This invention relates to flashlights, and more particularly to flashlights with selectably controllable brightness levels.
Handheld flashlights with selectably actuable brightness levels are known in the prior art, as are flashlights with multiple light emitters including incandescent light bulbs and light emitting diodes. Such flashlights permit a user to perform tasks under portable light conditions selected for the particular task. Nevertheless, the need exists for improvements in such flashlights for increasing their adaptability to varied environments and purposes.
In accordance with a principal aspect of the present invention, flashlights with at least two user-selectable brightness levels are provided, the brightness level and its selection being in response to manual actuation of a switch which is preferably situated in the flashlight's tail cap.
Preferred embodiments of the invention provide, in a flashlight, the combination comprising: a battery; a switch having an OFF position not connected to the battery, a first ON position connected to the battery, and a second ON position connected to the battery; an electrical component in circuit with the battery when the switch is in its first ON position and not in circuit with the battery when the switch is in its second ON position; a light emitter assembly; and a controller in circuit with the battery, the switch and the light emitter assembly, for detecting whether or not the electrical component is in circuit with the battery when the switch is in either one of its first ON position and its second ON position, and for controlling electrical power to the light emitter assembly for producing a first light output when the electrical component is detected and for producing a second light output when the electrical component is not detected. The controller preferably also regulates power to the light emitter assembly for providing constant brightness of at least one of the first and second light outputs. The controller, in one preferred aspect of the invention, abruptly reduces power to the light emitter assembly when the battery is near exhaustion, abruptly reducing light output of the light emitter assembly, for signaling that the battery is near exhaustion and for facilitating battery replacement.
The flashlight includes a switch actuator for placing the switch alternatively in its OFF position, its first ON position and its second ON position. The actuator preferably includes a pushbutton depressible by a first distance placing the switch in its first ON position and depressible by a second distance placing the switch in its second ON position.
The electrical component in circuit with the battery, and which presence is detected by the controller for determining switch position, may comprise a resistor or an inductor in circuit with the battery when the switch is in its first ON position and is shorted out of the circuit when the switch is in its second ON position.
In one preferred embodiment according to the present invention, the light emitter assembly includes an incandescent lamp connected to the controller and at least one light emitting diode (LED) connected to the battery through the switch, the at least one LED being powered by the battery for producing light output when the switch is in its first ON position, the controller delivering power to the incandescent lamp for producing light output when the switch is in its second ON position but not when the switch is in its first ON position. The at least one LED may be powered by the battery for producing light output when the switch is in its second ON position as well as when the switch is in its first ON position.
In a second preferred flashlight embodiment, the light emitter assembly includes an incandescent lamp connected to the controller, the controller delivering power to the incandescent lamp for producing the first light output when the switch is in its first ON position and for producing the second light output when the switch is in its second ON position.
In a third preferred flashlight embodiment, the light emitter assembly includes two incandescent lamps connected to the controller, the controller delivering power to one of the incandescent lamps for producing light output when the switch is in its first ON position, the controller delivering power to the other of the incandescent lamps (or to both of the incandescent lamps) for producing light output when the switch is in its second ON position.
In a yet another preferred flashlight embodiment, the light emitter assembly includes an LED connected to the controller, the controller controlling power to the LED for producing the first light output when the switch is in its first ON position and for producing the second light output when the switch is in its second ON position.
Preferably, in each of the above-mentioned preferred flashlight embodiments, the flashlight includes a battery housing for the battery, with the light emitter assembly situated at the front end of the battery housing; and a tail cap assembly is coupled to the battery housing at its rear end, the tail cap assembly including the switch and the electrical component. The controller, which is preferably situated at the battery housing's front end in proximity to the light emitter assembly, communicates with the tail cap switch and with the electrical component through a conductive path along the battery housing. The tail cap assembly includes a switch actuator, preferably a pushbutton depressible by a first distance placing the switch in its first ON position and depressible by a second distance placing the switch in its second ON position.
In a preferred embodiment of the tail cap switch, a contact member is coupled through the electrical component to the rear terminal of the battery in the battery housing, the contact member including at least one resilient arm spaced from the conductive rear edge of the battery housing when the switch is in its OFF position, the resilient arms being in conductive contact with the battery housing's conductive rear edge when the switch is in its first ON position, the resilient arms being in conductive contact with the battery housing's conductive rear edge and with the rear terminal of the battery shorting out the electrical component when the switch is in its second ON position. The flashlight includes a switch actuator in the tail cap assembly, preferably provided by a pushbutton depressible by a first distance for urging the contact member's resilient arms in conductive contact with the conductive rear edge of the battery housing, and for placing the conductive member's resilient arms in conductive contact with the conductive rear edge of the battery housing and with the rear terminal of the battery shorting out the electrical component.
