula et al. Mar 2007 A1
20070137653 Wood Jun 2007 A1
20070144525 Davidson et al. Jun 2007 A1
20070277828 Ho Dec 2007 A1
20080178885 Raje et al. Jul 2008 A1
20080257354 Davidson et al. Oct 2008 A1
20080264421 Kwok et al. Oct 2008 A1
20080314389 Thomas et al. Dec 2008 A1
20090044808 Guney Feb 2009 A1
20090050156 Ng et al. Feb 2009 A1
20090126739 Ng et al. May 2009 A1
20090139526 Melidis et al. Jun 2009 A1
20090173343 Omura et al. Jul 2009 A1
20090223521 Howard et al. Sep 2009 A1
20100000543 Berthon-Jones et al. Jan 2010 A1
20100071700 Hitchcock et al. Mar 2010 A2
20100089401 Lang et al. Apr 2010 A1
20100282265 Melidis et al. Nov 2010 A1
20100300447 Biener et al. Dec 2010 A1
20110030692 Jones et al. Feb 2011 A1
20110056498 Lang et al. Mar 2011 A1
20110094516 Chang Apr 2011 A1
20110174311 Gunaratnam Jul 2011 A1
20110220111 Heidmann et al. Sep 2011 A1
20110226254 Lang et al. Sep 2011 A1
20110259337 Hitchcock et al. Oct 2011 A1
20120174928 Raje et al. Jul 2012 A1
20130174850 Lang et al. Jul 2013 A1
20130199536 Biener et al. Aug 2013 A1
20140230814 Biener et al. Aug 2014 A1
Foreign Referenced Citations (226)
Number Date Country
9177110 Nov 1991 AU
9464816 Dec 1994 AU
9516178 Jul 1995 AU
9459430 Feb 1996 AU
A 3291495 Feb 1996 AU
A 4101897 Apr 1998 AU
A 8931298 Jan 1999 AU
200071882 Jun 2001 AU
1039144 Sep 1928 CA
618807 Apr 1961 CA
623129 Jul 1961 CA
88122 Nov 1999 CA
1326371 Dec 2001 CN
2464353 Dec 2001 CN
1408453 Apr 2003 CN
284 800 Nov 1913 DE
459104 Apr 1928 DE
701 690 Jan 1941 DE
923 500 Feb 1955 DE
159396 Jun 1981 DE
3015279 Oct 1981 DE
3345067 Jun 1984 DE
37 07 952 Mar 1987 DE
3537507 Apr 1987 DE
3539073 May 1987 DE
4004157 Apr 1991 DE
42 12 259 Jan 1993 DE
42 33 448 Apr 1993 DE
4343205 Jun 1995 DE
195 48 380 Jul 1996 DE
196 03 949 Aug 1997 DE
297 15 718 Oct 1997 DE
29715718 Oct 1997 DE
19735359 Jan 1998 DE
297 21 766 Mar 1998 DE
29723101 Jul 1998 DE
29810846 Aug 1998 DE
198 17 332 Jan 1999 DE
49900269.5 Jan 1999 DE
198 07 961 Aug 1999 DE
198 08 105 Sep 1999 DE
299 23 126 Mar 2000 DE
200 05 346 May 2000 DE
20005346 May 2000 DE
29923141 May 2000 DE
200 17 940 Feb 2001 DE
199 54 517 Jun 2001 DE
199 62 515 Jul 2001 DE
100 51 891 May 2002 DE
10045183 May 2002 DE
198 40 760 Mar 2003 DE
103 31 837 Jan 2005 DE
103 38 169 Mar 2005 DE
0 054 154 Oct 1981 EP
0 0252 052 Jan 1988 EP
0 264 772 Apr 1988 EP
0 334 555 Sep 1989 EP
0 386 605 Feb 1990 EP
0427474 May 1991 EP
0 462 701 Dec 1991 EP
0 303 090 Apr 1992 EP
0 549 299 Jun 1993 EP
0 602 424 Nov 1993 EP
