This invention relates to steel stud building wall systems, specifically, to a steel stud bridging termination clip for stabilizing steel studs to prevent movement and twisting in such systems.
Many commercial, industrial buildings and increasing number of residential buildings are being constructed with steel stud wall framing. When building a wall with metal studs it is necessary to ensure that the studs are held in fixed positions relative to each other and to also prevent twisting, bending, or other unwanted movement. When the studs twist or bend, due to wind or other influences, they can effectively lose their ability to resist these impaired loads, thus weakening their structural integrity. In steel stud walls, a steel channel is typically inserted horizontally through openings in each of the vertically disposed studs to help keep the studs aligned as well as to provide additional structural support. The steel studs have relatively good columnar strength when straight, but when twisted or bent, the stud loses a significant portion of their structural integrity. The steel channel fits through the openings at engineered spacing, and is secured to the steel studs to help minimize unwanted twisting of the steel framing. A common missing element in the use of this stabilizing channel is at all termination points of this channel in the wall structure. This occurs primarily at window or door openings, and at the corners of the wall structure, however is not limited to these situations. At a window or door opening, the vertical steel stud member defining the outer opening is known as a jamb stud. It is just as important, if not more so, to keep this jamb stud member from twisting or other movement. Currently there is no good or consistent method for attachment of the stabilizing channel to the jamb stud for its stability. At the terminal end, the steel stud does not have the benefit of the channel passing through it with additional steel studs on either side to help provide added support. Rather the jamb stud or corner wall stud is the terminal stud and the channel needs attachment to these members to secure the framing integrity. A variety of field modified components are currently used for this terminating attachment. However to design and engineer an adequate attachment for this critical juncture, a consistent attachment mechanism is needed for design purposes.
It is therefore an object of the present invention to provide a termination clip which provides additional support and is easy to install for use with steel studs, such as jamb studs, building corner studs, and/or other terminating conditions to the stabilizing steel channel.
Other objects and advantages will be more fully apparent from the following disclosure and appended claims.
In one embodiment, a bridging termination clip is provided. The bridging termination clip may include a horizontal portion having a bridge plate and a pair of opposing legs, the legs extending vertically one from each side edge of the bridge plate in a substantially perpendicular relation thereto; a vertical plate connected to a rear portion of the bridge plate and extending upward in a substantially perpendicular relation thereto; and an opposing pair of side extensions connected to the vertical plate and extending rearward one from each side of the vertical plate in a substantially perpendicular relation thereto. The horizontal portion may be generally shaped in the form of an inverted U. The opposing legs may be configured and separated by a distance sufficient to allow a channel to be positioned therebetween. The spacing between the opposing pair of side extensions may be substantial equal to or slightly greater than a width of a stud. The bridging termination clip may further include a set of opposing vertical extensions, wherein each of the vertical extensions may be inset about an equal distant from opposing sides of the bridge and extending vertically downward from a bottom surface of the bridge plate in a substantially perpendicular relation thereto, and wherein a spacing between the opposing vertical extensions may be substantially equal to or slightly greater than a width of a channel. The spacing between the vertical extensions may be about 1½ inches. The bridging termination clip may further include one or more holes formed in one or more of the bridge plate, legs, vertical plate, and side extensions. The horizontal portion may narrow in width along its length. The horizontal portion may be about 3 inches in length or longer; the width between the opposing side extensions may be in the range of about 3⅝ inches to about 12 inches wide; and the width between the opposing legs at its narrowest point may be about 1½ inches wide or wider. In one embodiment, the horizontal portion may be substantially the same width along its length. The horizontal portion may be about 3 inches in length; the width between the opposing side extensions may be in the range of about 3⅝ inches to about 12 inches wide; and the width between the opposing legs may be about 1½ inches wide.
In another embodiment, an alternative embodiment of a bridging termination clip is provided. The bridging termination clip may include a horizontal portion having a pair of legs connected along a peak, the legs extending downward from the peak at an angle relative to one another to form a generally inverted V shape; a vertical plate connected to a rear portion of the horizontal portion and extending upward in a substantially perpendicular relation thereto; and an opposing pair of side extensions connected to the vertical plate and extending rearward one from each side of the vertical plate in a substantially perpendicular relation thereto. The legs may be configured to allow a V shaped channel to be positioned therebetween. The spacing between the opposing pair of side extensions may be substantial equal to or slightly greater than a width of a stud. The legs may be angled at about 45 degrees relative to a vertical center of the peak. The bridging termination clip may further include one or more holes formed in one or more of the legs, vertical plate, and side extensions. The horizontal portion may be about 1½ inches in length or longer; the width between the opposing side extensions may be in the range of about 3⅝ inches to about 12 inches wide; and the width between a lower edge of the legs may be about 1¾ inches wide.
