Breech bolt assembly for a firearm

Information

  • Patent Grant
  • 6044748
  • Patent Number
    6,044,748
  • Date Filed
    Thursday, February 4, 1999
    25 years ago
  • Date Issued
    Tuesday, April 4, 2000
    24 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Johnson; Stephen M.
    Agents
    • Woodardt, Emhardt, Naughton Moriarty & McNett
Abstract
Reliability of a multi-lug breech bolt is improved by modifying the bearing relationship between the bolt lugs and the matching lugs within a gun receiver. This procedure is applied to a gun that has a receiver housing a breech bolt and an extractor. The extractor is coupled to the breech bolt and configured to move relative thereto. The bolt for this gun has at least five radially extending bolt lugs configured for bearing contact with the receiver when positioned for firing. The bolt lugs include a first, second, and third bolt lug with the first and second bolt lugs being adjacent and defining a gap configured to receive the extractor therebetween. The third bolt lug extends from the bolt opposite the gap. Stress imparted to the first and second bolt lugs from firing the gun is reduced by altering the gun to prevent formation of a bearing relationship between the third bolt lug and the receiver when the bolt lugs are positioned for firing. The gun is reassembled as part of the procedure. The alteration may be accomplished by removing material from the third lug, a corresponding lug of the receiver, or both.
Description

BACKGROUND OF THE INVENTION
The present invention relates to firearm breech bolt assemblies, and more particularly, but not exclusively, relates to enhancement of breech bolt reliability.
The M-16 automatic rifle has been a standard weapon of choice for the U.S. Military. The M-16 family of weapons includes semi-automatic counterparts which are popular with the civilian sector. Generally, the M-16 family of automatic and semi-automatic firearms are based on a gas operated breech bolt carrier system. As used herein, "gun" or "firearm" refers to a completely assembled weapon including not only a receiver operable to fire rounds of ammunition, but also any other structure normally associated with the given weapon. U.S. Pat. Nos. 2,951,424 and 3,198,076 to Stoner provide early examples of the M-16 type of weapon. In recent years, many variations and modifications of the M-16 family have evolved.
Generally, for the current M-16 weapon family, the bolt carrier system includes a multi-lug breech bolt which interlocks within the gun receiver for firing each round of ammunition. The reaction force from firing a round is transmitted from the breech bolt through the lugs and results in the "recoil" force experienced by the marksman. In one common configuration of the M-16 weapon, a steel "barrel extension" is used to interface with the gun barrel and interlock with the lugs of the breech bolt. Generally, the barrel extension contains pressurized gases resulting from firing of the weapon, and transmits the familiar recoil force. As used herein, a "receiver" includes a barrel extension, barrel interface, or any other part or assembly of a gun or firearm that has one or more surfaces configured to engage lugs of a breech bolt.
Regardless of the receiver configuration, breech bolts are typically subjected to repeated stress from firing the gun. Occasionally, the breech bolt fails-from fatigue induced by this repeated stress. These failures limit the overall reliability of the weapon, sometimes represented as Mean-Time-Between-Failure (MTBF). By reducing the frequency of these failures, maintenance-actions for the gun are correspondingly reduced and overall reliability is improved. Consequently, there is a need to better accommodate stress imposed on the breech bolt from firing the weapon.
SUMMARY OF THE INVENTION
The present invention relates to firearm breech bolt assemblies. Various aspects of the invention are novel, non-obvious, and provide various advantages. While the actual nature of the invention covered herein can only be determined with reference to the claims appended hereto, certain features which are characteristic of the preferred embodiment disclosed herein can be described briefly.
