The present invention relates to steel stud building wall systems and especially to apparatuses for stabilizing steed studs to prevent lateral movement and torsion in such systems.
Many industrial, and a growing number of residential, buildings are constructed with steel stud wall framing for a variety of reasons. Steel framing is fireproof, does not warp, cannot be infested, and does not rot. When a wall is built with any kind of stud, wood or steel, it is generally desirable to fix sequential studs relative to each other and each against lateral movement and torsion. In wood-stud walls, a short piece of wood blocking is typically nailed to adjacent stud pairs to stabilize them. In steel-stud walls, an elongated steel bridging member is typically inserted horizontally through pre-punched openings in a series of vertical studs to keep them aligned. Steel studs have excellent columnar strength when they are straight, but a significant portion of that strength is lost if the studs are twisted. Because steel studs are particularly vulnerable to torsion, the bridging member, which is typically channel-shaped, having a horizontal web and two vertical side flanges, is made to closely fit the openings in the vertical studs in order to maximize torque resistance. In additional to mechanical torque, metal studs can twist or bend in response to the heat of a fire when the drywall sheathing, which acts as a firebreak, is destroyed. When metal studs twist or bend, they lose their weight-bearing capacity, multiplying the damage caused directly by fire.
While channel-shaped bridging members closely received in the openings can help restrain the studs from twisting, some twisting can still occur and the studs can still shift or bend parallel to the wall. A variety of sheet metal brackets, beginning with a simple right angle, have been designed to prevent this shifting or bending. The prior art brackets are all relatively labor intensive to install and their connections are all relatively weak. For example, with the simple right angle bracket, the installer places the horizontal leg of the bracket on the bridging member and the vertical leg of the bracket against the web of the wall stud. Screws are inserted through both legs to attach the bracket to the bridging member and the stud. The bracket relies on the screw connections to function, and the installer must ensure that the bracket is placed correctly. Later prior art brackets have improved on this basic connection.
The prior art also includes short bridging members that, like the wood blocking members mentioned above, span only adjacent studs and have ends tailored for fastening the wall studs, but these bridging members are relatively expensive because they use additional material to form the ends, they require a large number of fasteners, and they are necessarily of fixed length, which makes them useless if the spacing between any two studs has to be varied from the norm.
The prior art also includes elongated bridging members with a series of slots that are designed for mating with the opening in the wall stud webs, but these make relatively weak connections and also have the disadvantage that they cannot accommodate any variation in the spacing between studs.
It is an object of the present invention to provide a bracket that uses less material than prior art brackets, installs faster and more easily using fewer fasteners, and forms a connection that is stronger, resisting both lateral and torsional loads better than the prior art.
The present invention provides a connector for firmly connecting and stabilizing a building wall steel stud in concert with a bridging member. The bridging member passes through an opening in each of several studs in a section of a wall. The bridging member is designed to keep the studs in alignment along the length of the wall when it is installed through the studs.
The present invention provides a connector with edges that interlock with the web of a wall stud to provide exceptional torsional rigidity. The edges are braced by the body plates of the connector, allowing them to resist substantially higher loads than flanges adjacent to the web of the wall stud.
The present invention provides a connector with edges or similarly narrow lines that interface with the sides of the bridging members that connect wall studs, also providing exceptional torsional rigidity. These narrow interfaces are braced by flanges that intersect with the sides of the bridging members instead of being positioned alongside and parallel to the sides of the bridging members.
The interfaces with the sides of the bridging members are further reinforced by bracing the opposite ends of the flanges against the web of the wall stud, so that the diagonal flanges are trapped between the sides of the bridging members and the web of the wall stud.
The exceptional strength of the interlocking connections between the bridging connector, the bridging member and the wall stud allow the bridging connector to be firmly connected with a single fastener that attaches the body of the bridging connector to the bridging member.
For added strength, a second fastener can be used to attach the bridging connector to the wall stud.