In another embodiment, a method of securing a terminal end of a channel to a stud using a bridging termination clip is provided. The method may include securing a first portion of the bridging termination clip to a terminal end of a channel; and securing a second portion of the bridging termination clip to a stud. The bridging termination clip may include a horizontal portion having a bridge plate and a pair of opposing legs, the legs extending vertically one from each side edge of the bridge plate in a substantially perpendicular relation thereto; a vertical plate connected to a rear portion of the bridge plate and extending upward in a substantially perpendicular relation thereto; and an opposing pair of side extensions connected to the vertical plate and extending rearward one from each side of the vertical plate in a substantially perpendicular relation thereto. The first portion may include the horizontal portion and the second portion may include at least one of the vertical plate and the side extensions. The bridging termination clip may alternatively include a horizontal portion having a pair of legs connected along a peak, the legs extending downward from the peak at an angle relative to one another to form a generally inverted V shape; a vertical plate connected to a rear portion of the horizontal portion and extending upward in a substantially perpendicular relation thereto; and an opposing pair of side extensions connected to the vertical plate and extending rearward one from each side of the vertical plate in a substantially perpendicular relation thereto. The first portion comprises the horizontal portion and the second portion comprises at least one of the vertical plate and the side extensions.
Certain aspects of the subject matter of the invention having been stated hereinabove, which are addressed in whole or in part by the disclosed subject matter, other aspects will become evident as the description proceeds when taken in connection with the accompanying Examples and Drawings as best described herein below.
Having thus described the subject matter of the invention in general terms, reference will now be made to the accompanying Drawings, which are not necessarily drawn to scale, and wherein:
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Drawings, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
Referring now to
Bridging termination clip 100 may further include a vertical plate 125 extending vertically upward from a rear edge of horizontal bridge 110 and is preferably oriented substantially perpendicular thereto. Vertical plate 125 may further include opposing side extensions 130 extending rearward, one from each opposing side of vertical plate 125 and oriented substantially perpendicular thereto. The spacing between side extensions 130 maybe substantially equal to or slightly greater than the width (e.g., outer or inner width) of a steel stud, such as single jamb steel stud 210 or double jamb steel stud 310 (e.g., see
Bridging termination clip 100 may further include one or more holes 135. In one example, one or more holes 135 are formed in horizontal bridge 110 and/or side extensions 130. Holes 135 may be sized for the insertion of fasteners, e.g., screws, rivets, or the like for securing bridging termination clip 100 to a steel stud, for example, single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, and a channel, such as channel 205. Holes 135 may be pre-formed in bridging termination clip 100, e.g., at the time of fabrication, or may be formed at a later time, e.g., prior to or during use in the field. Holes 135 may further be formed in legs 115 and/or vertical plate 125.
In one example, horizontal channel portion 105 may narrow in width as it extends from its rear portion to its front portion, wherein at the front most portion horizontal channel portion 105 has a width between legs 115 that is equal to or slightly greater than the width of steel channel 205; and its width at its rearmost portion may be equal to or slightly greater than the width of the steel stud it is attached to, e.g., single jamb steel stud 210 or double jamb steel stud 310, and may be substantially the same width as the width of vertical plate 125.
In one example, bridging termination clip 100 may have the dimensions of about those as indicated in Table 1 below with reference to
Bridging termination clip 100 may be formed of a single piece of sheet steel similar to the material of which a standard steel stud, such as single jamb steel stud 210, double jamb steel stud 310, and/or channel 205 are formed. The sheet may be bent to about a right angle between horizontal channel portion 105 and the vertical plate 125 portions. Other materials, such as, for example, plastics, and other suitable materials, may also be used.