One aspect of the present invention is improving reliability of a multi-lug breech bolt by modifying the bearing relationship between the bolt lugs and matching lugs within a gun receiver. This procedure is applied to a gun that has a receiver housing a breech bolt and an extractor. The extractor is coupled to the breech bolt and configured to move relative thereto. The bolt for this gun has at least five radially extending bolt lugs configured for bearing contact with the receiver when positioned for firing. The bolt lugs include a first, second, and third bolt lug with the first and second bolt lugs-being adjacent and defining a gap configured to receive the extractor therebetween. The third bolt lug extends from the bolt opposite the gap. Stress imparted to the first and second bolt lugs from firing the gun is reduced by altering the gun to prevent formation of a bearing relationship between the third bolt lug and the receiver when the bolt lugs are positioned for firing. The gun is reassembled as part of the procedure. The alteration may be accomplished by removing material from the third lug, a corresponding lug of the receiver, or both.
In another aspect of the present invention, reliability of a gun is improved by providing a breech bolt that has at least five radially extending bolt lugs designed for bearing contact with the gun receiver when positioned for firing. The bolt lugs include a first, second, and third bolt lug with the first and second bolt lugs being next to each other and the third lug extending from the bolt opposite a point between the first and second lugs. Material is removed from the third bolt lug to prevent formation of a bearing relationship between the third bolt lug and the receiver when the bolt lugs are positioned for firing.
Still another aspect of the present invention is a breech bolt having an elongate body with a first end opposing a second end along a longitudinal axis. The body also has a generally cylindrical portion between the first and second ends. A number of bolt lugs are integrally connected to the body and radially extend from the body about the longitudinal axis. The number of bolt lugs are fixed relative to each other and each has a first face opposing a second face along the longitudinal axis with the first face being closer to the first end than the second face. The number of bolt lugs includes a plurality of at least five bolt lugs having generally coplanar second faces each configured as a bearing surface. The plurality of bolt lugs has a lug pair with a first lug adjacent a second lug. Also, the number of bolt lugs includes an offset bolt lug extending opposite a point between the first and second lugs. The second face of the offset bolt lug is offset a distance along the longitudinal axis from the second face of each of the plurality of-bolt lugs. This offset lug improves stress distribution among the plurality of bolt lugs when the breech bolt is configured in a gun.
A further aspect is a gun with a receiver defining a cavity and a breech bolt housed within the cavity. The bolt reciprocally moves within the cavity to fire the gun and is configured to interlock with the receiver in a firing position. The bolt includes a number of opposing lug pairs radially extending from the body. Each of the lug pairs has a first member opposite a second member along a corresponding transverse axis. The first and second members each have a mating surface configured for bearing contact with the receiver when said bolt is in the firing position. The gun also includes an extractor coupled to the bolt and being configured to move relative thereto. The bolt includes an unmatched lug extending from the body opposite the extractor between two lugs belonging to the lug pairs, and the gun is configured to prevent formation of a bearing relationship between the unmatched lug and the receiver when the bolt is in the firing position and the gun is in a normal operating condition. Prevention of this bearing relationship more evenly distributes stress from firing the gun among the lug pairs; thus generally improving reliability.
Accordingly, it is one object of the present invention to improve reliability of a firearm having a multi-lug breech bolt.
It is another object of the present invention to improve reliability of the breech bolt assembly of a firearm by modifying at least one selected lug of the assembly.
Further objects, features, aspects, and advantages of the present invention will become apparent from the drawings and description contained herein.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic cross-sectional side view of one embodiment of the present invention;
FIG. 2 is a side view of the breech bolt of the embodiment depicted in FIG. 1.
FIG. 3 is a top view of the breech bolt depicted in FIG. 2.
FIG. 4 is an end view of the breech bolt depicted in FIG. 2.
FIG. 5 is a cross-sectional end view of the breech bolt taken along the section line 5--5 depicted in FIG. 2.
FIG. 6 is a cross-sectional side view of the barrel interface of the embodiment depicted in FIG. 1.
FIG. 7 is an end view of the barrel interface depicted in FIG. 6.
FIG. 8 is a cross-sectional end view of the barrel interface taken along the section line 8--8 depicted in FIG. 6.