0 608 684 Aug 1994 EP
00697225 Jul 1995 EP
178925 Apr 1996 EP
0 747 078 Dec 1996 EP
0821978 Feb 1998 EP
0 853 962 Jul 1998 EP
0 911 050 Apr 1999 EP
0 958 841 Nov 1999 EP
1 027 905 Aug 2000 EP
1027905 Aug 2000 EP
1 057 494 Dec 2000 EP
1 057 494 Dec 2000 EP
1057494 Dec 2000 EP
1099452 May 2001 EP
1205205 Nov 2001 EP
1 163 923 Dec 2001 EP
1 334 742 Aug 2003 EP
1 356 843 Oct 2003 EP
1 555 039 Jul 2005 EP
145309 Jan 2000 ES
780018 Apr 1935 FR
2 574 657 Jun 1986 FR
2 658 725 Aug 1991 FR
2 691 906 Dec 1993 FR
2 720 280 Dec 1995 FR
2749176 Dec 1997 FR
9916 Aug 1999 FR
649 689 Jan 1951 GB
823 887 Nov 1959 GB
1395391 May 1975 GB
1467828 Mar 1977 GB
2 145 335 Mar 1985 GB
2145335 Mar 1985 GB
2 147 506 May 1985 GB
2147506 May 1985 GB
2 164 569 Mar 1986 GB
2 186 801 Aug 1987 GB
2 267 648 Dec 1993 GB
2080119 Dec 1998 GB
2080120 Dec 1998 GB
2080121 Dec 1998 GB
S39-13991 Jul 1964 JP
S48-55696 Oct 1971 JP
S52-76695 Jun 1977 JP
S52-164619 Dec 1977 JP
S59-55535 Apr 1984 JP
S61-67747 May 1986 JP
H07-21058 Apr 1995 JP
H07-308381 Nov 1995 JP
H09-501084 Feb 1997 JP
09216240 Aug 1997 JP
H09-292588 Nov 1997 JP
11-000397 Jan 1999 JP
1105649 Feb 1999 JP
H11-104256 Apr 1999 JP
H11-508159 Jul 1999 JP
H11-381522 Nov 1999 JP
2000-135103 May 2000 JP
2000-225191 Aug 2000 JP
2000-279520 Oct 2000 JP
2000-325481 Nov 2000 JP
2000-515784 Nov 2000 JP
2002-028240 Jan 2002 JP
2002-543943 Dec 2002 JP
2003-502119 Feb 2003 JP
2003-175106 Jun 2003 JP
2003-190308 Jul 2003 JP
2004-329941 Nov 2004 JP
2005-506156 Mar 2005 JP
3686609 Aug 2005 JP
65 481 Aug 2000 SE
WO 8001044 May 1980 WO
WO 8001645 Aug 1980 WO
WO 8203548 Oct 1982 WO
WO 8606969 Dec 1986 WO
WO 8701950 Apr 1987 WO
WO 9103277 Mar 1991 WO
WO 9215353 Sep 1992 WO
WO 9220395 Nov 1992 WO
WO 9301854 Feb 1993 WO
WO 9324169 Dec 1993 WO
WO 9402190 Feb 1994 WO
WO 9416759 Aug 1994 WO
WO 9420051 Sep 1994 WO
WO 9502428 Jan 1995 WO
WO 9504566 Feb 1995 WO
WO 9617643 Jun 1996 WO
WO 9625983 Aug 1996 WO
WO 9639206 Dec 1996 WO
WO 9700092 Jan 1997 WO
WO 9707847 Mar 1997 WO
WO 9709090 Mar 1997 WO
WO 9741911 Nov 1997 WO
WO 9804310 Feb 1998 WO
WO 9811930 Mar 1998 WO
WO 9812965 Apr 1998 WO
WO 9818514 May 1998 WO
WO9824499 Jun 1998 WO
WO 9826829 Jun 1998 WO
WO 9826830 Jun 1998 WO
WO 9830123 Jul 1998 WO
WO 9834665 Aug 1998 WO
WO 9848878 Nov 1998 WO
WO 9921618 May 1999 WO
WO 9930760 Jun 1999 WO
WO 9943375 Sep 1999 WO
WO9958181 Nov 1999 WO
WO 9961088 Dec 1999 WO
WO 9965554 Dec 1999 WO
WO 0021600 Apr 2000 WO
WO 0035525 Jun 2000 WO
WO 0038772 Jul 2000 WO
