The initiation of explosive and pyrotechnic devices for military gun launch applications require the use of a device that will prevent unintended functioning of the initiating element until conditions are safe to do so. Existing solutions for this type of application are complex, bulky and expensive for ballistic applications that do not require a traditional safe and arm device when explosive devices are not being initiated. Rocket motors or propelling charges are examples of such applications. In these cases a low cost and inherently robust device is preferred such that the device cannot unintentionally react during handling or the erroneous operation of electronic circuits designed to function the energetic elements.
The old ways of solving the problem are well known and include conventional safe and arm devices. These devices are bulky and expensive. Alternatively, the design may not provide a safety feature at all since the safety requirements for non-explosive elements may be lax, poorly understood or undefined. This increases the potential of inadvertently initiating the device under certain circumstances. Such was the case when a Navy rocket motor was accidentally initiated on the USS Forrestal in 1967 with disastrous results.
The invention described herein is manufactured using simple methods and provides an electrically conductive, normally closed circuit that is wired in parallel with the bridgewire. The proposed device has far less of an electrical resistance that than of the attached bridgewire and therefore diverts the majority of any electric current through the shunt in the event of an unintentional initiation. During a setback type event, the shunt device destructively breaks which in effect removes the shunt portion of the circuit for the main circuit which then allows the full electrical current to be diverted to the bridgewire circuit for full current initiation of the bridgewire.
Accordingly, it is an object of the present invention is to provide a setback switch device which, upon launch, can arm an explosive or pyrotechnic device for military gun launched applications.
Another object of the present invention is to provide a bridgewire shunt means which can prevent the unintended arming, before any launch is undertaken, of an explosive or pyrotechnic device in military gun launched applications.
It is a further object of the present invention to provide a bridgewire shunt means which can prevent the accidental arming by a stray voltage of an explosive or pyrotechnic device.
These and other objects, features and advantages of the invention will become more apparent in view of the within detailed descriptions of the invention, the claims, and in light of the following drawings wherein reference numerals may be reused where appropriate to indicate a correspondence between the referenced items. It should be understood that the sizes and shapes of the different components in the figures may not be in exact proportion and are shown here just for visual clarity and for purposes of explanation. It is also to be understood that the specific embodiments of the present invention that have been described herein are merely illustrative of certain applications of the principles of the present invention. It should further be understood that the geometry, compositions, values, and dimensions of the components described herein can be modified within the scope of the invention and are not generally intended to be exclusive. Numerous other modifications can be made when implementing the invention for a particular environment, without departing from the spirit and scope of the invention.
As might be seen in
The ball mass 2 shown in this device is constructed of but not limited to, a non-conductive element that will provide the necessary axial force under acceleration force 9 to directly apply a bias force against shunt wire suspension 13 and cause it to break when a particular ultimate tensile force is achieved. The ball mass 2 is a movable element that is able to translate axially in housing 1 along housing bore 6. The ball mass may be made of plastic, or it may be of a magnetic material or be nonmagnetic. Shunt wire 3 is an electrically conductive element that is held in suspension in housing 1 via two through holes wire port 4. The shunt wire may be a straight piece of wire that has essentially zero electrical resistance. The shunt wire may have a nonelectrically conductive outer coating. Wire port 4 on both sides of housing 1 permit the wire to span thru housing 1 and provide a fixed height for the shunt wire 3 to be supported on either side of housing 1 and provide axial restraint for ball mass 2 while at rest. The housing wire ports may be such that both holes are positioned at the same height above the bottom area, and may be approximately 180 degrees apart if looking at a horizontal cross section of such housing. The ball mass 2 is intimately situated against shunt wire 3 as shown explicitly as shunt wire suspension 13 to provide a nest-like captive assembly to prevent excessive axial movement of ball mass 2 along housing bore 6. Ball mass 2 is also constrained from radial movement by the sides of housing bore 6. The ball mass may take a number of shapes, so long as it can be suspended by the shunt wire only.
While the invention may have been described with reference to certain embodiments, numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention as defined in the appended claims, and equivalents thereof.
The inventions described herein may be made, used, or licensed by or for the U.S. Government for U.S. Government purposes.
Number | Name | Date | Kind |
---|---|---|---|
2827851 | Ferrara | Mar 1958 | A |
3086468 | Mountjoy | Apr 1963 | A |
3572247 | Warshall | Mar 1971 | A |
4085679 | Webb | Apr 1978 | A |
4515080 | Bell | May 1985 | A |
4599945 | Groustra | Jul 1986 | A |
4667598 | Gröbler | May 1987 | A |
4715281 | Dinger | Dec 1987 | A |
4953475 | Munach | Sep 1990 | A |
5131328 | Chan | Jul 1992 | A |
5485788 | Corney | Jan 1996 | A |