Bridge support and reduced feed spacers for spiral-wound elements

Information

  • Patent Grant
  • 11745144
  • Patent Number
    11,745,144
  • Date Filed
    Friday, October 12, 2018
    5 years ago
  • Date Issued
    Tuesday, September 5, 2023
    7 months ago
Abstract
Embodiments of the invention provide replacements for a continuous layer of feed spacer mesh in spiral-wound reverse osmosis elements and replacing such mesh with discrete regions of feed spacer supporting the inlet and outlet ends of the element and a stiffening bridge feature to bridge between these regions at the tail end of each membrane leaf comprising the element during the element rolling process. The stiffening bridge feature prevents inward deflection of the inner layer of the membrane leaf during rolling, facilitating proper sealing of the adhesive through the permeate carrier to the adjacent membrane film using known membrane rolling techniques.
Description
TECHNICAL FIELD

The present invention relates to the field of membranes for spiral wound elements such as those used in reverse osmosis systems.


BACKGROUND ART

Spiral-wound elements are known in the art and traditionally consist of a coated, porous sheet of semipermeable membrane sealed to a porous mesh which allows longitudinal flow of separated fluid to a perforated center tube for collection. A conventional unit also comprises a woven or extruded, porous spacer mesh which allows for axial or longitudinal flow within the element. This mesh is typical for construction but provides significant disadvantages in forms of biofouling potential, resistance to flow, scale formation, and complications in construction.


Spiral-wound membrane improvements have been described by Barger et al. and Bradford et al. wherein the use of deposited islands or protrusions from the active, coated surface of the membrane sheet provide for support to maintain constant fluid flow spacing axially within the element in replacement of the woven or extruded porous mesh. These features when properly designed may reduce flow restriction in the feed channel and reduce opportunities for element fouling from biofilm growth, scale formation or particle capture as well as simplifying element manufacture.


When porous mesh is used to provide feed spacing in spiral-wound filtration elements, the mesh density is typically high enough to provide even support across the entire area of the element as it is rolled, which allows even pressure to be applied to the adhesive used while rolling to penetrate through the permeate carrier and into the membrane leaf edges to create the sealed envelope through which permeate flows. For element designs that do not use a separate spacer mesh, however, the lack of support from the separate mesh can lead to problems in assembly due to uneven or undesirable glue compaction, especially in the feed space area opposite the membrane from the permeate carrier adjacent to the glue lines.


DISCLOSURE OF INVENTION

The present invention provides improvements for the construction of spiral-wound elements for separation of fluid components having significantly reduced fluid flow resistance, increased channel flow area, less area of the membrane surface occluded from printed or deposited material, and increased ease of manufacturing. Specifically, the spiral-wound element is constructed using printed or deposited spacers including a solid longitudinal spacer to provide support for glue penetration and sealing near the tail end of the membrane sheet. The improved construction method may allow for no feed spacer to be used in the interior of the spiral would element.


Embodiments of the present invention provide a membrane sheet for use in a laminated composition with a permeate carrier, wherein the membrane sheet has an active surface configured to provide selective fluid separation and an inactive surface opposite the active surface, and wherein the membrane sheet has feed spacing elements disposed on the active surface in feed spacer regions near each of two opposing edges of the active surface, and wherein the membrane sheet has a stiffening bridge feature disposed on the active surface, the inactive surface, or a combination thereof in a region near an edge of the membrane sheet other than the two opposing edges.


Typically, such a membrane sheet is rectangular, with length greater than width, and the feed spacing elements are disposed along the length, or one half of the length such that when folded the feed spacing elements extend along the length of the folded sheet. In such a configuration, the stiffening bridge feature will be disposed along the width of the sheet near one end, such that, when folded, the stiffening bridge feature is at the end where the two ends come together. Such sheets are typically matched with a permeate carrier, have adhesive applied around the edges, then rolled about a collection tube to form a spiral wound element.


In some embodiments, the stiffening bridge feature is disposed on the active surface. In some embodiments, the stiffening bridge feature is disposed on the inactive surface. In some embodiments, a central region of the active surface of the membrane sheet, between the feed spacing regions, is empty of feed spacing elements. In some embodiments, the bridge stiffening feature is affixed to the membrane sheet and projects away from membrane sheet a distance at least equal to the height of the feed spacing elements. In some embodiments, the bridge stiffening feature is continuous across the membrane between the feed spacing regions. In some embodiments, the bridge stiffening feature comprises a plurality of elements that together span the membrane between the feed spacing regions.