As shown in
Typically, the wall stud 2 includes a central web 3 having a first side 4 and a second side 5, an inner surface 6 and an outer surface 7, and a elongated opening 8. The central web 3 is typically rectangular and occupies a vertical plane. A first side flange 9 is integrally attached to the first side 4. A second side flange 10 is integrally attached to the second side 5. The first and second side flanges 9 and 10 are typically rectangular and occupy vertical planes that are mutually parallel and are both orthogonal to the central web 3. The central web 3 of the wall stud is typically 3.635 (3⅝), 6 or 8 inches wide, although there are wall studs 2 as narrow as 2.5 inches and as wide as 12 inches, with widths between 3.635 (3⅝) and 6 inches as well as between 6 and 12 inches. The elongated opening 8 is typically 1.5 inches wide and 3.25 inches tall. The first and second side flanges 9 and 10 are typically 1.62 (1⅝) inches wide, although there are wall studs 2 with first and second side flanges 9 and 10 that are 2 inches wide and 2.5 inches wide.
Typically, the first side flange 9 of the wall stud 2 has a third side 51 opposite and parallel to the first side 4, and the second side flange 10 of the wall stud 2 has a fourth side 52 opposite and parallel to the second side 5. The first side flange 9 has an inner surface 53 and an outer surface 54. The second side flange has an inner surface 55, which faces the inner surface 53 of the first side flange 9, and an outer surface 56. A first stiffening flange 57 is attached to the first side flange 9 along the third side 51, and a second stiffening flange 58 is attached to the second side flange 10 along the fourth side 52. The first stiffening flange 57 has a first inner edge 59 and the second stiffening flange 58 has a second inner edge 60 which faces the first inner edge 59 of the first stiffening flange. 57. The first stiffening flange 57 has an inner surface 61, which faces the inner surface 6 of the central web 3, and an outer surface 62. The second stiffening flange 58 has an inner surface 63, which also faces the inner surface 6 of the central web 3, and an outer surface 64. The wall studs 2, the bridging members 11, and the preferred bridging connector 19 are all generally channel-shaped. The bridging member 11 has a middle web 12, having first and second boundaries 13 and 14, to which boundary flanges 17 and 18 are connected. Similarly, the bridging connector 19 has web-like first and second body plates 20 and 26, to which first and second side flanges 35 and 36, and third and fourth side flanges 43 and 44 are connected.
Because the wall studs 2 and bridging members 11 are typically made from sheet metal, and the bridging connector 19 is preferably made from sheet metal, there are several major bends in all three. Typically, the first side 4 and the second side 5 of the central web 3 of the wall stud 2, not only bound the central web 3 but also are bends, as well as junctures between the central web 3 and the first and second side flanges 9 and 10 of the wall stud 2. The third and fourth sides 51 and 52 of the first and second side flanges 9 and 10 of the wall stud 2 are also bends and junctures between the first and second side flanges 9 and 10, respectively, and the first and second stiffening flanges 57 and 58. Similarly, the first and second boundaries 13 and 14 of the middle web 12 of the bridging member 11 are typically bends, as well as junctures between the middle web 12 and the first and second boundary flanges 17 and 18. Preferably, the first and second side boundaries 33 and 34 of the first body plate 20 of the bridging connector 19 are also bends, as well as junctures between the first body plate 20 and the first and second side flanges 35 and 36 of the bridging connector 19. Preferably, the third and fourth side boundaries 41 and 42 of the second body plate 26 of the bridging connector 19 are also bends, as well as junctures between the second body plate 26 and the third and fourth side flanges 43 and 44 of the bridging connector 19.
As shown in
Typically, the elongated opening 8 in the central web 3 of the wall stud 2 has an edge 65 with a first elongated portion 66 and a second elongated portion 67, which are mutually parallel and vertically-oriented, a first concave portion 68 that joins the first and second elongated portions 66 and 67 at the top of the elongated opening 8, and a second concave portion 69 that joins the first and second elongated portions 66 and 67 at the bottom of the elongated opening 8, opposite the first concave portion 68. This shape is variously referred to as obround, a racetrack, and super-oval when the concave portions 68 and 69 are generally semicircular.