WO 0050121 Aug 2000 WO
WO 0057942 Oct 2000 WO
WO 0069521 Nov 2000 WO
0074758 Dec 2000 WO
WO 0078381 Dec 2000 WO
WO 0078384 Dec 2000 WO
WO 0162326 Aug 2001 WO
WO 0197892 Dec 2001 WO
WO 0197893 Dec 2001 WO
WO 0207806 Jan 2002 WO
WO 0211804 Feb 2002 WO
WO 0232491 Apr 2002 WO
WO 0247749 Jun 2002 WO
WO 200245784 Jun 2002 WO
WO 03005931 Jan 2003 WO
WO 2003059427 Jul 2003 WO
WO 03082406 Oct 2003 WO
WO 2003082406 Oct 2003 WO
WO 03105921 Dec 2003 WO
WO 2004012803 Feb 2004 WO
WO 2004021960 Mar 2004 WO
WO 2004022145 Mar 2004 WO
WO 2004022146 Mar 2004 WO
WO 2004022147 Mar 2004 WO
WO 2004022144 Mar 2004 WO
WO 2004022145 Mar 2004 WO
WO 2004041342 May 2004 WO
WO 2004073778 Sep 2004 WO
WO 2004078228 Sep 2004 WO
WO 2004096332 Nov 2004 WO
WO 2005002656 Jan 2005 WO
WO 2005018523 Mar 2005 WO
WO 2005028010 Mar 2005 WO
WO 2005063326 Jul 2005 WO
WO 2005063326 Jul 2005 WO
WO 2005063328 Jul 2005 WO
WO 2005068002 Jul 2005 WO
WO 2005094928 Oct 2005 WO
WO 2005123166 Dec 2005 WO
WO 2006000046 Jan 2006 WO
WO 2006074513 Jul 2006 WO
WO 2006074515 Jul 2006 WO
WO 2006074516 Jul 2006 WO
WO 2006138416 Dec 2006 WO
WO 2007045008 Apr 2007 WO
WO 2007048174 May 2007 WO
WO 2009026627 Mar 2009 WO
WO 2009052560 Apr 2009 WO
WO 2009062265 May 2009 WO
WO 2009108995 Sep 2009 WO
WO 2010066004 Jun 2010 WO
Non-Patent Literature Citations (133)
Entry
Office Action issued in a related U.S. Appl. No. 14/829,864 dated Dec. 23, 2016.
Office Action dated Jan. 18, 2017 issued in U.S. Appl. No. 14/496,585 (40 pages).
Office Action issued in a related German Application No. 102 01 682.8 dated Aug. 2, 2016, with English language translation thereof.
Final Office Action issued in related U.S. Appl. No. 13/782,102 dated Sep. 11, 2015.
Office Action issued in a related U.S. Appl. No. 13/782,102 dated Mar. 13, 2015.
Decision to Grant issued in corresponding European Appln. No. 10 182 062.9 dated Feb. 6, 2014.
Communication issued in corresponding European Appln. No. 10 181 516.5 dated May 8, 2014, with English translation.
Communication issued in corresponding European Appln. No. 10 182 015.7 dated May 8, 2014, with English translation.
4 additional photographs of “Weinmann Mask,” before applicants' filing date.
Photograph of Weinmann Mask, acquired prior to 1998.
9 photographs of Weinmann mask, WM 23122 1991.
U.S. Appl. No. 13/923,671, filed Jun. 21, 2013.
Australian Appln. No. 2005253641—Examiner's First Report, dated Apr. 20, 2010.
Australian Appln. No. 2005253641—Examiner's Report, dated Aug. 18, 2011.