Embodiments of the present invention provide a laminated composition for use in a spiral-wound membrane element, comprising: (a) a permeate carrier; (b) a membrane sheet having an active surface configured to provide selective fluid separation and an inactive surface opposite the active surface, and wherein the membrane sheet has feed spacing elements disposed on the active surface in regions near each of two opposing edges of the active surface, and wherein the membrane sheet has a stiffening bridge feature disposed on the active surface, the inactive surface, or a combination thereof in a region near an edge of the membrane sheet other than the two opposing edges; (c) wherein the membrane sheet is disposed such that the inactive surface is in contact with the permeate carrier. Such embodiments typically have adhesive applied around three edges (the end with the stiffening bridge feature plus the two long edges) and are then rolled about a collection tube to form a spiral wound element.


In some embodiments, the stiffening bridge feature is disposed on the active surface. In some embodiments, the stiffening bridge feature is disposed on the inactive surface. In some embodiments, a central region of the active surface of the membrane sheet is empty of feed spacing elements. In some embodiments, the bridge stiffening feature is affixed to the membrane sheet and projects away from membrane sheet a distance at least equal to the height of the feed spacing elements. In some embodiments, the bridge stiffening feature is continuous across the membrane between the feed spacing regions. In some embodiments, the bridge stiffening feature comprises a plurality of elements that together span the membrane between the feed spacing regions. In some embodiments, the membrane sheet is characterized as having a width and length, and the membrane sheet is folded along a fold line about the middle of the membrane sheet's length such that the active surfaces face each other; and the membrane sheet is disposed on the permeate carrier such that the stiffening bridge feature is on the portion of the membrane sheet that is distal from the permeate carrier.


Embodiments of the present invention provide a method of producing a spiral wound element, comprising: (a) providing a permeate carrier sheet having a length and width; (b) providing a collection tube; (c) providing a membrane sheet, having an active surface configured to provide selective fluid separation and an inactive surface opposite the active surface, and wherein the membrane sheet has feed spacing elements disposed on the active surface in regions near each of two opposing edges of the active surface, and wherein the membrane sheet has a stiffening bridge feature disposed on the active surface, the inactive surface, or a combination thereof in a region near an edge of the membrane sheet other than the two opposing edges, wherein the membrane sheet has a width substantially equal to the width of the permeate carrier and a length substantially equal to approximately twice the length of the permeate carrier; (d) folding the membrane sheet along a fold line extending along the width of the membrane sheet such that the active surface of the membrane sheet is inside the folded sheet; (e) placing the folded membrane sheet such that the inactive surface is in contact with the permeate carrier, forming an element leaf having a first end near the fold of the membrane sheet and a second end opposite and parallel to the fold, with the two opposing edges folded and connecting the first and second ends, and having a first portion near the permeate carrier and a second portion separated from the permeate carrier by the first portion; (f) applying adhesive to the membrane sheet, the permeate carrier, or a combination thereof, such that the adhesive extends across the membrane leaf near the first edge and near the two edges; (g) winding the element leaf around the collection tube, with the first end of the element leaf near the collection tube, forming a spiral wound element. The membrane sheet dimensions being “substantially equal” to permeate carrier dimensions means that the corresponding dimensions are close enough to equal to allow convenient assembly and rolling without undesirable waste. For example, the widths need not be exactly equal if the ends of the resulting element are trimmed as is customary, but they need to be close enough to equal that the trimmed element is suitable sealed. For example, the lengths might not be exactly equal due to slight differences required to accommodate the spiral winding of the sheets about the tube, but the lengths should be close enough to equal that the resulting spiral wound element does not have excessive lengths of excess membrane sheet or permeate carrier.


Some embodiments further comprise curing the adhesive, then removing a portion of the spiral wound element corresponding to the two edges of the element leaf, wherein the element leaf, after such removal, still has adhesive completely sealing the membrane sheet about the permeate carrier along the second end and the two edges.


In some embodiments, step (e) comprises placing the membrane sheet such that the stiffening bridge feature is with the second portion of the membrane sheet.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a view of a spiral-wound element composed of a central collection tube 1, an inner half 2 and an outer half 3 of a membrane leaf and a permeate carrier 4. The element contains edge spacing features 5 disposed on the side edges and a solid stiffening bridge feature 6 disposed at the tail of the innermost layer of the membrane sheet 2 on the active surface, where “innermost” means the layer of the membrane sheet that is closer to the tube when the element is rolled around the tube.



FIG. 2 is a view of a spiral-wound element composed of a central collection tube 1, an inner half 2 and an outer half 3 of a membrane leaf and a permeate carrier 4. The element contains a solid stiffening bridge feature 6 disposed at the tail of the inner layer of the membrane sheet 2 on the inactive surface 7. In this figure the edge spacing features are disposed on the underside of the inner half 2 of the membrane leaf, and therefore are not visible in the figure.