Another aspect of the present invention provides, in a flashlight, the combination comprising: a battery; a switch having an OFF position not connected to the battery, a first ON position connected to the battery, and a second ON position connected to the battery; a light emitter assembly; a controller in circuit with the battery, the switch and the light emitter assembly, such controller controlling electrical power to the light emitter assembly for producing a first light output when the switch is in its first ON position and for producing a second light output when the switch is in its second ON position; and a switch actuator coupled to the switch and translatable by a first distance placing the switch in its first ON position and translatable by a second distance placing the switch in its second ON position. The switch actuator preferably includes a pushbutton depressible by such first distance placing the switch in its first ON position and depressible by such second distance placing the switch in its second ON position.
A further aspect of the present invention includes a method of indicating near exhaustion of the battery in a flashlight including a light emitter, the method comprising: regulating power from the battery to the light emitter for providing constant brightness of light output over time; detecting near exhaustion of the battery; abruptly reducing power to the light emitter for providing an abrupt decrease in light output when near exhaustion of the battery is detected; and, preferably, regulating the reduced power to the light emitter for providing constant brightness of the decreased light output. During the first regulating step, the method periodically corrects duty cycle for maintaining the constant brightness of light output over time; and during the detecting step, the method detects when the duty cycle is at a predetermined level (such as near 100%) corresponding to near exhaustion of the battery. During the reducing step, the light output is abruptly reduced to approximately 20% of the light output provided during the regulating step.
Other preferred embodiments of the invention provide, in a flashlight, the combination comprising: a battery; a light emitter assembly; a switch in circuit with the battery and the light emitter assembly, the switch having a first OFF position and a second OFF position, a first ON position coupling the battery to the light emitter assembly for producing a first light output, and a second ON position coupling the battery to the light emitter assembly for producing a second light output; and a switch actuator adapted to be coupled to the switch alternatively in the first OFF position and the second OFF position, the switch actuator when coupled in the first OFF position is translatable by a first distance placing the switch in its first ON position and translatable by a second distance placing the switch in its second ON position, the switch actuator when coupled in the second OFF position is translatable by a third distance placing the switch in its first ON position. The flashlight preferably includes a third OFF position, and the switch actuator is adapted to be coupled to the switch in the third OFF position wherein actuation of the switch actuator is ineffective for placing the switch in either of its first and second ON positions.
The switch actuator preferably includes a pushbutton depressible by the first, second and third distances for respectively placing the switch in its first ON, second ON and first ON positions. Preferably, the switch actuator comprises a click-ON/click-OFF pushbutton switch actuator for maintaining the switch in its second ON position when the switch actuator is coupled to the switch in its first OFF position and the pushbutton is depressed to its full travel and released. The click-ON/click-OFF pushbutton switch actuator maintains the switch in its first ON position when the switch actuator is coupled to the switch in its second OFF position and the pushbutton is depressed to its full travel and released.
In another preferred embodiment of the flashlight employing a click-ON/click-OFF pushbutton switch actuator, the flashlight includes the combination comprising: a battery; a light emitter assembly; a switch in circuit with the battery and the light emitter assembly, the switch having a first OFF position, a first ON position coupling the battery to the light emitter assembly for producing a first light output, and a second ON position coupling the battery to the light emitter assembly for producing a second light output; and a click-ON/click-OFF pushbutton switch actuator including a pushbutton, the switch actuator adapted to be coupled to the switch in its first OFF position wherein the pushbutton is depressible by a first distance placing the switch momentarily in the first ON position, the pushbutton is depressible by a second distance placing the switch momentarily in the second ON position, the pushbutton is depressible to its full travel and releasable for maintaining the switch in its second ON position, the switch actuator is adapted for releasing the switch to its first OFF position when the switch is in the maintained second ON position and the pushbutton is depressed to its full travel and released.