Australian Appln. No. 2005256167—Examiner's First Report, dated Apr. 29, 2010.
Australian Appln. No. 2006206044—Examiner's First Report, dated Dec. 1, 2010.
Australian Appln. No. 2010201443—Examiner's First Report, dated Jun. 22, 2011.
Australian Appln. No. 2010251884—Examination Report, dated Jul. 27, 2012.
Chinese Appln. No. 200410038106.7—Office Action (w/English translation), dated Jun. 15, 2007.
Chinese Appln. No. 200480011911.9—Office Action (w/English translation), dated Jun. 24, 2010.
Chinese Appln. No. 200480040220.1—Office Action English translation, before applicants' filing date.
Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Jun. 1, 2010.
Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Jul. 6, 2011.
Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Dec. 23, 2011.
Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Apr. 18, 2012.
Chinese Appln. No. 200580021230.5—Office Action (w/English translation), dated Jul. 3, 2009.
Chinese Appln. No. 200910223650.1—Office Action (w/English translation), dated Mar. 29, 2012.
Chinese Appln. No. 201010508994.X—Office Action (w/ English translation), dated Jun. 15, 2011.
Chinese Appln. No. 201010517066.X—Office Action (w/English translation), dated Nov. 10, 2011.
Chinese Appln. No. 201010620187.7—Office Action (w/English translation), dated Oct. 26, 2011.
Chinese Appln. No. 201010620187.7—Office Action (w/English translation), dated Jul. 10, 2012.
DeVilbiss Serenity Mask—Instruction Guide 9352 Series, before applicants' filing date.
DeVilbiss Serenity Mask—Mask Accessories, before applicants' filing date.
European Appln. No. EP 02445110.6—Search Report, dated Nov. 6, 2003.
European Appln. No. EP 02714190.2—Search Report, dated Jul. 11, 2006.
European Appln. No. EP 03793491.6—Supplementary Search Report, dated Jun. 15, 2010.
European Appln. No. EP 04802114.1—Supplementary Search Report, dated Apr. 27, 2009.
European Appln. No. EP 05749447.8—Supplementary Search Report, dated Dec. 2, 2009.
European Appln. No. EP 05753870.4—Supplementary Search Report, dated Dec. 15, 2009.
European Appln. No. EP 05753870.4—Office Action, dated Jul. 19, 2010.
European Appln. No. EP 06704773.8—Supplementary Search Report, dated Mar. 29, 2011.
European Appln. No. EP 08161868.8—Search Report, dated Sep. 23, 2008.
European Appln .No. EP 09003544.5—Search Report, dated Jun. 2, 2009.
European Appln. No. EP 09178736.6—Search Report, dated Apr. 19, 2010.
European Appln. No. EP 10166255.9—Search Report, dated Oct. 25, 2010.
European Appln. No. EP 10185071.7—Search Report, dated Dec. 6, 2010.
European Appln. No. EP 10185072.5—Search Report, dated Dec. 6, 2010.
European Appln. No. EP 10185073.3—Search Report, dated Dec. 6, 2010.
European Appln. No. EP 12165749.8—Extended Search Report, dated Oct. 10, 2012.
European Appln. No. EP 12165751.4—Extended Search Report, dated Oct. 8, 2012.
Japanese Appln. No. S52-164619—English translation of Figure 1, Dec. 1977.
Japanese Appln. No. 2000-029094—Office Action (w/English translation), before applicants' filing date.
Japanese Appln. No. 2001-504444—Office Action (w/English translation), dated Oct. 26, 2004.
Japanese Appln. No. 2003-559587—Office Action (w/English translation), dated Mar. 17, 2009.
Japanese Appln. No. 2004-137431—Office Action (w/English translation), dated Dec. 8, 2009.
Japanese Appln. No. 2004-569777—Office Action (w/English translation), dated Mar. 3, 2009.
Japanese Appln. No. 2005-004072—Office Action (w/English translation), dated Sep. 24, 2009.
Japanese Appln. No. 2006-504029—Office A545843ction (w/English translation), dated Nov. 10, 2009.