FIG. 3 is a view of the distal end of the inner half of an unrolled membrane sheet 2 with edge spacing features 5 on the sides and a fully homogeneous stiffening bridge feature 6 on the tail of the active surface of the membrane sheet.



FIG. 4 is a view of the distal end of the inner half of an unrolled membrane sheet 2 with edge spacing features 5 on the sides and continuous adjacent stiffening strips 8 on the tail of the membrane sheet.



FIG. 5 is a view of the distal end of the inner half of an unrolled membrane sheet 2 with edge spacing features 5 on the sides and discontinuous adjacent stiffening strip segments 9 on the tail of the membrane sheet.





MODES FOR CARRYING OUT THE INVENTION AND INDUSTRIAL APPLICABILITY

The following patents and applications can facilitate understanding of the invention, and are incorporated herein by reference: PCT/US2014/018813; PCT/US2018/016318; PCT/US2017/052116; PCT/US2017/062424; PCT/US2017/062425; PCT/US2018/027367; PCT/US2018/028453.


During element assembly or rolling, typically an adhesive is used to adhere the inner end of the permeate carrier to the center tube and simultaneously bond the permeate carrier to the membrane sheet along its three outer edges which acts to prevent entry fluid from either the feed or untreated/reject stream into the permeate carrier excepting that which passes through the membrane. The adhesive seals the edges of both the membrane sheet and the permeate carrier, forcing any flow of fluid from the feed to the permeate region to pass through the membrane. The adhesive seals simultaneously define the three edges of the permeate envelope and allow flow in this envelope to be directed towards the central collection tube. The central collection tube is commonly cylindrical in shape, but the “tube” can have any shape that is compatible with the assembly and operating characteristics desired.


The adhesive is typically applied before the spiral-wound element is rolled, and once the adhesive is cured, excess membrane, permeate carrier, and adhesive is trimmed away in a plane perpendicular to the axis of the cylindrical element at each end at a fixed length. For effective operation, it is necessary to provide spacing between adjacent active leaves of a spiral-wound element to allow inlet and outlet flow of the fluid to be separated. During element manufacture this spacer provides rigidity to maintain an open feed/reject channel while forcing penetration of the adhesive through the permeate carrier to seal the permeate envelope. In some elements, a continuous sheet of material was disposed between adjacent leaves to provide a feed spacer. Such continuous feed spacers can limit fluid flow and be subject to fouling.


In some elements, spacing features are placed, e.g., by deposition or printing, in only selected regions of the membrane. As an example, spacing features can be deposited only along the feed and untreated/reject edges of the element to provide the spacing required. Such spacing features also support the membrane to facilitate adhesive penetration mentioned above—the spacing features are disposed in areas opposite where the adhesive is deposited along the inlet and outlet edges of the membrane leaf, such that the spacers support the membrane sufficient to allow the membrane to encourage the desired glue penetration into the permeate carrier. The spacing features along the edges, however, do not provide support at the distal end of the leaf.


An example embodiment of the present invention provides a stiffening bridge feature that provides additional support at the distal end of the leaf. Additional regions of spacing features can also be employed in the element, but the stiffening bridge allows for empty regions between discontinuous spacing feature segments. The stiffening bridge feature is configured to confer more stiffness to the membrane sheet than the edge spacing features because, when the membrane is rolled into a spiral-wound element, the edge spacing features stack on top of each other in a spiral fashion providing support to each additional wind, while the stiffening bridge feature at the distal end has no support below it other than any material between the edge spacing features or strips. The stiffening bridge feature therefore should provide enough rigidity to provide support without significant inward deflection caused by the adhesive during the rolling process. The stiffening bridge feature adds flexural strength to the membrane leaf in proportion to the thickness of the stiffening bridge feature and the tensile strength of the material making up the stiffening bridge feature. Due to the thinness of a typical membrane film, a small amount of additional material in the stiffening bridge feature can significantly increase the flexural strength of the film/bridge system.


In some embodiments of the present invention, the area between the edge spacing features can be left empty, or can contain additional features either printed or deposited onto the membrane film in this region. Due to the edge spacing features supporting the element during the rolling process, these additional central features can be of any thickness up to the thickness of the edge spacing features. The central features, if present, can include features deposited or printed onto the membrane surface in a more sparse or different pattern than the edge spacing features. They can include mesh with a different geometry than the edge spacing features. These central features can be chosen for their ability to promote localized vorticity or turbulence within the fluid flow, or in order to minimize fouling potential within the spiral-wound element.