DESCRIPTION OF THE PREFERRED EMBODIMENT
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiment illustrated in the drawings and specific language will be used to-describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described device, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
FIG. 1 depicts firearm 10 of one embodiment of the present invention. Firearm 10 has barrel 14 and magazine 16. Magazine 16 is configured to consecutively feed cartridges to firing chamber 18 through receiver 20. Receiver 20 includes trigger assembly 22 with spring-loaded trigger 24, spring-loaded hammer 26, and firing pin 28. Receiver 20 defines cavity 29 configured to house breech bolt assembly 30. Breech bolt assembly 30 defines firing pin bore 32 through which firing pin 28 extends. Breech bolt assembly 30 also includes spring-loaded extractor 34 and breech bolt 40. Extractor 34 has guide flange 36 and is pivotably coupled by pivot pin 38 to breech bolt 40.
Referring additionally to FIGS. 2-4, further description of breech bolt 40 is provided. Bolt 40 has front end 41 opposing back end 42 along longitudinal axis L. Bolt 40 is integrally formed with stem 43 adjacent back end 42. Sealing flange 44 is generally circular and is integrally connected to stem 43. Sealing flange 44 defines a circumferential groove 45 configured to receive a sealing ring (not shown). Bolt 40 is also formed with neck 46 positioned between sealing flange 44 and cylindrical body portion 47. Cylindrical body portion 47 defines bores 48a and 48b. Cylindrical body portion also defines extractor cavity 49 configured to receive extractor 34 therein. Bore 48b is configured to receive extractor pivot pin 38 therethrough.
Breech bolt 40 also includes lug portion 50 integrally connected thereto. Lug portion 50 defines cartridge recess 52 in front end 41. Cartridge recess 52 is configured to removably retain the end of a cartridge therein.
Lug portion 50 also includes a number of bolt lugs 56a, 56b; 57a, 57b; 58a, 58b; and 60 which radially extend about longitudinal axis L. Lugs 56a, 56b (collectively designated lug pair 56) extend opposite each other along axis transverse radial TP1. Lugs 57a, 57b (collectively designated lug pair 57) extend opposite each other along transverse radial axis TP2. Lugs 58a, 58b (collectively designated lug pair 58) extend opposite each other along transverse radial axis TP3. Bolt lug 60 is relatively shorter along longitudinal axis L than each lug of lug pairs 56, 57, 58, and extends along transverse radial axis TO opposite a location between adjacent lugs 56a, 58b. This location is configured to receive a portion of extractor 34 as shown in phantom in FIG. 4. Axes TP1, TP2, TP3, and TO are perpendicular to longitudinal axis L.
Each lug 56a, 57a, 58a, 60, 56b, 57b, 58b defines a corresponding end face 62a, 62b, 62c, 62d, 62e, 62f, 62g (collectively designated end faces 62). Gap 63a is defined between lugs 56a and 57a. Gap 63b is defined between lugs 57a and 58a. Gap, 63c is defined between lugs 58a and 60. Gap 63d is defined between lugs 60 and 56b. Gap 63e is defined between lugs 56b and 57b. Gap 63f is defined between lugs 57b and 58b. Collectively, gaps 63a, 63b, 63c, 63d, 63e, 63f are designated gaps 63. Extraction gap 64 is defined between lugs 56a and 58b, and is adapted to receive a portion of extractor 34.
FIGS. 4 and 5 depict the the paired lugs 56a, 57a, 58a, 56b, 57b, 58b with bearing faces 66a, 66b, 66c, 66d, 66e, 66f, respectively, which are collectively designated bearing faces 66. Each bearing face 66 is generally planar-and-extends away from longitudinal axis L. Bolt lug 60 has offset face 68 which is also generally planar. Face 68 is offset from bearing faces 66 by distance D along longitudinal axis L. Distance D is exaggerated in FIG. 2 for the purposes of illustration.