In such flashlights, the switch may also include a second OFF position; and the switch actuator is adapted to be coupled to the switch in its second OFF position wherein the pushbutton is depressible by a third distance placing the switch momentarily in the first ON position, the pushbutton is depressible to its full travel and releasable for maintaining the switch in the first ON position, the switch actuator is adapted for releasing the switch to its second OFF position when the switch is in the maintained first ON position and the pushbutton is depressed to its full travel and released.
The switch may also include a third OFF position, and the switch actuator is adapted to be coupled to the switch in the third OFF position wherein depression of the pushbutton is ineffective for placing the switch in either of the first and second ON positions.
The novel features believed to be characteristic of the invention, together with further advantages thereof, will be better understood from the following description considered in connection with the accompanying drawings in which preferred embodiments of the present invention are illustrated by way of example. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of the invention.
Turning to
In accordance with the present invention and considering
The flashlight 10 is provided with a controller 30 in circuit with the battery 22, the switch assembly 26 and the light emitter assembly 16. While the switch assembly 26 and resistor 28 are preferably located in the tail cap assembly 24 at the rear of the battery housing 12, the controller 30 is preferably a printed circuit assembly located at the front end of the battery housing 12 in proximity to the light emitter assembly 16. A conductive path along the battery housing 12, such as by the housing being fabricated of a metal (e.g. aluminum) or by the housing 12 having a metallic sleeve, electrically couples one terminal 39 of the battery 22 with the controller 30 and light emitter assembly 16 through the switch assembly 26 and resistor 28.
When the switch assembly 26 is in its OFF position, there is no power to the controller 30 and to the light emitter assembly 16. As will be later described in greater detail, when the switch assembly 26 is actuated by a user to either one of its ON positions, the controller 30 determines which of the two ON positions is actuated by detecting whether the resistor is in series circuit, providing power only to the LEDs 20 if the resistor 28 is detected (i.e. if the switch's first ON position is actuated) and providing power to both the LEDs 20 and the incandescent lamp 18 if the resistor 28 is not detected (i.e. if the switch's second ON position is actuated).
The tail cap and switch assemblies 24, 26 and their operation will be described in connection with
The tail cap assembly 24 includes a circuit board assembly 44 including a circuit board 46 (such as a printed circuit board) and switch contact member or washer 48 secured between a battery rear terminal contact spring retainer 50 and a pushbutton retainer 52. The battery terminal contact spring 54 is secured to the spring retainer 50 and to a central conductive portion 55 of the circuit board 46 by a conductive eyelet 56 extending through a central aperture 57 in the circuit board 46 and to the circuit board's rear face 58 (
The front face 62 (
A nonconductive solder mask 68 (
The switch contact washer 48 (
The diameter of the contact washer 48 and the projection profile of each of the arms 72 are such that the arms 72 are brought into conductive contact with the conductive rear edge 76 of the battery housing 12 when the circuit board assembly 44 is forwardly displaced or translated by a first predetermined distance along the longitudinal axis a, and further forward displacement or translation of the circuit board assembly 44 by a second predetermined distance causes respective pads 64 to come into conductive contact with the end portions 78 of the resilient arms 72. The switch contact washer 48, in one example, was constructed of a nickel-plated approximately 0.006 inch thick beryllium copper alloy.
With the batteries 22 in circuit in the battery housing 12 (as in
The first ON position of the tail cap switch 26 is effected by forwardly moving the circuit board assembly 44 against the bias of the battery rear terminal contact spring 54, until the contact washer arms 72 come into contact engagement with the battery housing conductive rear edge 76. This may be accomplished either by the user's rotating the tail cap 40 in one direction with respect to the battery housing 12 which results in forward translatory displacement of the tail cap 40 by a first distance and hence of the pushbutton retainer/circuit board assembly combination 52, 44 against the bias of the spring 54, as indicated by the arrow 86 in
The second ON position of the tail cap switch 26 is effected upon forward displacement of the circuit board assembly 44 until the contact washer arms 72 are in contact engagement with the respective circuit board pads 64 as well as in contact engagement with the battery housing conductive rear edge 76. This may be accomplished by continuing to threadedly rotate the tail cap 40 upon the battery housing threaded rear end portion 42, thereby forwardly displacing or translating the tail cap 40 by a second distance along with the pushbutton retainer/circuit board assembly combination 52, 44 against the bias of the spring 54, until—with the contact washer arms 72 remaining in contact engagement with the battery housing rear edge 76—the pads 64 contact the end portions 78 of the contact washer arms 72 respectively. Alternatively, the user may depress or manually forwardly urge the tail cap pushbutton 88 by a second distance for forwardly displacing the pushbutton retainer/circuit board assembly combination 52, 44 away from the tail cap shoulder 84 against the bias of the spring 54, until the pads 64 respective contact the end portions 78 of the contact washer arms 72 while the contact washer arms 72 remain in contact engagement with the battery housing rear edge 76, as shown in
When the first ON position has been effected through forward translation by rotating the tail cap 40 as shown in
When the first ON position has been effected by forward rotation of the tail cap 40 as shown in
When the tail cap switch 26 is in its first ON position shown in
The controller 30 includes a microprocessor 90, such as a PIC12C671 manufactured by Microchip Technology Inc. (of Chandler, Ariz.), a low dropout voltage regulator 92 such as the LP2951 manufactured by National Semiconductor Corporation, and a power MOSFET 94 such as an IRF7401 FET manufactured by International Rectifier (of El Segundo, Calif.).
