The above and other advantages of the present invention will become readily apparent by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein:
Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings. However, the scope of the present invention is not limited to such embodiments and the present invention may be realized in various forms. The embodiments to be described below are provided to aid the disclosure of the present invention and assist those skilled in the art to understand the present invention.
As shown in
The voltage generator 60 generates a gray scale voltage Vgray related to the transmittance of pixels and two types of gate voltages Vgate. The gray scale voltage Vgray is divided into two groups, one of which has a positive polarity relative to a common voltage Vcom and the other of which has a negative polarity relative to the common voltage Vcom. The gate voltage Vgate includes a gate on voltage and a gate off voltage.
The gate driver 20 is connected to a gate line of the liquid crystal display unit 10 to apply the gate signal to the gate line. The gate signal includes the gate on voltage and the gate off voltage of the voltage generator 60.
The data driver 30 is connected to a data line of the liquid crystal display unit 10 to apply a data voltage to the data line. The data voltage is selected from the gray scale voltages Vgray of the voltage generator 60 in response to the desired brightness and reverse control.
The signal controller 70 receives RGB image signals and input control signals from an external graphic controller (not shown). The input control signals may include a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, a main clock signal CLK, and a data enable signal DE, which control the RGB image signals to be displayed. The signal controller 70 generates various control signals CONT based on the input control signals, processes the image signal RGB_Data such that the image signal RGB_Data is suitable for the operational condition of the liquid crystal display unit 10, transmits the control signals CONT to the gate driver 20 and the data driver 30, and transmits the processed image signal RGB_Data to the data driver 30.
The control signals CONT include a gate clock signal CPV controlling the output time of the gate on voltage Von and an output enable signal OE that limits the amplitude of the gate on voltage Von. In addition, the control signals CONT include a horizontal synchronization start signal STH that notifies the start of the horizontal period, a load signal LOAD used to apply the data voltage to the data line, a reverse signal RVS used to reverse the polarity of the data voltage relative to the common voltage Vcom (hereinafter, polarity of the data voltage relative to the common voltage is simply referred to as “polarity of the data voltage), and a data clock signal HCLK.
The data driver 30 sequentially receives image data corresponding to pixels of one row (in general, horizontal scanning lines) based on the control signal CONT of the signal controller 70, and selects the voltage corresponding to the image data from among the gray scale voltages Vgray of the voltage generator 60, thereby converting the image data into the data voltage applied to the liquid crystal.
The gate driver 20 applies the gate on voltage of the voltage generator 60 to the gate line in response to the control signal CONT of the signal controller 70, and allows switching elements Q of all pixels connected to the gate line to electrically communicate with each other.
The gate on voltage is applied to one gate line, and the data driver 20 provides the data voltage to the data lines D1 to Dm while the switching elements Q connected to the gate line are electrically connected with each other (this period is referred to as “1H” or “1 horizontal period”, which is identical to one period of the horizontal synchronization signal Hsync, the data enable signal DE, and the gate clock signal CPV). The data voltage applied to the data line D1 to Dm is applied to the corresponding pixels through the switching elements Q.
The brightness adjusting device 80 generates a pulse signal by using a dimming control signal from the signal controller 70 (for instance, the vertical synchronization start signal) and transmits the pulse signal to the inverter 50. In the inverter, the pulse signal controls on/off of the sine wave voltage applied to the lamp 40, thereby turning on/off the lamp 40.
The brightness adjusting device 80 shown in
In the brightness adjusting device 80 used for the liquid crystal display 1 according to an exemplary embodiment of the present invention, the dimming synchronization signal received from the signal controller 70 serves as the vertical synchronization start signal STV. The brightness adjusting device 80 used for the liquid crystal display 1 according to an exemplary embodiment of the present invention receives the vertical synchronization start signal STV to multiply the vertical synchronization start signal STV with the multiplication ratio. However, according to another exemplary embodiment of the present invention, the brightness adjusting device 80 may receive the vertical synchronization signal Vsync or the horizontal synchronization signal Hsync to multiply the vertical synchronization signal Vsync or the horizontal synchronization signal Hsync with the multiplication ratio, wherein the Vsync or Hsync is other than the vertical synchronization start signal STV.
When the vertical synchronization signal Vsync or the horizontal synchronization signal Hsync is used as the dimming synchronization signal, the frequency of the dimming synchronization signal is about 60 Hz in the case of NTSC image signals and about 50 Hz in the case of the PAL or SECAM image signals.
The differential circuit 202 includes a first resistor 305, a condenser 306, a diode 307, and a second resistor 308. The time constant is determined according to the values of the condenser 306 and the second resistor 308.
The serrated wave generator 203 includes a voltage control current source 313 having resistors 309, 310 and 311 and a PNP transistor 312, a condenser 314 charged with the current supplied from the voltage control current source 313, a transistor BJT1 that discharges electric charges of the condenser 314 as the differential circuit 202 generates an output signal, a second reference voltage generator 315, a first operational amplifier 316, an integral circuit 319 having a resistor 317 and a condenser 318 connected to an outer terminal of the first operational amplifier 316, a third reference voltage generator 320, a second operational amplifier 321, resistors 322 and 323 fedback to the negative input terminal from the second operational amplifier 321, and a condenser 324.