Receiver 20 also includes barrel interface 70 as illustrated in FIGS. 1 and 6-8. Barrel interface 70 is configured as a barrel extension that interlocks with lug portion 50 of breech bolt assembly 30 for firing. Barrel interface 70 has barrel receiving end 71 opposite bolt receiving end 72. Adjacent barrel receiving end 71 is threaded portion 73 configured to engage threaded end 15 of barrel 14 (see FIG. 1). Circumferential outer flange 74 protrudes from barrel interface 70 about threaded portion 73. Between bolt receiving end 72 and threaded portion 73 is bolt interlocking chamber 75.
Between interlocking chamber 75 and bolt receiving end 72 are receiver lugs 76a, 76b (collectively designated lug pair 76); 77a, 77b (collectively designated lug pair 77); 78a, 78b (collectively designated lug pair 78); and 80a, 80b (collectively designated lug pair 80). Each of these lugs has a corresponding guide face 82a, 82b, 82c, 82d, 82e, 82f, 82g, 82h (collectively designated guide faces 82). Between adjacent lugs of lug pairs 76, 77, 78, 80, gaps 83a, 83b, 83c, 83d, 83e, 83f, 83g, 83h are defined which are collectively designated gaps 83. Next to gaps 83d, 83e, are ramp surfaces 84a, 84b. Referring particularly to FIG. 8, lugs 76a, 77a, 78a, 76b, 77b, 78b have corresponding bearing faces 86a, 86b, 86c, 86d, 86e, 86f. Lugs 80a, 80b, have offset faces 88a, 88b, respectively.
In operation, breech bolt assembly 30 moves in a reciprocal fashion along longitudinal axis L when rounds are fired from firearm 10 in a conventional automatic or semi-automatic manner. U.S. Pat. No. 2,951,424 to Stoner, U.S. Pat. No. 3,198,076 to Stoner, and U.S. Pat. No. 5,351,598 to Schuetz provide further information pertinent to this process. Generally, this process begins when a cartridge is fed from magazine 16 into cartridge recess 52 while breech bolt assembly 30 is in the rearward (or open) position (not shown) Once a cartridge is loaded, bolt 40 then slides forward opposite the direction indicated by arrow R, positioning the cartridge into firing chamber 18. As bolt 40 moves forward, lugs of lug portion 50 pass by lugs of barrel interface 70 in an interdigitating fashion. Specifically, lugs 56a, 57a, 58a, 60, 56b, 57b, 58b of lug portion 50 pass through gaps 83a, 83b, 83c, 83d, 83e, 83f, 83g, of barrel interface 70. Also, guide flange 36 of extractor 34 passes through gap 83h. Likewise, lugs 76a, 77a, 78a, 80a, 76b, 77b, pass through gaps 63a, 63b, 63c, 63d, 63e, 63f of lug portion 50, and lugs 78b, 80b pass through extractor gap 64 on opposing sides of guide flange 36.
Once lugs of bolt 40 and barrel interface 70 have passed by one another, breech bolt assembly 30 rotates about axis L to interlock the breech in a closed position, including the rotation of lug portion 50 within interlocking chamber 75 of barrel interface 70 using conventional techniques. As a result, bearing faces 66a, 66b, 66c, 66d, 66e, 66f of lug portion 50 make contact with bearing faces 86a, 86b, 86c, 86d, 86e, 86f of barrel interface 70. Notably, guide flange 36 of extractor 34 is offset from the bolt lugs of lug portion 50 so that no contact is made between guide flange 36 and offset face 88b of receiver lug 80b. Furthermore, it should be noted that the offset face 68 of bolt lug 60 does not contact offset face 88a. Once breech bolt assembly 30 rotates into an interlocking closed position with;barrel interface 70, the cartridge in firing chamber 18 may be fired by pulling trigger 24. This pulling motion causes trigger 24 to rotate which in turn causes hammer 26 to rotate from an engaged, cocked position with trigger 24 (not shown) to an unengaged position as reflected in FIG. 1. After rotating, hammer 26 strikes firing pin 28. Consequently, firing pin 28 moves within bolt 40 so that it impacts the cartridge in firing chamber 18, causing it to fire. The position of trigger assembly 20 and breech bolt assembly 30 just after firing is illustrated in FIG. 1.