Embodiments of the present invention employ a discontinuous feed spacing element in combination with a stiffening bridge feature which enables proper adhesive seal to be made in the discontinuous regions during the element rolling process. The discontinuous feed spacing elements can comprise two discrete regions, one disposed at the inlet end and one disposed at the outlet end of the membrane leaf, with a gap between them. Other embodiments can comprise any configuration of feed spacing elements wherein the height of the spacer is discontinuous on length-scales of about 1″ or greater, such as a feed spacer consisting of 3 distinct regions (one at each edge and one down the center of the leaf between them), or an extruded mesh which is manufactured with regions of different thickness. In any of the above situations, a stiffening bridge feature is added to allow standard element rolling techniques to be used to achieve a proper adhesive seal at the distal or tail end of the membrane leaf.


In an example embodiment of the present invention shown in FIG. 1, a single homogeneous stiffening bridge feature 6 is deposited onto the inner half 2 of the active surface of the membrane leaf, such that the when the leaf is folded and the spiral-wound element is assembled, stiffening bridge feature 6 is disposed at the distal end of the inner half of folded leaf 2 with respect to the central collection tube when rolled into an element. The height and shape of stiffening bridge feature 6 is configured to stiffen the membrane leaf in this region such that it supports the distal end of the membrane leaf to reduce deflection caused by the adhesive during the rolling process. The stiffening bridge feature can extend across the width of the membrane, as shown, or can extend only between the two regions having edge spacing features, e.g., if the regions having edge spacing features extend all the way to the end of the membrane. The stiffness desired can be determined based on the properties of the adhesive, the membrane, the permeate carrier, the rolling procedure and forces, and the adhesive penetration desired. Stiffening of the distal region can help ensure that the distal glue line used to create the laminated sandwich is forced to penetrate the sandwiched permeate carrier 4 and adhere to the opposing membrane sheet 3 without allowing the innermost membrane leaf 2 to deflect inwards towards the center of the spiral-wound element.


In another example embodiment of the present invention shown in FIG. 2, a single continuous stiffening strip 6 is deposited onto the inside or inactive support surface of membrane leaf 7, such that when the leaf is folded and the spiral-wound element is assembled, stiffening bridge feature 6 is disposed at the distal end of the membrane leaf, and on the inner half of the folded leaf 2 with respect to central collection tube 1 when rolled into an element. The height and shape of the feature is configured to provide additional stiffness to this section of the membrane during rolling to ensure that the glue used to create the laminated sandwich is forced to penetrate sandwiched permeate carrier 4 and adhere to opposing membrane sheet 3 without allowing inner membrane sheet 2 to bow in towards the center of the spiral-wound element.


In one example embodiment, a thin film composite membrane sheet 12″ wide is cut to a length of 80″. Edge supporting feed spacing elements comprise a pattern of alternating bars oriented 45° from the direction of fluid inlet to outlet flow and 90° from one another. Feed spacing elements are, in this example embodiment, about 0.25″ in length, 0.018″ in width, and 0.015″ in height, and are deposited on the membrane surface using a UV-cured inkjet printer onto half of the membrane sheet on the active side, aligned into strips 2″ wide along either longitudinal edge of membrane sheet and leaving 8″ of the membrane sheet in the center unprinted. Other feed spacing element designs and processes can be suitable, for more examples see the PCT applications incorporated by reference herein. Additionally, a solid stiffening bridge feature is printed at the distal end of the printed half of membrane sheet, 12″ wide, 1.5″ long, and 0.015″ high, deposited using the same UV cured inkjet process. Other dimensions can be appropriate; e.g., any width from one third to the full width of the sheet, any length from 0.1″ to 5.0″, or from 1″ to 2.5″; and heights from 0.5 to 2.0 times the height of the feed spacing elements. After the edge support spacers and the stiffening bridge feature have been built, the leaf is folded so that the active surfaces of the membrane face one another, with the printed features on the inside of the folded leaf. The folded leaf is placed onto a 50″×12″ length of permeate carrier with the unprinted half of the leaf oriented so that it is in contact with the permeate carrier. The permeate carrier is attached along one of the 12″ edges to a 12″ long center tube with a diameter of 0.67″. The membrane leaf is placed on the permeate carrier such that the fold in the leaf is spaced about 5″ from the attachment to center tube. Adhesive is applied in a continuous bead from a point starting at the attachment of permeate carrier to center tube one inch from the edge of the membrane leaf and continuing along one long edge, around the end opposite the fold, and back along the other long edge at the 1″ distance from the edge. Subsequent to adhesive deposition, the leaf is rolled around the center tube to create the spiral-wound element with an outer diameter of about 1.8″. After the adhesive has dried, the ends of the spiral wound element are trimmed off about 1″ in from each edge of center tube, leaving a spiral wound element structure that is about 10″ long×about 1.8″ diameter on the 12″ long center tube. On each edge of the element, approximately 1″ of edge spacing feature remains which allows entry of the feed stream and egress of the reject stream. This description describes one example embodiment. However, these print patterns may apply to spiral would elements of different diameters and lengths.