The microprocessor-based controller of
Specifically, by the circuit of
During the resistor detection system cycling when the power FET 94 is off, the available power source voltage drives the three LEDs 20 with about thirty-five milliamps of current in each LED 20 or about one hundred milliamps total. Since this procedure for detecting the series resistor 28 occurs about 0.6% of the time, the power loss associated with the detection procedure is about 3% additional as compared with not sampling at all. Further, the four-millisecond sample period allows the microprocessor 90 to respond quickly to the user's switching the tail cap switch 26 to its second ON position (i.e. shorting out the tail cap resistor 28) for effecting full brightness of the light emitter assembly (i.e., with both the tungsten light bulb 18 and the LEDs 20 being energized).
A second preferred flashlight embodiment 110 according to the present invention, is shown in
The flashlight 110 includes a single incandescent lamp 118 in the light emitter assembly 116, preferably a tungsten light bulb 118, with two user-selectable brightness levels powered by a six-volt battery such as the two three-volt lithium battery cells 22. Examples of such tungsten light bulbs 118 are well known and readily available, including such bulbs for producing—when used in the flashlight 110 of the present invention—one hundred lumens in its bright setting and twenty lumens in its dim setting, or sixty lumens in its bright setting and twelve lumens in its dim setting, or twenty-five lumens in its bright setting and five lumens in its dim setting.
The tail cap assembly 124 includes a switch assembly 126 similar to the tail cap and switch assemblies 24, 26 of the flashlight 10 shown in
The circuit board assembly 144 of the flashlight 110 is similar to the circuit board assembly 44 shown in
The tail cap and switch assemblies 124, 126 of the flashlight 110, and their operation, are as shown in
The microprocessor-based controller of
Specifically, by the circuit of
The use of a saturating series inductor 100 in the switch assembly 126 achieves very high power efficiency because the loss is mostly resistance of the inductor's copper wire, since the inductive reactance happens for about four microseconds every four milliseconds. The copper wire resistance is only 22 milliohms, being only twenty turns of 24 AWG wire on a high permeability ferrite toroidal core measuring 0.37-inch diameter by 0.125 inch squared in cross section. Such resistance causes less than 2% power loss with the one hundred lumen bulb 118, and much less with bulbs of lesser light output.
A third preferred flashlight 110′ embodiment according to the present invention, represented in
A fourth preferred flashlight embodiment 210 according to the present invention is shown in
The flashlight 210, in the embodiment shown, is powered by a three-volt battery 22 such as a single three-volt lithium battery cell, and includes tail cap and switch assemblies 24, 26 similar to the tail cap and switch assemblies 24, 26 of the flashlight 10 shown in
In connection with the flashlight 210, there is no power to the controller 230 and to the LED 220 when the switch assembly 26 is in its OFF position (as shown in
When the tail cap switch ten-ohm series resistor 28 is present in the circuit (i.e. when the switch 26 is in its first ON position), the input voltage rapidly drops to near zero volts when the DC to DC converter 232 tries to boost the input voltage to the required output voltage and current. The controller's detector circuit and one-shot 234, shown in
A fifth preferred flashlight embodiment 310 according to the present invention, represented in
The flashlight 310 is powered by a six-volt battery 22 such as two three-volt lithium battery cells, and includes tail cap and switch assemblies 124, 126 similar to the tail cap and switch assemblies 124, 126 of the flashlight 110 shown in
In connection with the flashlight 310, there is no power to the controller 330 and to the LED 320 when the switch assembly 126 is in its OFF position (as shown in
When the tail cap series inductor 100 is present in the circuit (i.e. when the switch 126 is in its first ON position), the controller 330 reduces the LED power to the low brightness level. The controller 330 periodically senses for presence of the inductor 100 in similar manner as the controller 130 of the flashlight 110. As shown in
Utilizing a five-watt LUXEON V STAR LED 320, a six-volt battery 22 comprising two three-volt lithium cells, and an inductor 100 as previously described in connection with the flashlight 110, the flashlight 310 would produce a light output of approximately ten lumens when the tail cap switch 126 is in its first ON position and a light output of approximately sixty lumens when the tail cap switch 126 is in its second ON position.