Once a cartridge is fired, breech bolt assembly 30 is rotated to unlock, and slides back in a direction along arrow R to the open position and extracts the spent shell before another cartridge is loaded into loading chamber 18 from magazine 16. This process of consecutively firing and loading proceeds for a number of cartridges at the discretion of the shooter.
The firing of a cartridge in firing chamber 18 causes a recoil force in the direction indicated by arrow R. As a consequence, bolt lug pairs 56, 57, 58 are pushed back against receiver lug pairs 76, 77, 78, respectively, forming load bearing relationships between bearing faces 76 of lug portion 50 and 86 of barrel interface 70.
It has been found that by configuring bolt lug 60 with offset face 68 such that no bearing relationship forms with corresponding receiver lug 80a, that the stress of firing is more evenly distributed among lug pairs 56, 57, 58. Notably, these lug pairs are generally symmetric about a point of symmetry corresponding to the perpendicular intersection of longitudinal axis L with the view plane of FIGS. 4 and 5. Also, it should be understood that guide flange 36 of extractor 34 is configured to move relative: to bolt 40, including lug portion 50. As a result, guide flange 36 cannot appreciably bear the load of firing. Indeed, it is preferred that load bearing contact between extractor 34 and barrel interface 70 be avoided.
Furthermore, it has been discovered that lugs 56a, 58b bear a disproportionally high load from firing if a substantial bearing relationship is allowed to form between face 68 of lug 60 and barrel interface 70. This lug 60 bearing relationship with barrel interface 70 subjects lugs 56a, 58b to greater stress often resulting in fatigue and fracture, of lug 56a or 58b. The more even stress distribution provided by maintaining separation of bolt lug 60 and receiver lug 80a when in the interlocked closed position for firing generally decreases bolt lug failure rate--improving overall reliability of bolt 40, breech bolt assembly 30, and firearm 10.
Preferably, offset distance D separating face 68 of bolt lug 60 and face 88a of receiver lug 80 is at least 0.01 inch. More preferably, distance D is in a range of about 0.02 to 0.03 of an inch. Most preferably, distance D is about 0.024 of an inch.
In one embodiment, bolt lug 60 is initially formed with a bearing surface that is not offset with respect to bearing faces 66 of the other bolt lugs of lug pairs 56, 57, 58; however, bolt lug 60 is relieved-by removing material to form offset face 68 using conventional machining techniques. This embodiment may include the disassembly of an existing firearm to identify the bearing surface of-an "unpaired" or "unmatched" breech bolt lug, and then machining this surface to prevent formation of a bearing relationship during firing. In an alternative embodiment, the breech bolt is initially formed with offset face 68 being offset distance D from bearing faces 66. A bolt in accordance with this embodiment may be included in new firearms or supplied as a replacement or substitute part. Likewise, this bolt may also be used to replace a broken or worn breech bolt, or provided as a substitute for the breech bolt of an existing weapon as a preventive maintenance action.
In other embodiments, a receiver lug, such as lug 80a, is configured to prevent formation of a bearing relationship with unpaired lug 60 in the closed breech position. The design or alteration of receiver lug 80a to prevent formation of a bearing relationship may be in addition to the formation or alteration of lug 60 to provide separation, or in lieu of altering or adapting bolt 40 to establish this aspect of the present invention. Indeed, bolt lug 60 may be formed to have a surface not offset from bearing faces 66, but still remain separated from receiver lug 80a by appropriate alteration or formation of offset face 88a to provide separation in the closed breech position.