The substantially horizontal bridging member 11 typically has a middle web 12, a first boundary flange 17 and a second boundary flange 18. The bridging member 11 preferably is a continuous elongated member that extends through a plurality of openings 8 in a plurality of wall studs 2. The middle web 12 has a first boundary 13 and a second boundary 14, an internal surface 15 and an external surface 16. The first boundary flange 17 is joined to the first boundary 13, and the first boundary flange 17 has an internal surface 71 and an external surface 72. The second boundary flange 18 is joined to the second boundary 14, and the second boundary flange 18 has an internal surface 73 and an external surface 74. The middle web 12 is typically rectangular and occupies a horizontal plane. The first and a second boundary flanges 17 and 19 are typically rectangular and occupy vertical planes that are mutually parallel and are both orthogonal to the middle web 12. The middle web 12 of the bridging member 11 is typically 1.5 inches wide. The bridging member 11 is preferably no wider than the opening 8 over the entire length of the bridging member 11. The first boundary flange 17 typically has a first outer edge 75, and the second boundary flange 18 typically has a second outer edge 76. As shown in
Preferably, the bridging connector 19 has a first body plate 20 and a second body plate 26 joined by a neck 32. Preferably, the first body plate 20, the second body plate 26 and the neck 32 are all generally planar and occupy the same plane directly above or below the middle web 12 of the bridging member 11.
As shown in
The neck 32 preferably is disposed between the first inner edge 23 and the second inner edge 29 between the first web interface portion 24 and the second web interface portion 25 of the first inner edge 23 and between the third web interface portion 30 and the fourth web interface portion 31 of the second inner edge 29.
Preferably, the interface portions 24, 25, 30 and 31 are always in contact with the central web 3 of the wall stud 2, but they may, due to differences in the thickness of the central web 3 of different wall studs, and otherwise imperfect tolerances, be adjacent to the central web 3 of the wall stud 2 without always being in contact. This is true generally of such a connection 1, in which elements are often imperfect.
Preferably, the neck 32 passes through the elongated opening 8 in the central web 3 of the wall stud 2. The first web interface portion 24 and the second web interface portion 25 of the first inner edge 23 preferably interface with either the inner surface 6 or the outer surface of the central web 3 of the wall stud 2. The third web interface portion 30 and the fourth web interface portion 31 of the second inner edge 29 preferably interface with the other of the inner surface 6 and the outer surface 7 of the central web 3 of the wall stud 2. The neck 32 is preferably 1.5 inches wide, matching the width of the typical elongate opening 8. Preferably, the first inner edge 23 of the most preferred embodiment, shown in
Preferably, the first body plate 20 has a first side boundary 33 and a second side boundary 34. A first side flange 35 is preferably attached to the first side boundary 33 and a second side flange 36 is attached to the second side boundary 34. The bridging connector 19 is preferably made from sheet metal, preferably galvanized steel—the most preferred embodiment shown in
Most preferably, as shown in
These limited interfaces between the first and second side flanges 35 and 36 and the first and second boundary flanges 17 and 18 of the bridging member 11 are critical to the performance of the bridging connector 19 of certain aspect of the present invention. The first and second side flanges 35 and 36 of the bridging connector 19 of the present invention angle away from the first and second boundary flanges 17 and 18 of the bridging member 11, so that the first and second side flanges 35 and 36 buttress the interfaces, creating much greater resistance to lateral movement of the bridging member 11 than if the first and second side flanges 35 and 36 were parallel to the first and second boundary flanges 17 and 18 of the bridging member 11. This strength is compounded by the curvilinear convex interfaces of the most preferred embodiment, shown in
Alternatively, the first side flange 35 preferably has a first outer end edge 91, and the first outer end edge 91 of the first side flange 35 interfaces with the first boundary flange 17 of the bridging member 11. In this alternative, the second side flange 36 preferably has a second outer end edge 92, and the second outer end edge 92 interfaces with the second boundary flange 18 of the bridging member 11. This is shown in
Preferably, the second body plate 26 has a third side boundary 41 and a fourth side boundary 42. A third side flange 43 is preferably attached to the third side boundary 41 and a fourth side flange 44 is preferably attached to the fourth side boundary 42. Preferably, the third side flange 43 has an inner surface 45 facing the bridging member 11 and an outer surface 46 opposite the inner surface 45. Preferably, the fourth side flange 42 has an inner surface 47 facing the bridging member 11 and an outer surface 48 opposite the inner surface 47. The third side flange 43 of the bridging connector 2 preferably interfaces with the first boundary flange 17 of the bridging member 11. The fourth side flange 44 of the bridging connector 2 preferably interfaces with the second boundary flange 18 of the bridging member 11. Preferably, the third side flange 43 of the bridging connector 2 and the first boundary flange 17 of the bridging member 11 are at least partially nonparallel. Preferably, the fourth side flange 44 of the bridging connector 2 and the second boundary flange 18 of the bridging member 11 are at least partially nonparallel. Typically, the first side flange 35 has a first lower edge 95, the second side flange 36 has a second lower edge 96, the third side flange 43 has a third lower edge 97, and the fourth side flange 44 has a fourth lower edge 98. The first, second, third and fourth lower edges 95, 96, 97 and 98 can have different contours, dictated in part by material conservation and, balancing that, strength.