Referring now to
The width between opposing vertical extensions 120 is preferably substantially equal to or slightly greater than the width of channel 205, such that channel 205 may fit between opposing vertical extensions 120. Channel 205 may preferably be installed between opposing vertical extensions 120 with its channel portion facing down, as shown in
Referring now to
Bridging termination clip 400 may further include a vertical plate 425 extending vertically upward from a rear portion of horizontal bridge 410 and oriented substantially perpendicular thereto. Vertical plate 425 may further include opposing side extensions 430 extending rearward, one from each side of vertical plate 425 and oriented substantially perpendicular thereto. The spacing between side extensions 430 maybe substantially equal to or slightly greater than the width (e.g., outer or inner width) of a steel stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, e.g., in the range of about 3⅝ inches to about 12 inches, such as, 3⅝ inches, 4 inches, 6 inches, 8 inches, 10 inches, 12 inches, or other width less than 3⅝ inches or greater than 12 inches, as required by a particular steel stud application.
Bridging termination clip 400 may further include one or more holes 435 formed, for example, in horizontal bridge 410 and/or side extensions 430. Holes 435 may be sized for the insertion of fasteners, e.g., screws, rivets, or the like for securing bridging termination clip 400 to a steel stud, such as single jamb steel stud 210, double jamb steel stud 310 or other steel stud product to terminate bridging into, and a channel, such as channel 205. Holes 435 may be pre-formed in bridging termination clip 400, e.g., at the time of fabrication, or may be formed at a later time, e.g., prior to or during use in the field. Holes 435 may further be formed in legs 415 and/or vertical plate 425.
In one example, bridging termination clip 400 may have the dimensions of about those as indicated in Table 2 below with reference to
Bridging termination clip 400 may be formed of a single piece of sheet steel similar to the material of which a standard steel stud, such as single jamb steel stud 210, double jamb steel stud 310, and/or channel 205 are formed. The sheet may be bent to about a right angle between horizontal channel portion 405 and the vertical plate 425 portions. Other materials, such as, for example, plastics, and other suitable materials, may also be used.
Referring now to
Bridging termination clip 500 may further include a vertical plate 525 extending vertically upward from a rear portion of horizontal bridge 510 and is oriented substantially perpendicular thereto. Vertical plate 525 may further include opposing side extensions 530 extending rearward, one from each side edge of vertical plate 525 and oriented substantially perpendicular thereto. The spacing between side extensions 530 maybe substantially equal to or slightly greater than the width (e.g., outer or inner width) of a steel stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, e.g., in the range of about 3⅝ inches to about 12 inches, such as, 3⅝ inches, 4 inches, 6 inches, 8 inches, 10 inches, 12 inches, or other width less than 3⅝ inches or greater than 12 inches, as required by a particular steel stud application.
Bridging termination clip 500 may further include one or more holes 535 in horizontal bridge 510 and/or side extensions 530. Holes 535 may be sized for the insertion of fasteners, e.g., screws, rivets, or the like for securing termination clip 500 to a steel stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into. Termination clip 100 is preferably secured to a steel stud, and a channel, such as channel 205. Holes 535 may be pre-formed in bridging termination clip 500, e.g., at the time of fabrication, or may be formed at a later time, e.g., prior to or during use in the field. Holes 535 may further be formed in legs 515 and/or vertical plate 525.
In one example, bridging termination clip 500 may have the dimensions of about those as indicated in Table 3 below with reference to
Bridging termination clip 500 may be formed of a single piece of sheet steel similar to the material of which a standard steel stud, such as single jamb steel stud 210, double jamb steel stud 310, and/or channel 205 are formed. The sheet may be bent to about a right angle between horizontal channel portion 505 and the vertical plate 525 portions. Other materials, such as, for example, plastics, and other suitable materials, may also be used.
Referring now to
Bridging termination clip 600 may further include a vertical plate 625 extending vertically upward from a rear portion of horizontal channel portion 605 and is oriented substantially perpendicular thereto. Bridging termination clip 600 may further include one or more welded joints 627 at the abutment of the vertical plate 625 and the horizontal channel portion 605. In one example, the welded joints 627 runs along an edge of each of legs 615 where it abuts with vertical plate 625. Vertical plate 625 may further include opposing side extensions 630 extending rearward, one from each side of vertical plate 625 and oriented substantially perpendicular thereto. The spacing between side extensions 630 maybe substantially equal to or slightly greater than the width (e.g., outer or inner width) of a steel stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, e.g., in the range of about 3⅝ inches to about 12 inches, such as, 3⅝ inches, 4 inches, 6 inches, 8 inches, 10 inches, 12 inches, or other width less than 3⅝ inches or greater than 12 inches, as required by a particular steel stud application.