Japanese Appln. No. 2006-545843—Notice of Reasons for Rejection (w/English translation), dated Jun. 7, 2011.
Japanese Appln. No. 2007-515732—Office Action (w/English translation), dated Aug. 24, 2010.
Japanese Appln. No. 2007-515732—Office Action (w/English translation), dated Aug. 16, 2011.
Japanese Appln. No. 2007-515732—Office Action (w/English translation), dated Jun. 12, 2012.
Japanese Appln. No. 2007-516895—Office Action (w/English translation), dated Aug. 24, 2010.
Japanese Appln. No. 2007-550640—Office Action (w/English translation), dated Mar. 29, 2011.
Japanese Appln. No. 2007-550640—Office Action (w/English translation), dated Mar. 27, 2012.
Japanese Appln. No. 2008-318985—Office Action (w/English translation), dated Jun. 14, 2011.
Japanese Appln. No. 2010-268127—Notice of Reasons for Rejection (w/English translation), dated Jul. 10, 2012.
Japanese Appln. No. 2011-038110—Office Action (w/English translation), dated Aug. 14, 2012.
New Zealand Appln. No. 556041—Examination Report, dated May 6, 2011.
New Zealand Appln. No. 564877—Examination Report, dated Dec. 2, 2009.
New Zealand Appln. No. 567375—Examination Report, dated Nov. 17, 2009.
New Zealand Appln. No. 587820—Examination Report, dated Sep. 13, 2010.
New Zealand Appln. No. 592219—Examination Report, dated Apr. 11, 2011.
New Zealand Appln. No. 597689—Examination Report, dated Jan. 25, 2012.
PCT/AU03/01160—International Search Report, dated Oct. 8, 2003.
PCT/AU2004/001760—International Search Report, dated Jan. 12, 2005.
PCT/AU2004/001760—International Preliminary Report on Patentability, dated Jul. 3, 2006.
PCT/AU2004/001813—International Search Report, dated Mar. 7, 2005.
PCT/AU2004/001813—International Preliminary Report on Patentability, dated Jul. 3, 2006.
PCT/AU2005/000850—International Search Report, dated Aug. 12, 2005.
PCT/AU2005/000850—International Preliminary Report on Patentability, dated Dec. 20, 2006.
PCT/AU2005/000931—International Search Report, dated Jul. 19, 2005.
PCT/AU2005/000931—International Preliminary Report on Patentability, dated Dec. 28, 2006.
PCT/AU2006/000037—International Search Report, dated Mar. 17, 2006.
PCT/AU2006/001570—International Search Report, dated Jan. 5, 2007.
PCT/AU2009/000241—International Search Report, dated May 18, 2009.
PCT/AU2009/001102—International Search Report, dated Dec. 11, 2009.
PCT/AU2010/000657—International Search Report, dated Sep. 9, 2010.
PCT/EP2004/012811—International Search Report, dated Apr. 12, 2005.
ResCare Limited, “SULLIVAN™ Nasal CPAP System, Nose Mask Clip—User Instructions” 5/90, 1 page, before applicants' filing date.
ResMed Ltd., “Improving patient compliance with the ResMed Range of Mask Systems the Ultimate Interface for CPAP treatment,” before applicants' filing date, 4 pages.
ResMed, Mask Systems Product Brochure, Sep. 1992, 2 pages.
Respironics, Inc., “Nasal Mask System Silicone Contour Mask,” Product Instructions, Jun. 1997, 2 pages.
U.S. Appl. No. 12/083,779—Office Action, dated Feb. 17, 2012.
U.S. Appl. No. 12/083,779—Office Action, dated Sep. 28, 2012.
U.S. Appl. No. 60/227,472, filed Aug. 2000 (expired).
U.S. Appl. No. 60/424,696, filed Nov. 8, 2002 (expired).
U.S. Appl. No. 60/467,572, filed May 2003 (expired).
U.S. Appl. No. 60/643,121, filed Jan. 12, 2005 (expired).