In the above-described flashlights, the controller regulates the power to the light emitters for providing light output of constant brightness with decreasing battery voltage over time. For tungsten light bulbs, pulse width modulation is used to maintain a constant DC coupled true RMS voltage. Regulating the voltage to light bulbs by pulse width modulation is described in the publication “Pulse Width Modulated Voltage Regulator for Electric Caving Lamps” by William A. Hunt, one of the present inventors, which publication is dated Sep. 22, 1993, revised in 1994 and 1995, and is available on the Internet at www.cs.indiana.edu/−willie, such publication being incorporated herein by reference; and in U.S. Pat. No. 4,499,525 to Henry R. Mallory, the disclosure of which patent is incorporated herein by reference.
Using pulse width modulation for maintaining regulated RMS voltage to the light bulb, during each of the previously described sampling cycles when the flashlight's controller samples the battery voltage while the light bulb is connected, the controller calculates the correct duty cycle for the pulse width modulation (square of bulb voltage divided by square of input voltage) and generates that duty during the next cycle. In
For the LEDs, the controller maintains a constant current through the LED since forward current closely tracks light output and since an LED's forward voltage drop is poorly correlated with power input and varies with temperature. When the battery nears exhaustion, the controller dims the LED, giving the user an indication that the battery is nearing exhaustion. Since an LED's luminous efficiency increases with power decrease, the LED flashlights described above continue to give usable light even though the LED power drops by a large factor, providing the LED with a long run time of decreasing yet useful light output.
Turning to
The flashlight 510 includes a generally cylindrical battery housing 12, a head 14 at the flashlight's front end including a light emitter assembly 16 with an incandescent lamp 18 and at least one light emitting diode (LED) 20 in electrical circuit with one or more battery, cells 22 in the battery housing 12. The incandescent lamp 18 of the preferred embodiment may be replaced by a high luminous flux LED such as the LED 220 or 320 previously described in connection with the flashlight embodiments shown in
The pushbutton switch actuator 515 is preferably of the push-push type, where a full longitudinal depression of the pushbutton from a switch OFF position causes the switch 514 to be placed in an ON position which is maintained after the pushbutton 520 is released (i.e., the switch 514 is in a constant-ON position), and where the next full longitudinal depression and release of the pushbutton 520 releases the switch 514 to its OFF position. Such switches conventionally have a tactile feel and produce a “click” when the pushbutton is depressed to its full travel, i.e. when placing the switch 514 in its constant-ON position and alternatively when placing the switch 514 to its OFF position from a constant-ON position. Such switches are often referred to as click-ON/click-OFF switches, or as having a click-ON/click-OFF pushbutton switch actuator.
The click-ON/click-OFF pushbutton switch actuator 515 includes a pushbutton plunger 520 slidably held by a switch body member 517 secured to the tail cap 534, and a rotor 516 in cooperative engagement with the pushbutton plunger 520 and a spring 518. The body member 517, the pushbutton plunger 520 and the rotor 516 include a series of interacting teeth, ribs and slots for producing the click-ON/click-OFF operation when the pushbutton 520 is fully depressed. Such click-ON/click-OFF pushbutton switch actuators are well known in the art, examples of which are shown and described in U.S. Pat. Nos. 4,230,921; 4,319,106; 4,463,231; 4,506,124; and 4,733,337; the disclosures of each of which patents are incorporated herein by reference.