The stiffening bridge features can comprise various geometries, and different shapes can be used so long as they cover a sufficient area that they will support the area that the adhesive line at the distal or tail end of the membrane leaf will cover when rolled. The width of the adhesive line when fully compressed during rolling will typically range from 1″ to 2.5″ in length and will cover the entire width of the end of membrane leaf. FIGS. 3-5 illustrate several examples, including solid strips 6, sets of parallel lines 8 or line segments 9 which run parallel to central collection tube 1, or other complex shapes so long as they, in aggregate, prevent deflection of the region on which the features are printed or deposited toward center tube 1 during element rolling. Shapes that are not solid throughout the entirety of their dimensions can be preferable in order to use less material in their construction.


The stiffening bridge feature can be comprised of any number of materials which are compatible with the separated fluid and permeate carrier including, but not limited to, plastics, thermoplastics, reactive polymers, waxes, or resins.


The stiffening bridge feature can be deposited by a variety of techniques. Traditional printing techniques such as offset printing, gravure printing, and screen printing, can be suitable, although these deposition techniques can present thickness and geometry limitations. Thicker features can be deposited by microdispensing, inkjet printing, fused deposition, or via application using an adhesive that can include roll transfer of sheet or pick-and-place of individual features.


Edge spacing features are placed onto the active side of one or both sides of membrane leaves prior to rolling in order to maintain feed spacing during the rolling of the spiral-wound element. These edge spacing features can be left in place or partially removed during or subsequent to the trimming process after the spiral-wound element is rolled. Edge spacing features 5 allow compression of the adhesive during element rolling along the edges of the element to ensure that the adhesive completely infiltrates permeate carrier 4 and bonds to membrane sheet 2 on both sides of the permeate carrier while maintaining height separation at the edges roughly equivalent to the height of the feed spacer features.


Edge spacing features placed in this manner can be discrete strips or discontinuous segments (e.g., dots, lines, etc.). If discrete strips are used, they must either be completely removed during the subsequent trimming of the element, or comprised of a porous material to allow fluid flow through them if some portion of the strips is left in place after trimming. Porous edge spacing features can be comprised of a porous material, such as a woven or non-woven fabric or extruded or woven mesh, which does not extend into the interior of the element more than about one-half of an inch past the glue line in order to allow flow of feed fluid through the edge features.


The present invention has been described in connection with various example embodiments. It will be understood that the above description is merely illustrative of the applications of the principles of the present invention, the scope of which is to be determined by the claims viewed in light of the specification. Other variants and modifications of the invention will be apparent to those skilled in the art.