Preferably, the inner surface 45 of the third side flange 43 of the bridging connector 2 is curvilinear convex where the inner surface 45 of the third side flange 43 interfaces with the first boundary flange 17 of the bridging member 11. The inner surface 47 of the fourth side flange 44 of the bridging connector 2 is curvilinear convex where the inner surface 47 of the fourth side flange 44 interfaces with the second boundary flange 18 of the bridging member 11.
As with the first body plate 20, these limited interfaces between the third and fourth side flanges 43 and 44 and the first and second boundary flanges 17 and 18 of the bridging member 11 are critical to the performance of the bridging connector 19 of certain aspects of the present invention. The third and fourth side flanges 43 and 44 of the bridging connector 19 of the present invention angle away from the first and second boundary flanges 17 and 18 of the bridging member 11, so that the third and fourth side flanges 43 and 44 buttress the interfaces, creating much greater resistance to lateral movement of the bridging member 11 than if the third and fourth side flanges 43 and 44 were parallel to the first and second boundary flanges 17 and 18 of the bridging member 11. This strength is compounded by the curvilinear convex interfaces of the most preferred embodiment, shown in
Alternatively, the third side flange 43 has a third outer end edge 93, and the third outer end edge 93 of the third side flange 43 interfaces with the first boundary flange 17 of the bridging member 11. The fourth side flange 44 preferably has a fourth outer end edge 94, and the fourth outer end edge 94 interfaces with the second boundary flange 18 of the bridging member 11. This is shown in
Preferably, the connection 1 of the present invention is formed according to the following steps. First, the bridging member 11 is preferably inserted through the elongated opening 8 in the central web 3 of the vertical wall stud 2. Preferably, the elongated opening 8 has an edge 65 with a first elongated portion 66, a second elongated portion 67 parallel to the first elongated portion 66, a first curvilinear concave portion 68 joining the first elongated portion 66 and the second elongated portion 67, and a second curvilinear concave portion 69 opposite the first curvilinear concave portion 68 and joining the first elongated portion 66 and the second elongated portion 67. The first boundary flange 17 of the bridging member 11 preferably interfaces with the first elongated portion 66 of the elongated opening 8. Preferably, the second boundary flange 18 of the bridging member 11 interfaces with the second elongated portion 67 of the elongated opening 8. Preferably, while it is being inserted, the bridging connector 19 is positioned so that the neck 32 of the bridging connector 19 is not orthogonal to the first and second elongated portions 66 and 67 of the elongated opening 8. The second body plate 26 of the bridging connector 19 is inserted through the elongated opening 8. Preferably, the bridging connector 19 is rotated so that the neck 32 is orthogonal to the first and second elongated portions 66 and 67 of the elongated opening 8, the first web interface portion 24 and a second web interface portion 25 of the first inner edge 23 interface with the central web 3 of the wall stud 2, and the third web interface portion 30 and the fourth web interface portion 31 of the second inner edge 29 interface with the central web 3 of the wall stud 2. The bridging connector 19 is preferably positioned so that the first body plate 20 and the second body plate 26 interface with the bridging member 11. Preferably, the first body plate 20 is fastened to the bridging member 19.