The switch 514 includes a circuit board assembly 522 including a circuit board 524 (such as a printed circuit board) and a switch contact member or washer 48 (substantially as shown by the switch contact member or washer 48 of
In the preferred embodiment of the flashlight 510, the tail cap assembly 512 includes an electrical component—such as the resistor 28 shown in the flashlight embodiments of
The flashlight 510 is preferably provided with a controller 30 in circuit with the battery 22, the switch assembly 514 and the light emitter assembly 16. The controller 30 and its operation, with respect to the flashlight 510, is substantially the same as described above with respect to the flashlight 10.
The tail cap and switch assemblies 512, 514, 515 and their operation will be described in connection with
The circuit board 524 is functionally similar to the circuit board 46 of
The front face 544 (
As previously described, the switch contact washer 48 (
The diameter of the contact washer 48 and the projection profile of each of the arms 72 are such that, when the switch 514 is in either one of two OFF positions, the arms 72 may be brought into conductive contact with the conductive rear edge 76 of the battery housing 12 when the circuit board assembly 522 is forwardly displaced by depression of the pushbutton 520; and when the switch has been placed in one but not the other of these two OFF positions, further forward displacement of the circuit board assembly 522 from the first ON position causes the conductive pads 546 to come into conductive contact with the respective end portion 78 of the resilient arms 72. The extent of forward displacement of the circuit board assembly 522 corresponds to the extent of depression of the pushbutton 520 less than full travel, for effecting the first and second momentary-ON positions from the first OFF position of the switch, and for effecting the first momentary-ON position only from the second OFF position of the switch. In addition, by depressing the pushbutton 520 to its full travel and release thereof, the switch may be placed in its second constant-ON position from its first OFF position only, and in its first constant-ON position from its second OFF position only.
Further, when the switch is in a third OFF position, depression of the pushbutton 520—even to its full travel—will not cause the switch to assume either of its first or second ON positions, so that the switch 514 is disabled in such third OFF position.
When the switch is in any one of its OFF positions (
Specifically,
When the pushbutton 520 is urged (represented by the force arrow 521,
Rather than returning the switch to its first OFF position, the user may further depress the pushbutton 520 to at least the cumulative second distance (still less than full travel of the pushbutton 520) corresponding to forward displacement of the circuit board assembly 522 until—with the contact washer arm 72 remaining in contact engagement with the battery housing rear edge 76—the circuit board conductive pads 546 contact the rearward end portions 78 of the contact washer arm 72 respectively, as shown in
Rather than replacing the switch to its first momentary-ON position or to its first OFF position, the user may further depress the pushbutton 520 to its full travel, whereupon a click-ON operation of the switch button actuator 515 is effected. Upon the user's release of pushbutton urging, the circuit board assembly 522 is slightly rearwardly displaced to a rest position still in its second ON position, by the click-ON action of the actuator 515, so that the switch is maintained in its second ON position shown in
Accordingly, when the tail cap switch is in this second OFF position, the resilient conductive arms 72 contact the rear conductive edge 76 of the battery housing 42 when the pushbutton is depressed a distance corresponding to at least the distance e2 but less than pushbutton full travel, placing the switch in its first momentary-ON position. This first ON position is maintained for as long as the pushbutton 520 remains depressed, and release of the pushbutton 520 causes the circuit board assembly 522 to be rearwardly displaced by the bias of the battery terminal contact spring 532 returning the switch to the second OFF position of FIG. 35. It may be recognized that, when the pushbutton is depressed for maintaining the first momentary-ON position, further depression of the pushbutton 520 (even to full travel) would not forwardly move the circuit board assembly 522 sufficiently to cause contact engagement of the pads 542 with the respective end portions 78 of the arms 72, i.e. placing the switch in the second ON position is precluded from its second OFF position.