Claims
  • 1. A method of producing a spiral wound element, comprising: (a) providing a permeate carrier sheet having a length and width;(b) providing a collection tube;(c) providing a membrane sheet, having an active surface configured to provide selective fluid separation and an inactive surface opposite the active surface, and wherein the membrane sheet has feed spacing elements disposed on the active surface in regions near each of first and second opposing edges of the active surface, and wherein the membrane sheet has a stiffening bridge feature disposed on the active surface of the membrane sheet in a region near a third edge of the membrane sheet that is not one of the first and second opposing edges, wherein the membrane sheet has a width substantially equal to the width of the permeate carrier and a length substantially equal to about twice the length of the permeate carrier;(d) folding the membrane sheet along a fold line extending along the width of the membrane sheet such that the active surface of the membrane sheet is inside the folded sheet;(e) placing the folded membrane sheet such that the inactive surface is in contact with the permeate carrier, forming an element leaf having a first end near the fold of the membrane sheet and a second end opposite and parallel to the fold, with the first and second opposing edges folded and connecting the first and second ends, and having a first portion near the permeate carrier and a second portion separated from the permeate carrier by the first portion;(f) applying adhesive to the membrane sheet, the permeate carrier, or a combination thereof, such that the adhesive extends across the membrane leaf near the third edge and near the first and second opposing edges;(g) winding the element leaf around the collection tube, with the first end of the element leaf near the collection tube, forming a spiral wound element.
  • 2. The method of claim 1, further comprising curing the adhesive, then removing a portion of the spiral wound element corresponding to the first and second opposing edges of the element leaf, wherein the element leaf, after such removal, still has adhesive completely sealing the membrane sheet about the permeate carrier along the second end and the first and second opposing edges.
  • 3. The method of claim 1, wherein step (e) comprises placing the membrane sheet such that the stiffening bridge feature is with the second portion of the membrane sheet.
  • 4. The method of claim 1, wherein a central region of the active surface of the membrane sheet, between the feed spacing regions, is empty of feed spacing elements.
  • 5. The method of claim 1, wherein the stiffening bridge feature does not wrap around the third edge.
  • 6. The method of claim 1, wherein the stiffening bridge feature does not seal the permeate carrier at the second end of the element leaf.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application under 35 U.S.C. 371 of PCT application PCT/US2018/055671, filed 12 Oct. 2018, which claims priority to U.S. provisional application 62/572,230, filed 13 Oct. 2017. Each of the foregoing is incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/055671 10/12/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/075370 4/18/2019 WO A
US Referenced Citations (258)
Number Name Date Kind
3963621 Newman Jun 1976 A
4187173 Keefer Feb 1980 A
4208289 Bray Jun 1980 A
4222874 Connelly Sep 1980 A
4228014 Timm et al. Oct 1980 A
4230564 Keefer Oct 1980 A
4230579 Bray et al. Oct 1980 A
4235723 Bartlett, Jr. Nov 1980 A
4277340 Kanamaru et al. Jul 1981 A
4288326 Keefer Sep 1981 A
4309287 Roos et al. Jan 1982 A
4326960 Iwahori et al. Apr 1982 A
4341631 Hargitay Jul 1982 A
4347132 Davis Aug 1982 A
4354939 Pohl Oct 1982 A
4358377 Clark Nov 1982 A
4409849 Roos Oct 1983 A
4410429 Harvey et al. Oct 1983 A
4411785 Yu et al. Oct 1983 A
4426285 Davis Jan 1984 A