In an slightly different formulation, the bridging connector 19 of the present invention preferably comprises a first body plate 20 with a first side flange 35 and a second side flange 36. Preferably, the first body plate 20 has a first interior surface 21 facing the bridging member 11, and a first exterior surface 22 opposite the first interior surface 11. The first body plate 20 preferably has a first side boundary 33 and a second side boundary 34. Preferably, the first side flange 35 is attached to the first side boundary 33 and a second side flange 36 is attached to the second side boundary 34. The first side flange 35 preferably has an inner surface 37 facing the bridging member 11 and an outer surface 38 opposite the inner surface 37. Preferably, the second side flange 36 has an inner surface 39 facing the bridging member 11 and an outer surface 40 opposite the inner surface 39. The first side flange 35 of the bridging connector 2 preferably interfaces with the first boundary flange 17 of the bridging member 11. Preferably, the second side flange 36 of the bridging connector 2 interfaces with the second boundary flange 18 of the bridging member 11. The first side flange 35 of the bridging connector 2 and the first boundary flange 17 of the bridging member 11 preferably are at least partially nonparallel. Preferably, the second side flange 36 of the bridging connector 2 and the second boundary flange 18 of the bridging member 11 are also at least partially nonparallel.
Preferably, the inner surface 37 of the first side flange 35 of the bridging connector 2 is curvilinear convex where the inner surface 37 of the first side flange 35 interfaces with the first boundary flange 17 of the bridging member 11. The inner surface 39 of the second side flange 26 of the bridging connector 2 preferably is curvilinear convex where the inner surface 39 of the second side flange 26 interfaces with the second boundary flange 18 of the bridging member 11.
Alternatively, the first side flange 35 has a first end edge 91, and the first end edge 91 of the first side flange 35 interfaces with the first boundary flange 17 of the bridging member 11. Preferably then the second side flange 36 has a second end edge 92, and the second end edge 92 interfaces with the second boundary flange 18 of the bridging member 11.
Preferably, the first body plate 20 has a first inner edge 23 with a first web interface portion 24 and a second web interface portion 25. The bridging connector 19 then preferably has a second body plate 26 joined to the first body plate 20 by a neck 32. The second body plate 26 preferably has a second interior surface 27 facing the bridging member 11, a second exterior surface 28 opposite the second interior surface 11, and a second inner edge 29 with a third web interface portion 30 and a fourth web interface portion 31. The neck 32 preferably joins the first inner edge 23 to the second inner edge 29 between the first web interface portion 24 and the second web interface portion 25 and between the third web interface portion 30 and the fourth web interface portion 31. Preferably, the neck 32 passes through the elongated opening 8 in the central web 3 of the wall stud 2. The first web interface portion 24 and a second web interface portion 25 of the first inner edge 23 preferably interface with the central web 3 of the wall stud 2. Preferably, the third web interface portion 30 and the fourth web interface portion 31 of the second inner edge 29 interface with the central web 3 of the wall stud 2.
The second body plate 26 preferably has a third side boundary 41 and a fourth side boundary 42. A third side flange 43 preferably is attached to the third side boundary 41 and a fourth side flange 44 is attached to the fourth side boundary 42. Preferably, the third side flange 43 has an inner surface 45 facing the bridging member 11 and an outer surface 46 opposite the inner surface 45. The fourth side flange 42 preferably has an inner surface 47 facing the bridging member 11 and an outer surface 48 opposite the inner surface 47. Preferably, the third side flange 43 of the bridging connector 2 interfaces with the first boundary flange 17 of the bridging member 11. The fourth side flange 44 of the bridging connector 2 preferably interfaces with the second boundary flange 18 of the bridging member 11. Preferably, the third side flange 43 of the bridging connector 2 and the first boundary flange 17 of the bridging member 11 are at least partially nonparallel. The fourth side flange 44 of the bridging connector 2 and the second boundary flange 18 of the bridging member 11 preferably are at least partially nonparallel.
Preferably, the third side flange 43 has a third end edge 93, and the third end edge 93 of the third side flange 43 interfaces with the first boundary flange 17 of the bridging member 11. Preferably, the fourth side flange 44 has a fourth end edge 94, and the fourth end edge 94 interfaces with the second boundary flange 18 of the bridging member 11.