In fact, lugs 60, 80a, 80b may be removed entirely; however, it is preferred that these lugs remain to provide assistance guiding bolt 40 into interlocking chamber 75 and to provide for load bearing during firing if the other lugs fail. Nonetheless, when firearm 10 is in intended working order, substantial bearing contact between offset face 68 and 88a is generally avoided. Similarly, bearing contact between guide flange 36 and offset face 88b is preferably avoided under normal operating conditions of firearm 10.
Preferably, the components of breech bolt assembly 30 and barrel interface 70 are manufactured from a metal suitable for use in firearms using techniques known to those skilled in the art. Furthermore, it is preferred that bolt 40 and barrel interface 70 each be formed from a single, unitary piece of material; however, in alternative embodiments, bolt 40 and barrel interface 70 may each be made by coupling two or more separate components as would occur to one skilled in the art. Also, it is contemplated that bolt assembly 30, bolt 40, and barrel interface 70 may be formed from different materials suitable for their intended purpose. All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Claims
  • 1. An apparatus, comprising:
  • a gun with a receiver defining a cavity;
  • a breech bolt housed within said cavity and configured for reciprocal motion therein to fire said gun, said bolt being configured to interlock with said receiver in a firing position, said bolt including a number of opposing lug pairs radially extending from a body, each of said lug pairs having a first member opposite a second member along a corresponding transverse axis, said first and second members having a mating surface configured for bearing contact with said receiver when said bolt is in said firing position;
  • an extractor coupled to said bolt and being configured to move relative thereto; and
  • wherein said bolt includes an unmatched lug extending from said body opposite said extractor and between two lugs belonging to said lug pairs, and said gun is configured to prevent formation of a bearing relationship between said unmatched lug and said receiver when said bolt is in said firing position and said gun is in a normal operating condition.
  • 2. The apparatus of claim 1, wherein said unmatched lug is spaced apart from said receiver when said bolt is in said firing position.
  • 3. The apparatus of claim 2, wherein said unmatched lug is spaced apart from said receiver by at least 0.01 of an inch.
  • 4. The apparatus of claim 1, wherein said receiver includes a barrel interface with at least four opposing receiver lug pairs.
  • 5. The apparatus of claim 1, wherein said mating surface of each of said first and second members of each of said opposing lug pairs are generally coplanar in relation to each other.
  • 6. The apparatus of claim 5, wherein:
  • said number of opposing lug pairs is three and said mating surface of each of said first and second members of each of said opposing lug pairs are generally coplanar in relation to each other;
  • said receiver includes a barrel interface with at least eight receiver lugs;
  • said unmatched lug is spaced apart from a corresponding one of said receiver lugs;
  • said body has a generally cylindrical portion and a first end portion opposing a second end portion along said longitudinal axis, and said opposing lug pairs and said unmatched lug extend from said body at said first end portion;
  • said extractor includes a guide flange opposite said unmatched lug; and
  • said breech bolt is configured to slide along said longitudinal axis and rotate thereabout to interlock with said receiver in said firing position.
  • 7. A breech bolt, comprising:
  • an elongate body with a first end opposing a second end along a longitudinal axis and having a generally cylindrical portion between said first and second end;
  • a number of bolt lugs integrally connected to said body and extending radially from said body about said longitudinal axis adjacent said first end, said number of bolt lugs being fixed relative to each other, each of said number of bolt lugs having a first face opposing a second face along said longitudinal axis with said first face being closer to said first end than said second face, said number of bolt lugs including:
  • a plurality of at least five bolt lugs having generally coplanar second faces each configured as a bearing surface, said plurality of bolt lugs including a lug pair with a first lug adjacent a second lug, and
  • an offset bolt lug extending opposite a point between said first and second lugs, said second face of said offset bolt lug being offset a distance along said longitudinal axis from said second face of each of said plurality of bolt lugs.
  • 8. The breech bolt of claim 7, wherein said distance is at least 0.01 of an inch.