4434056 Keefer Feb 1984 A
4454891 Dreibelbis et al. Jun 1984 A
4461707 Thayer et al. Jul 1984 A
4476022 Doll Oct 1984 A
4482459 Shiver Nov 1984 A
4534713 Wanner Aug 1985 A
4556488 Timm et al. Dec 1985 A
4585554 Burrows Apr 1986 A
RE32144 Keefer May 1986 E
4595497 Burrows Jun 1986 A
4599171 Padilla et al. Jul 1986 A
4600512 Aid Jul 1986 A
4608140 Goldstein Aug 1986 A
4613436 Wight et al. Sep 1986 A
4623451 Oliver Nov 1986 A
4623467 Hamlin Nov 1986 A
4640774 Garcera et al. Feb 1987 A
4645601 Regunathan et al. Feb 1987 A
4652373 Trimmer Mar 1987 A
4657674 Burrows Apr 1987 A
4670144 McCausland et al. Jun 1987 A
4695375 Tyler Sep 1987 A
4704324 Davis et al. Nov 1987 A
4705625 Hart, Jr. Nov 1987 A
4735716 Petrucci et al. Apr 1988 A
4735718 Peters Apr 1988 A
4741823 Olsen et al. May 1988 A
4743366 Burrows May 1988 A
4744895 Gales et al. May 1988 A
4744900 Bratt May 1988 A
4756835 Wilson Jul 1988 A
4775465 Burrows Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4802982 Lien Feb 1989 A
4814079 Schneider Mar 1989 A
4820413 Lopez Apr 1989 A
4830744 Burrows May 1989 A
4832850 Cais et al. May 1989 A
4834873 Burrows May 1989 A
4842725 Blad et al. Jun 1989 A
4842736 Bray Jun 1989 A
4844805 Solomon Jul 1989 A
4855058 Holland et al. Aug 1989 A
4856559 Lipshultz et al. Aug 1989 A
4869821 Korin Sep 1989 A
4874514 Casey, Jr. Oct 1989 A
4876002 Marshall et al. Oct 1989 A
4877521 Petrucci et al. Oct 1989 A
4882061 Petrucci et al. Nov 1989 A
4882223 Aptel et al. Nov 1989 A
RE33135 Wanner, Sr. et al. Dec 1989 E
4885092 Zwick Dec 1989 A
4886597 Wild et al. Dec 1989 A
4892657 Mohn et al. Jan 1990 A
4902417 Lien Feb 1990 A
4906372 Hopkins Mar 1990 A
4917847 Solomon Apr 1990 A
4937557 Tucci et al. Jun 1990 A
4944877 Maples Jul 1990 A
4988525 Gresch Jan 1991 A
4990248 Brown et al. Feb 1991 A
4992170 Menon et al. Feb 1991 A
4995977 Hilgendorff et al. Feb 1991 A
5002664 Clack et al. Mar 1991 A
5017284 Miler et al. May 1991 A
5043066 Miller et al. Aug 1991 A
5045197 Burrows Sep 1991 A
5057212 Burrows Oct 1991 A
5069789 Mohn et al. Dec 1991 A
5078876 Whittier et al. Jan 1992 A
5094749 Seita et al. Mar 1992 A
5096574 Birdsong et al. Mar 1992 A
5104532 Thompson et al. Apr 1992 A
5108604 Robbins Apr 1992 A
5128035 Clack et al. Jul 1992 A
5131277 Birdsong et al. Jul 1992 A
5132017 Birdsong et al. Jul 1992 A
5145575 Burrows Sep 1992 A
5167786 Eberle Dec 1992 A
5167826 Eaton Dec 1992 A
5183567 Mohn et al. Feb 1993 A
5194156 Tomchak Mar 1993 A
5198110 Hanai et al. Mar 1993 A
5204002 Belfort et al. Apr 1993 A
5232591 Solomon Aug 1993 A
5234583 Cluff Aug 1993 A
5240612 Grangeon et al. Aug 1993 A
5279732 Edens Jan 1994 A
5296148 Colangelo et al. Mar 1994 A
5354464 Slovak et al. Oct 1994 A
5362383 Zimmerman et al. Nov 1994 A
5462414 Permar Oct 1995 A
5466366 Chia-ching Nov 1995 A
5468387 Solomon Nov 1995 A
5507943 Labrador Apr 1996 A
RE35252 Clack et al. May 1996 E
5545320 Heine et al. Aug 1996 A
5573662 Abe et al. Nov 1996 A
5597487 Vogel et al. Jan 1997 A
5626752 Mohn et al. May 1997 A
5626758 Belfort May 1997 A
5628198 Permar May 1997 A
5681459 Bowman Oct 1997 A
5681467 Solie et al. Oct 1997 A
5788858 Acernese et al. Aug 1998 A
5795475 Luedke et al. Aug 1998 A
5811251 Hirose et al. Sep 1998 A
5824217 Pearl et al. Oct 1998 A
5914041 Chancellor Jun 1999 A
5944985 Bowman Aug 1999 A
5985146 Knappe et al. Nov 1999 A
6030535 Hayashi et al. Feb 2000 A
6071404 Tsui Jun 2000 A
6071414 Kishi Jun 2000 A
6099735 Kelada Aug 2000 A
6109029 Vowles et al. Aug 2000 A
6110360 Hart, Jr. Aug 2000 A
6117297 Goldstein Sep 2000 A
6120682 Cook Sep 2000 A
6126833 Stobbe et al. Oct 2000 A
6174437 Haney Jan 2001 B1
6190557 Hisada et al. Feb 2001 B1
6193879 Bowman Feb 2001 B1
6197191 Wobben Mar 2001 B1
6217773 Graham Apr 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6277282 Kihara et al. Aug 2001 B1
6299766 Permar Oct 2001 B1
6345961 Oklejas, Jr. Feb 2002 B1
6348148 Bosley Feb 2002 B1