The inner surface 45 of the third side flange 43 of the bridging connector 2 preferably is curvilinear convex where the inner surface 45 of the third side flange 43 interfaces with the first boundary flange 17 of the bridging member 11. The inner surface 47 of the fourth side flange 44 of the bridging connector 2 preferably is curvilinear convex where the inner surface 47 of the fourth side flange 44 interfaces with the second boundary flange 18 of the bridging member 11.
An alternative method of making the connection 1 of the present invention is to first place the first body plate 20 on the bridging member 11 adjacent the central web 3 of the wall stud 2. In this manner, a portion of the first side flange 35 of the bridging connector 2 is adjacent the first boundary flange 17 of the bridging member 11 and a portion of the second side flange 36 of the bridging connector 2 is adjacent the second boundary flange 18 of the bridging member 11. Then, the bridging connector 2 is fastened to the bridging member 11. In all cases, the preferred fasteners 81 are metal screws 81, as shown in FIGS. 2, 3C-4B, 12 and 16. However, any sufficiently strong fastener 81 can be used, including welds. When screws 81 are used, the bridging connector 2 is preferably formed with one or more fastener openings 82 sized to closely accommodate the selected screws 81. All forms of the bridging connector 19 of the present invention are shown with a single fastener opening 82 in the first body plate 20, and it is an advantage of the bridging connector 19 of the present invention that it can make a stronger connection 1 than the prior art brackets with a single fastener 81. The fastener opening 82 is in the first body plate 20, and the first body plate 20 is preferably installed against the outer surface 7 of the central web 3 of the wall stud 2, because it is easier to fasten the bridging connector 19 where it is not bounded by the first and second side flanges 9 and 10 of the wall stud 2. However, it is possible to have use additional fasteners 81 and have additional fastener openings 82 elsewhere on the bridging connector 20, such as the second body plate 26. It is also possible, where the width of the wall stud 2 is sufficient, to install the bridging connector 19 with the first body plate 20 against the inner surface 6 of the central web 3 of the wall stud 2, with the second body plate 26 against the outer surface 7. In the alternate embodiment shown in
Number | Name | Date | Kind |
---|---|---|---|
529154 | Banks | Nov 1894 | A |
719191 | Collins | Jan 1903 | A |
992941 | Danielson | May 1911 | A |
1101745 | Jones | Jun 1914 | A |
1346426 | Sherbner | Jul 1920 | A |
1791197 | Dickson | Feb 1931 | A |
2365501 | Walstrom | Dec 1944 | A |
2873828 | Zitomer | Feb 1959 | A |
2900677 | Yetter | Aug 1959 | A |
2905426 | Ross | Sep 1959 | A |
2918995 | Kruger | Dec 1959 | A |
3083794 | Stovail | Apr 1963 | A |
3126928 | McMillan | Mar 1964 | A |
3299839 | Nordbak | Jan 1967 | A |
3322447 | Biggs | May 1967 | A |
3482369 | Burke | Dec 1969 | A |
3490604 | Klein | Jan 1970 | A |