Bridging termination clip 600 may further include one or more holes 635 in legs 615 and/or side extensions 630, which may be sized for the insertion of fasteners, e.g., screws, rivets, or the like for securing bridging termination clip 600 to a stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, and a spazzer bar, such as spazzer bar 620. Holes 635 may be pre-formed in bridging termination clip 600, e.g., at the time of fabrication, or may be formed at a later time, e.g., prior to or during use in the field. Holes 635 may further be formed in legs 615 and/or vertical plate 625.
In one example, bridging termination clip 600 may have the dimensions of about those as indicated in Table 4 below with reference to
Bridging termination clip 600 may be formed of a single or multiple pieces of sheet steel similar to the material of which a standard steel stud, such as single jamb steel stud 210, double jamb steel stud 310, and/or spazzer bar 620 are formed. Other materials, such as, for example, plastics, and other suitable materials, may also be used.
Referring now to
In operation, a channel 205 is positioned between opposing vertical extensions 120 of bridging termination clip 100 (or with regards to bridging termination clips 400 and 500, between legs 415 and 515 respectively), and secured to bridging termination clip 100 (or 400, 500), by one or more fasteners received through one or more of holes 135 (or 435, 535), of horizontal bridge 110 (or 410, 510), and driven into a top portion of channel 205. Bridging termination clip 100 (or 400, 500), may then be secured to a steel stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, by positioning bridging termination clip 100 (or 400, 500), such that vertical plate 125 (or 425, 525), is substantially flush with a front portion of the steel stud, and opposing side extensions 130 (or 430, 530), are positioned on opposing side portions thereof. One or more fasteners may then be received through one or more of holes 135 (or 435, 535), of opposing side extensions 130 (or 430, 530), and driven into opposing side portions of the steel stud. Alternatively, bridging termination clip 100 (or 400, 500), may be first secured to the steel stud, e.g., steel stud 210, and then secured to channel 205.
In another example of operation, a spazzer bar 620 may be positioned between angled legs 615, and secured to bridging termination clip 600 by one or more fasteners received through one or more of holes 635 of legs 615, and driven into spazzer bar 620. Bridging termination clip 600 may then be secured to a steel stud, such as single jamb steel stud 210, double jamb steel stud 310, or any other steel stud product to terminate bridging into, by positioning bridging termination clip 600 such that vertical plate 625 is substantially flush with a front portion of the steel stud, and opposing side extensions 630 are positioned on opposing side portions thereof. One or more fasteners may then be received through one or more of holes 635 of opposing side extensions 630 and driven into opposing side portions of the steel stud, e.g., steel stud 210. Alternatively, bridging termination clip 600 may be first secured to the steel stud, and then secured to spazzer bar 620.
While the examples above are offered as first, second, third, and fourth embodiments, it is not to be construed as a limitation of the scope of the invention which will become apparent from the claims appended hereto. Further, with regard to any specific dimensions of termination clips 100, 400, 500, and 600, as well as size, quantity, and type of screw for the connections of termination clips 100, 400, 500, and 600 to jamb studs listed in the FIGS., or any other stud where bridging channel is being terminated into, it is understood that those are listed only for exemplary purposes, and it is contemplated that other dimensions of termination clips 100, 400, 500, and 600 and/or sizes, quantity, and/or types of screws may be used depending on the particular jamb stud/stud dimensions and/or different loading criteria. In some embodiments, a screw may not be required in each of the holes 135, 435, 535, and/or 635 to provide the same structural integrity given the different loading criteria.
Following long-standing patent law convention, the terms “a,” “an,” and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a subject” includes a plurality of subjects, unless the context clearly is to the contrary (e.g., a plurality of subjects), and so forth.
Throughout this specification and the claims, the terms “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments, ±100% in some embodiments ±50%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
Although the foregoing subject matter has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be understood by those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.
This application claims priority to and incorporates herein by reference related U.S. Provisional Patent Application No. 62/446,761, entitled “Bridging Termination Clip” filed on Jan. 16, 2017.