Although the structure of the first reference voltage generator 204 is not illustrated in detail, the first reference voltage generator 204 generates stable and adjustable DC voltages. For instance, the first reference voltage generator 204 includes a circuit that outputs a voltage by dividing a constant voltage source using a variable resistor, or a circuit that selectively outputs various types of voltages by selecting a voltage ratio using various resistor values and switching transistors.
The comparator 205 is a third operational amplifier 325, in which the positive input terminal is connected to the condenser 314, and the negative input terminal is connected to the first reference voltage generator. The comparator 205 outputs a pulse signal having a constant duty ratio by comparing the voltage of a node (SAW) 327 with a reference DC voltage output from the first reference voltage generator 204. In addition, a level shift circuit 326 may be installed between the first reference voltage generator 204 and the negative input terminal of the third operational amplifier 325 (comparator 205) in order to adjust the first reference voltage (DC voltage).
As shown in
The vertical synchronization start signal STV output from the signal controller 70 shown in
The multiplication ratio may be predetermined, and the divide ratio is determined according to the predetermined multiplication ratio.
Since the signal output from the multiplication circuit 201 is a pulse signal, an operation start edge of the pulse signal must be detected. To this end, the differential circuit 202 is provided in the brightness adjusting device 80.
The operation start edge of the pulse signal detected by the differential circuit 202 is applied to the base of the transistor BJT1, so that the switching operation of the transistor BJT1 is performed. The condenser 314 connected to the collector of the transistor BJT1 is charged with the current supplied from the voltage control current source 313, and the operation start edge detected by the differential circuit 202 is applied to the base of the transistor BJT1 to turn on the transistor BJT1, so that the electric charge of the condenser 314 is discharged.
As shown in
This pulse signal is smoothened by means of the integral circuit 319. The smoothing signal is input into the positive input terminal of the second operational amplifier 321, and is compared with the reference voltage, which is output from the third reference voltage generator and is input into the negative input terminal. The second operational amplifier 321 outputs the signal based on the comparison result to control the voltage control current source 313.
The voltage input into the positive input terminal is stabilized by means of the operation of the second operational amplifier 321, so that the voltage may serve as a reference voltage generated from the third reference voltage generator. That is, since the voltage of the node (HOLD) 328 that is input into the positive input terminal is maintained at a predetermined level due to the operation of the second operational amplifier 321, the average value of the square waves output from the first operational amplifier 316 is maintained constant. As a result, the amplitude of the node (SAW) 327 is constantly maintained regardless of the capacity of the condenser 314, the frequency of the vertical synchronization start signal STV, and the multiplication ratio of the multiplication circuit.
As mentioned above, since the serrated waveform of the node (SAW) 327 has the constant amplitude regardless of its frequency, the brightness adjusting pulse signal output from the output node 329 of the third operational amplifier 325 becomes the pulse signal having a duty ratio fixed to the reference DC voltage level when the serrated waveform of the node (SAW) 327 is compared to the reference DC voltage (A-DIMI) output from the first reference voltage generator by means of the third operational amplifier 325. The brightness adjusting pulse signal is not affected by the frequency of the vertical synchronization start signal STV and the multiplication ratio of the multiplication circuit.
In addition, as mentioned above, since the brightness adjusting device 80 used for the liquid crystal display according to an exemplary embodiment of the present invention includes the multiplication circuit 201, the switching period of the inverter and the brightness may be changed by adjusting the multiplication ratio of the multiplication circuit 201.
In addition, in order to control the reference DC voltage (A-DIMI), which is output from the first reference voltage generator and input into the negative input terminal of the third operational amplifier 325, a level shift circuit 326 may be installed.
Referring to
As described above, according to the liquid crystal display of the present invention, the dimming synchronization signal, for instance, the vertical synchronization frequency of the display image signal transmitted to the liquid crystal panel is fixedly synchronized with the frequency of the brightness adjusting pulse at a predetermined multiplication ratio, so that interference noise may be prevented. In addition, the frequency of the brightness adjusting pulse may be changed by controlling the multiplication ratio of the multiplication circuit.
According to liquid crystal display of the present invention, the frequency of the dimming synchronization signal is synchronized with the frequency of the brightness adjusting pulse at a predetermined multiplication ratio, so that interference noise may be prevented. Further, the duty ratio of the brightness adjusting pulse is not changed even if the frequency of the dimming synchronization signal is changed, and the frequency of the brightness adjusting pulse may be changed by controlling the multiplication ratio of the multiplication circuit.
Although the exemplary embodiments of the present invention have been described, it is understood that the present invention should not be limited to these exemplary embodiments but various changes and modifications can be made by one ordinary skilled in the art within the spirit and scope of the present invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0088247 | Sep 2006 | KR | national |