3606227 | Klein | Sep 1971 | A |
3653172 | Schwartz | Apr 1972 | A |
3778952 | Soucy | Dec 1973 | A |
3858988 | Cohen | Jan 1975 | A |
3897163 | Holmes | Jul 1975 | A |
3972169 | Sheppard, Jr. | Aug 1976 | A |
4018020 | Sauer et al. | Apr 1977 | A |
4027453 | Bridge | Jun 1977 | A |
4043689 | Spencer | Aug 1977 | A |
4075810 | Zakrzewski et al. | Feb 1978 | A |
4128979 | Price | Dec 1978 | A |
4140417 | Danielsen et al. | Feb 1979 | A |
4174911 | Maccario et al. | Nov 1979 | A |
4208851 | Sauer | Jun 1980 | A |
4235054 | Cable et al. | Nov 1980 | A |
4246736 | Kovar et al. | Jan 1981 | A |
4406374 | Yedor | Sep 1983 | A |
4426822 | Gailey | Jan 1984 | A |
4428172 | Larsson | Jan 1984 | A |
4448004 | Thorsell | May 1984 | A |
4464074 | Green | Aug 1984 | A |
4480941 | Gilb et al. | Nov 1984 | A |
4516874 | Yang et al. | May 1985 | A |
4522009 | Fingerson | Jun 1985 | A |
4586841 | Hunter | May 1986 | A |
4625415 | Diamontis | Dec 1986 | A |
4693047 | Menchetti | Sep 1987 | A |
4791766 | Egri | Dec 1988 | A |
4809476 | Satchell | Mar 1989 | A |
4840005 | Cochrane | Jun 1989 | A |
4850169 | Burkstrand et al. | Jul 1989 | A |
4858407 | Smolik | Aug 1989 | A |
4864791 | Platt | Sep 1989 | A |
4912894 | Platt | Apr 1990 | A |
4914878 | Tamaki et al. | Apr 1990 | A |
4916877 | Platt | Apr 1990 | A |
4951436 | Burkstrand et al. | Aug 1990 | A |
5092100 | Lambert et al. | Mar 1992 | A |
5104252 | Colonias et al. | Apr 1992 | A |
5127760 | Brady | Jul 1992 | A |
5155962 | Burkstrand et al. | Oct 1992 | A |
5189857 | Herren | Mar 1993 | A |
5274973 | Liang | Jan 1994 | A |
5287664 | Schiller | Feb 1994 | A |
5325651 | Meyer et al. | Jul 1994 | A |
5363622 | Sauer | Nov 1994 | A |
5403110 | Sammann | Apr 1995 | A |
5446969 | Terenzoni | Sep 1995 | A |
5555694 | Commins | Sep 1996 | A |
5600926 | Ehrlich | Feb 1997 | A |
5603580 | Leek et al. | Feb 1997 | A |
5605024 | Sucato et al. | Feb 1997 | A |
5632128 | Agar | May 1997 | A |
5664392 | Mucha | Sep 1997 | A |
5669198 | Ruff | Sep 1997 | A |
5671580 | Chou | Sep 1997 | A |
5682935 | Bustamante | Nov 1997 | A |
5697725 | Ballash et al. | Dec 1997 | A |
5720138 | Johnson | Feb 1998 | A |
5784850 | Elderson | Jul 1998 | A |
5876006 | Sharp | Mar 1999 | A |
5899041 | Durin | May 1999 | A |
5904023 | diGirolamo | May 1999 | A |
5921411 | Merl | Jul 1999 | A |
5943838 | Madsen | Aug 1999 | A |
5964071 | Sato | Oct 1999 | A |
6021618 | Elderson | Feb 2000 | A |
6101780 | Kreidt | Aug 2000 | A |
6164028 | Hughes | Dec 2000 | A |
6199336 | Poliquin | Mar 2001 | B1 |
6242698 | Baker, III et al. | Jun 2001 | B1 |
6260318 | Herren | Jul 2001 | B1 |
6290214 | DeSouza | Sep 2001 | B1 |
6295781 | Thompson | Oct 2001 | B1 |
6301854 | Daudet et al. | Oct 2001 | B1 |
6315137 | Mulford | Nov 2001 | B1 |
6418695 | Daudet | Jul 2002 | B1 |
D463575 | Daudet | Sep 2002 | S |
6523321 | Leek et al. | Feb 2003 | B1 |
6578335 | Poliquin | Jun 2003 | B2 |
6644603 | Bailleux | Nov 2003 | B2 |
6662520 | Nelson | Dec 2003 | B1 |
6688069 | Zadeh | Feb 2004 | B2 |
6694695 | Collins | Feb 2004 | B2 |
6701689 | diGirolamo | Mar 2004 | B2 |
6702270 | Reschke | Mar 2004 | B1 |