6379518 Osawa et al. Apr 2002 B1
6379548 Kurokawa et al. Apr 2002 B1
6383384 Anderson May 2002 B1
RE37759 Belfort Jun 2002 E
6402956 Andou et al. Jun 2002 B1
6423212 Bosko Jul 2002 B1
6423223 Northcut et al. Jul 2002 B1
6432301 Dengler Aug 2002 B1
6436282 Gundrum et al. Aug 2002 B1
6447259 Elliott-Moore Sep 2002 B2
6514398 DiMascio et al. Feb 2003 B2
6521124 Northcut et al. Feb 2003 B2
6521127 Chancellor Feb 2003 B1
6524478 Heine et al. Feb 2003 B1
6540915 Patil Apr 2003 B2
6575308 Fuls et al. Jun 2003 B1
6579451 Avero Jun 2003 B1
6607668 Rela Aug 2003 B2
6613231 Jitariouk Sep 2003 B1
6632357 Barger et al. Oct 2003 B1
6790345 Broussard Sep 2004 B2
6805796 Hirose et al. Oct 2004 B2
6830683 Gundrum et al. Dec 2004 B2
6866831 Nakao et al. Mar 2005 B2
6929743 Diel Aug 2005 B2
6929748 Avijit et al. Aug 2005 B2
7021667 Campbell et al. Apr 2006 B2
7186331 Maartens et al. Mar 2007 B2
7244357 Herrington et al. Jul 2007 B2
7297268 Herrington et al. Nov 2007 B2
7306437 Hauge Dec 2007 B2
7311831 Bradford et al. Dec 2007 B2
7351335 Broens et al. Apr 2008 B2
7387725 Choi et al. Jun 2008 B2
7416666 Gordon Aug 2008 B2
7449093 Dudziak et al. Nov 2008 B2
7455778 Gordon Nov 2008 B2
7501064 Schmidt et al. Mar 2009 B2
7514010 Salmon Apr 2009 B2
7520981 Barber Apr 2009 B2
7540956 Kurth et al. Jun 2009 B1
7650805 Nauseda et al. Jan 2010 B2
7733459 Dierichs et al. Jun 2010 B2
7736503 Kennedy et al. Jun 2010 B2
7862723 Cartwright Jan 2011 B2
7875184 Parker et al. Jan 2011 B2
7892429 Oklejas, Jr. Feb 2011 B2
7901580 Salyer Mar 2011 B2
7909998 Kennedy et al. Mar 2011 B2
7910004 Cohen et al. Mar 2011 B2
7927082 Haudenschild Apr 2011 B2
7981293 Powell Jul 2011 B2
8021550 Beauchamp et al. Sep 2011 B2
8101074 Larsen Jan 2012 B2
8114286 Kawakami Feb 2012 B2
8147699 Goldsmith Apr 2012 B2
8257594 Astle et al. Sep 2012 B2
8282823 Acernese et al. Oct 2012 B2
8292088 Francisco et al. Oct 2012 B2
8292492 Ho et al. Oct 2012 B2
8414767 Gaignet et al. Apr 2013 B2
8425734 Goel et al. Apr 2013 B2
8454829 Yaeger Jun 2013 B2
8506685 Taylor et al. Aug 2013 B2
8518225 Sumita et al. Aug 2013 B2
8628642 Goel et al. Jan 2014 B2
8652326 Johann et al. Feb 2014 B2
8685252 Vuong et al. Apr 2014 B2
8696904 Thiyagarajan et al. Apr 2014 B2
8771510 Takahashi et al. Jul 2014 B2
8778055 Taylor et al. Jul 2014 B2
8808538 Oklejas, Jr. Aug 2014 B2
8889009 Brausch et al. Nov 2014 B2
8944257 Eisen et al. Feb 2015 B2
8961790 Beauchamp et al. Feb 2015 B2
8968566 Beauchamp et al. Mar 2015 B2
8999162 Vuong et al. Apr 2015 B2
9011664 Takahashi et al. Apr 2015 B2
9011688 Takahashi et al. Apr 2015 B2
9108162 Takahashi et al. Aug 2015 B2
9114365 Schmitt Aug 2015 B2
9260325 Takahashi et al. Feb 2016 B2
9328743 Hirosawa et al. May 2016 B2
9387445 Kimura et al. Jul 2016 B2
9403125 Shaffer Aug 2016 B2
9475008 Salama et al. Oct 2016 B2
9492792 Tomescu et al. Nov 2016 B2
9546671 Hirosawa et al. Jan 2017 B2
9597640 Koiwa et al. Mar 2017 B2
9616390 Hirozawa et al. Apr 2017 B2
9617172 Baski Apr 2017 B1
9724646 Okamoto et al. Aug 2017 B2
9731984 Beall Aug 2017 B2
9758389 Rau, III Sep 2017 B2
9764291 Hirozawa et al. Sep 2017 B2
9808767 Tabayashi et al. Nov 2017 B2
20080290031 Popa Nov 2008 A1
20120018366 Buser Jan 2012 A1
20120097597 Billovits Apr 2012 A1
20120298578 Herrington Nov 2012 A1
20130334128 Takagi et al. Dec 2013 A1
20150068971 Koiwa Mar 2015 A1
20150298064 Takagi et al. Oct 2015 A1
20150343388 Hester et al. Dec 2015 A1
20160008763 Roderick et al. Jan 2016 A1
20160236132 Hara et al. Aug 2016 A1
20170007970 Baruch et al. Jan 2017 A1
Foreign Referenced Citations (8)
Number Date Country
2662925 Jan 2009 CA
2825674 Aug 2011 CA
2902094 Aug 2015 EP
WO2010047360 Apr 2010 WO
WO2015016253 Feb 2015 WO
WO2002055179 Aug 2015 WO
WO2016199272 Dec 2016 WO
WO2017087461 May 2017 WO
Related Publications (1)
Number Date Country
20210031146 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
62572230 Oct 2017 US