Mask 1 Photographs, Respironics Inc., Reusable Full Mask (small), Part #452033, Lot #951108.
Mask 2 Photographs, Puritan—Bennett, Adam Circuit, Shell Part #231700, Swivel Part #616329-00, Pillows (medium), Part #616324.
Mask 3 Photographs, DeVilbiss Healthcare Inc., Devilbiss Seal-Ring and CPAP Mask Kit (medium), Part #73510-669.
Mask 4 Photographs, Respironics Inc., Monarch Mini Mask with Pressure Port, Part #572004, Monarch Headgear, Part #572011.
Mask 5 Photographs, Healthdyne Technologies, Nasal CPAP Mask (medium narrow), Part #702510.
Mask 6 Photographs, Healthdyne Technologies, Soft Series Nasal CPAP Mask, Part #702020.
Mask 7 Photographs, DeVilbiss Healthcare Inc., Small Mask and Seal Rings, Part #73510-668.
Mask 8 Photographs, Respironics Inc., Reusable Contour Mask (medium), Part #302180.
Mask 9 Photographs, Healthdyne Technologies, Healthdyne Large Headgear.
Mask 10 Photographs, Respironics Inc., Soft Cap (medium), Part #302142.
Mask 11 Photographs, Weinmann: Hamburg, Nasalmaskensystem mit Schalldämpfer (medium), Part #WN 23105.
Mask 12 Photographs, Life Care.
Mask 13 Photographs, Healthdyne Technologies.
Mask 14 Photographs, King System.
Mask 15 Photographs, Respironics Inc., Pediatric Mask.
Mask 16 Photographs, Hans Rudolph Inc., Hans Rudolph Silicone Rubber Face Mask/8900.
Sullivan Mirage brochure © 1997, ResMed Limited.
Sullivan Mirage brochure © 1998, ResMed Limited.
Somotron CPAP-Great WM 2300 Instruction Manual, Weinmann Hamburg, 11 pgs, 1991.
The ResMed Range of Mask Systems, product brochure, Nov. 1995, 4 pgs.
Product Brochure for ResMed “Sullivan® Mirage™—The Mirage is Real. A Perfect Fit—First Time,” © 1997 ResMed Limited, 4 pages.
Product Brochure for ResMed “Sullivan® Mirage™—The Mirage is Real. A Perfect Fit—First Time,” © 1998 ResMed Limited, 4 pages.
Decision dated Dec. 6, 2007; Opposition hearing by Weinmann . . . against German Patent 101 51 984 (including English Translation of the Decision).
A brochure of the model “Somnomask” of 1999.
Office Action dated Oct. 7, 2008, filed in Japanese Appln. No. 2003-537718 (English Translation); 11 pages.
U.S. Appl. No. 11/987,164, filed Nov. 28, 2007.
U.S. Appl. No. 11/128,399, filed Aug. 27, 2009.
U.S. Appl. No. 10/555,301, filed Febrary 1, 2006.
Supplementary Search Report cited in EP Appln. No. 04730413, dated Sep. 29, 2009, 3 pages.
International Search Report of PCT/AU2004/000563, dated Jun. 23, 2004.
European Search Report for co-pending European Application No. 10182015.5, dated Jun. 15, 2012.
European Search Repot for co-pending European Application No. 10181516.5, dated Jun. 13, 2012.
Notice of Allowance dated May 1, 2017 issued in U.S. Appl. No. 14/829,864 (14 pages).
Office Action dated Oct. 3, 2017 issued in U.S. Appl. No. 14/496,585 (9 pages).
Related Publications (1)
Number Date Country
20170224945 A1 Aug 2017 US
Divisions (1)
Number Date Country
Parent 10221574 US
Child 11491964 US
Continuations (4)
Number Date Country
Parent 14263234 Apr 2014 US
Child 15494910 US
Parent 13751479 Jan 2013 US
Child 14263234 US
Parent 12805058 Jul 2010 US
Child 13751479 US
Parent 11491964 Jul 2006 US
Child 12805058 US