6708460 | Elderson | Mar 2004 | B1 |
6739562 | Rice | May 2004 | B2 |
6792733 | Wheeler | Sep 2004 | B2 |
6920734 | Elderson | Jul 2005 | B2 |
7017310 | Brunt | Mar 2006 | B2 |
7021021 | Saldana | Apr 2006 | B2 |
7104024 | diGirolamo et al. | Sep 2006 | B1 |
7159369 | Elderson | Jan 2007 | B2 |
7168219 | Elderson | Jan 2007 | B2 |
7174690 | Zadeh | Feb 2007 | B2 |
D558039 | Skinner et al. | Dec 2007 | S |
7334372 | Evans et al. | Feb 2008 | B2 |
D573873 | Wall | Jul 2008 | S |
7398621 | Banta | Jul 2008 | B2 |
7503150 | diGirolamo | Mar 2009 | B1 |
7520100 | Herrman | Apr 2009 | B1 |
7559519 | Dragic | Jul 2009 | B1 |
7596921 | diGirolamo | Oct 2009 | B1 |
7634889 | diGirolamo et al. | Dec 2009 | B1 |
7739850 | Daudet | Jun 2010 | B2 |
7836657 | diGirolamo | Nov 2010 | B1 |
7955027 | Nourian et al. | Jun 2011 | B2 |
8011160 | Rice | Sep 2011 | B2 |
D648249 | Noble et al. | Nov 2011 | S |
8083187 | Bernard et al. | Dec 2011 | B2 |
D657891 | Jones | Apr 2012 | S |
8167250 | White | May 2012 | B2 |
8205402 | diGirolamo | Jun 2012 | B1 |
8225581 | Strickland et al. | Jul 2012 | B2 |
D667249 | London | Sep 2012 | S |
D667718 | Preda | Sep 2012 | S |
8387321 | diGirolamo et al. | Mar 2013 | B2 |
8528292 | Morey | Sep 2013 | B2 |
20020059773 | Elderson | May 2002 | A1 |
20030009980 | Shahnazarian | Jan 2003 | A1 |
20030037494 | Collins | Feb 2003 | A1 |
20030089053 | Elderson | May 2003 | A1 |
20030145537 | Bailey | Aug 2003 | A1 |
20030167722 | Klein et al. | Sep 2003 | A1 |
20070251186 | Rice | Nov 2007 | A1 |
20100031601 | Lin | Feb 2010 | A1 |
20100126103 | diGirolamo et al. | May 2010 | A1 |
20110154770 | Friis | Jun 2011 | A1 |
20130104490 | Daudet et al. | May 2013 | A1 |
Entry |
---|
“Bridging, Bracing & Backing: Spazzer 5400 Spacer Bar (SPZS), Bar Guard (SPBG) & Grommet (SPGR)”. Clip Express Product Catalog: Clips, Connectors, Framing Hardware, Apr. 2012, p. 77. Clark Dietrich Building Systems, USA. |
“Metal-Lite Products”. Metal Lite website, metal-lite.net. Accessed Sep. 20, 2013, one page. Metal Lite 2012, USA. |
“Mantisgrip Product Catalog 2012”. Catalog, 2012, 10 pages and cover. Mantisgrip 2012, USA. |
“Wall Bridging Detail”. NuconSteel Product Catalog, 2003, front cover, table of contents, p. 34. NuconSteel, USA. |
“Double Deep-Leg Track”, “Bridge Clip Installation”, “BC600 & BC800 Installation”, “BridgeBar”, “BridgeClip”, “BC600 or BC800”. The Steel Network, Inc. Product Catalog, Jan. 2004, front cover, p. 11, 27, 49. Steel Network, Inc., USA. |
“Mantisgrip Product Catalog 2012”. Catalog, 2012, 10 page and cover. Mantisgrip 2012, USA. |
“Wall Bridging Detail”. NuconSteel Product Catalog, 2003, front cover, table of contents, p. 34. NuconSteel., USA. |
“Double Deep-Leg Track”, “Bridge Clip Installation”, “BC600 & BC800 Installation”, “BridgeBar”, “BridgeClip”, “BC600 or BC800”. The Steel Network, Inc. Product Catalog, Jan. 2004, front cover, p. 11,27,49. Steel Network, Inc., USA. |
Number | Date | Country | |
---|---|---|---|
20140047792 A1 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13281429 | Oct 2011 | US |
Child | 14062712 | US |