Number | Name | Date | Kind |
---|---|---|---|
3216160 | Best | Nov 1965 | A |
3457689 | Troutner | Jul 1969 | A |
3604176 | Campbell | Sep 1971 | A |
3902298 | Ratliff, Jr. | Sep 1975 | A |
3945741 | Wendt | Mar 1976 | A |
4665677 | Palacio | May 1987 | A |
5364312 | Cunard | Nov 1994 | A |
D357623 | Davis | Apr 1995 | S |
5403110 | Sammann | Apr 1995 | A |
5457928 | Sahnazarian | Oct 1995 | A |
5784850 | Elderson | Jul 1998 | A |
5904023 | diGirolamo | May 1999 | A |
6708460 | Elderson | Mar 2004 | B1 |
6920734 | Elderson | Jul 2005 | B2 |
7104024 | diGirolamo | Sep 2006 | B1 |
7168219 | Elderson | Jan 2007 | B2 |
D573873 | Wall | Jul 2008 | S |
D611887 | Peschmann | Mar 2010 | S |
7730695 | Brady | Jun 2010 | B2 |
7739852 | Brady | Jun 2010 | B2 |
D692746 | Lawson | Nov 2013 | S |
8683772 | Friis | Apr 2014 | B2 |
8733061 | McDonald | May 2014 | B1 |
8925893 | Biedenweg | Jan 2015 | B2 |
9016024 | Daudet | Apr 2015 | B1 |
D730545 | Stauffer | May 2015 | S |
D732708 | Stauffer | Jun 2015 | S |
9091056 | Stauffer | Jul 2015 | B2 |
9290928 | Klein | Mar 2016 | B2 |
9523196 | Rice | Dec 2016 | B2 |
D791578 | Royak | Jul 2017 | S |
9732520 | Daudet | Aug 2017 | B2 |
D796302 | Bright | Sep 2017 | S |
D798693 | Kanagal Narasimhaswamy | Oct 2017 | S |
9849497 | Daudet | Dec 2017 | B2 |
D820664 | Allen | Jun 2018 | S |
D821851 | Stahl | Jul 2018 | S |
D822455 | Stahl | Jul 2018 | S |
D823095 | Stahl | Jul 2018 | S |
20020046525 | Rice | Apr 2002 | A1 |
20020059773 | Elderson | May 2002 | A1 |
20030089053 | Elderson | May 2003 | A1 |
20080053034 | Matechuk | Mar 2008 | A1 |
20080245025 | Slater | Oct 2008 | A1 |
20140270916 | Daudet | Sep 2014 | A1 |
20140270923 | Daudet | Sep 2014 | A1 |
20160002912 | Doupe | Jan 2016 | A1 |
20160069072 | Rice | Mar 2016 | A1 |
20180154421 | Daudet et al. | Jun 2018 | A1 |
20180266109 | Haba | Sep 2018 | A1 |
Entry |
---|
FastBridge Clip, posted at clarkdietrich.com, posting date not given, [online], [site visited Mar. 29, 2018]. Available from Internet, URL: https ://www.clarkdietrich.com/products/bridging-bracing-backing-connections/fastbridge-clip-fb33-fb43-fb68 (Year: 2018). |
Simpson Strong Tie SUBH3, posted at amazon.com, posting date Dec. 4, 2013, [online], [site visited Mar. 29, 2018]. Available from Internet, URL: https://www.amazon.com/Simpson-Strong-SUBH3-25-R150-Bridging-Connector/dp/BOOH3NWLPE (Year: 2013). |
Spazzer Bar Fly Clip, posted at clarkdietrich.com, posting date not given, [online], [site visited Mar. 29, 2018]. Available from Internet, URL: https://www.clarkdietrich.com/products/bridging-bracing-backing-connections/spazzer-bar-fly-clip-sfly (Year: 2018). |
Universal Bridging Clip, posted at bmp-group.com, posting date not given, [online], [site visited Mar. 29, 2018]. Available from Internet, URL: http://www.bmp-group.com/products/framing-connectors-clips/universal-bridging-clip-(ubc-365-ubc-600-ubc800) (Year: 2018). |
BC Secure Bridge Clip, posted at scafco.com, posting date not given, [online], [site visited Oct. 12, 2018], Available from Internet, URL: https://www.scafco.com/steel/products/secure-clips/bc-secure-bridge-clip/ (Year: 2018). |
DBC Drywall Bridging Connector, posted at sssuply.com, posting date not given, [online], [site visited Oct. 12, 2018], Available from Internet, URL: http://www.sssupply.com/product/DBC_Drywall_Bridging_Connector (Year: 2018). |
Two-Position Bridging Clip, posted at grainger.com, posting date not given, [online], [site visited Oct. 12, 2018], Available from Internet, URL: https://www.grainger.com/product/LEVITON-Two-Position-Bridging-Clip-5LP91 (Year: 2018). |
Number | Date | Country | |
---|---|---|---|
20180202144 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62446761 | Jan 2017 | US |