  • 9. The breech bolt of claim 7, wherein said distance is in the range of about 0.02 to 0.03 of an inch.
  • 10. The breech bolt of claim 7, wherein said distance is about 0.024 of an inch.
  • 11. The breech-bolt of claim 7, wherein said first face of each of said number of bolt lugs and said body cooperate to define a generally planar end surface at said first end.
  • 12. The breech bolt of claim 11, wherein said second face of each of said number of bolt lugs is generally parallel to said end surface.
  • 13. The breech-bolt of claim 7, wherein said offset bolt lug has a shorter-length along said longitudinal axis than any of said plurality-of bolt lugs.
  • 14. The breech bolt of claim 7, wherein each of said plurality of bolt lugs has the same size and shape.
  • 15. The breech bolt of claim 7, wherein said body defines a number of openings therethrough and has a neck portion.
  • 16. The breech bolt of claim 7, wherein said bolt is configured to receive at least a portion of an extractor between said first and second lugs.
  • 17. An apparatus, comprising:
  • a gun with a receiver defining a cavity;
  • a breech bolt housed within said cavity and configured for reciprocal motion therein to fire said gun, said bolt being configured to interlock with said receiver in a firing position, said bolt including a body and a plurality of bolt lug pairs having a first member and a second member extending radially from said body generally opposite one another, said first and second members each having a mating surface configured for bearing contact with a corresponding one of a plurality of receiver lugs when said bolt is in said firing position;
  • an extractor coupled to said bolt and being configured to move relative thereto; and
  • wherein said bolt includes an unmatched lug extending from said body opposite said extractor and between two lugs belonging to said bolt lug pairs, and said gun includes a means for providing a more uniform loading relationship between said bolt lug pairs and said receiver lugs when firing the gun by preventing formation of a bearing relationship between said unmatched lug and said receiver when said bolt is in said firing position and said gun is in a normal operating condition.
  • 18. The apparatus of claim 17, wherein said unmatched lug has a smaller dimension along a longitudinal axis of said bolt than any member of said bolt lug pairs.
  • 19. The apparatus of claim 17, wherein said number of bolt lugs is 7.
  • 20. The apparatus of claim 17, wherein said body defines a number of openings therethrough and has a neck portion, and said bolt is configured to receive at least a portion of said extractor between a first one and a second one of said lugs.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of co-pending U.S. patent application Ser. No. 08/735,077, now filed Oct. 18, 1996 U.S. Pat. No. 5,911,173.

US Referenced Citations (29)
Number Name Date Kind
2146743 Johnson, Jr. Feb 1939
2481548 Waltke, Jr. Sep 1949
2655837 Johnson, Jr. Oct 1953
2951424 Stoner Sep 1960
3027672 Sullivan Apr 1962
3198076 Stoner Aug 1965
3507187 Maillard Apr 1970
3690218 Maillard Sep 1972
3776095 Atchisson Dec 1973
4058922 Elbe et al. Nov 1977
4069608 Jurek Jan 1978
4079535 Elbe et al. Mar 1978
4098016 Foote Jul 1978
4128042 Atchisson Dec 1978
4169329 Atchisson Oct 1979
4272902 Waters Jun 1981
4398448 LaFever Aug 1983
4502237 Krogh Mar 1985
4502367 Sullivan Mar 1985
4514922 Farrar et al. May 1985
4555860 Zedrosser Dec 1985
4617749 Jurek Oct 1986
4653210 Poff, Jr. Mar 1987
4664015 Kennedy May 1987
4698931 Larsson Oct 1987
4888900 Howard Dec 1989
5279059 Howard Jan 1994
5351598 Schuetz Oct 1994
5357703 Chesnut et al. Oct 1994
Foreign Referenced Citations (1)
Number Date Country
52759 Jun 1942 NLX
Divisions (1)
Number Date Country
Parent 735077 Oct 1996