Rather than returning the switch to its second OFF position, the user may further depress the pushbutton 520 to its full travel, whereupon the click-ON operation of the pushbutton actuator 515 is effected. Upon the user's release of pushbutton urging, the circuit board assembly 522 is slightly rearwardly displaced to a rest position still in its first ON position, by the click-ON action of the actuator 515, so that the switch is maintained in its first ON position shown in
When the tail cap switch 514 is in its first ON position shown in
The third OFF or lockout position is shown in
Thus, there have been described preferred embodiments of flashlights with user-selectable actuation, preferably through a pushbutton tail switch, of different brightness levels of the light emitter assembly's light output. Momentary-ON and constant-ON actuation of the different brightness levels may be implemented by utilizing a click-ON/click-OFF pushbutton switch actuator in such flashlights. Other embodiments of the present invention, and variations of the embodiments described herein, may be developed without departing from the essential characteristics thereof. Accordingly, the invention should be limited only by the scope of the claims listed below.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/346,537, filed Jan. 16, 2003 now U.S. Pat. No. 6,841,941, which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1214583 | Persons | Feb 1917 | A |
1226325 | Geromanos | May 1917 | A |
1287611 | Barnes | Dec 1918 | A |
1361557 | Wheat | Dec 1920 | A |
1423911 | Cardwell | Jul 1922 | A |
1448352 | Barany et al. | Mar 1923 | A |
1559930 | Bean | Nov 1925 | A |
1889936 | Shannon | Dec 1932 | A |
2097222 | Thomkins et al. | Oct 1937 | A |
2190035 | Loungway | Feb 1940 | A |
2408643 | Hoy | Oct 1946 | A |
2443539 | Kopp | Jun 1948 | A |
3596078 | Owens | Jul 1971 | A |
3999193 | Hasegawa | Dec 1976 | A |
4025743 | Oswald | May 1977 | A |
4135230 | Armbruster | Jan 1979 | A |
4211955 | Ray | Jul 1980 | A |
4230921 | Wearing et al. | Oct 1980 | A |
4249234 | Park et al. | Feb 1981 | A |
4286311 | Maglica | Aug 1981 | A |
4290095 | Schmidt | Sep 1981 | A |
4319106 | Armitage | Mar 1982 | A |
4332445 | Hosono | Jun 1982 | A |
4346329 | Schmidt | Aug 1982 | A |
4386391 | Gulliksen et al. | May 1983 | A |
4388673 | Maglica | Jun 1983 | A |
4463231 | Cooper et al. | Jul 1984 | A |
4484253 | Roberts | Nov 1984 | A |
4499525 | Mallory | Feb 1985 | A |
4506124 | Rose et al. | Mar 1985 | A |
4527223 | Maglica | Jul 1985 | A |
4530034 | Kawarada | Jul 1985 | A |
4581686 | Nelson | Apr 1986 | A |
4605993 | Zelina, Jr. | Aug 1986 | A |
4677533 | McDermott et al. | Jun 1987 | A |
4733337 | Bieberstein | Mar 1988 | A |
4758694 | Burdick | Jul 1988 | A |
4760504 | Schaller et al. | Jul 1988 | A |
4783725 | Schaller et al. | Nov 1988 | A |
4788633 | Zimmermann et al. | Nov 1988 | A |
4803605 | Schaller et al. | Feb 1989 | A |
4841417 | Maglica et al. | Jun 1989 | A |
4876416 | Frantz et al. | Oct 1989 | A |
4914555 | Gammache | Apr 1990 | A |
4947291 | McDermott | Aug 1990 | A |
4963798 | McDermott | Oct 1990 | A |
4985813 | Putman | Jan 1991 | A |
5003440 | Maglica | Mar 1991 | A |
5077644 | Schaller et al. | Dec 1991 | A |
5081568 | Dong et al. | Jan 1992 | A |
5161879 | McDermott | Nov 1992 | A |
5174648 | Clary et al. | Dec 1992 | A |
5345370 | Murray et al. | Sep 1994 | A |
5359779 | Polk et al. | Nov 1994 | A |
5424927 | Schaller et al. | Jun 1995 | A |
5590951 | Matthews | Jan 1997 | A |
5629105 | Matthews | May 1997 | A |
5642932 | Matthews | Jul 1997 | A |
5685637 | Chapman et al. | Nov 1997 | A |
5722755 | Slape | Mar 1998 | A |
5727675 | Leveque et al. | Mar 1998 | A |
5821697 | Weber | Oct 1998 | A |
5871272 | Sharrah et al. | Feb 1999 | A |
5984494 | Chapman et al. | Nov 1999 | A |
6019482 | Everett | Feb 2000 | A |
6046572 | Matthews et al. | Apr 2000 | A |
6095661 | Lebens et al. | Aug 2000 | A |
6183105 | Parker | Feb 2001 | B1 |
6260985 | Zeller | Jul 2001 | B1 |
6296367 | Parsons et al. | Oct 2001 | B1 |
6386730 | Matthews | May 2002 | B1 |
RE38014 | Bieberstein | Mar 2003 | E |
6742911 | Chen | Jun 2004 | B1 |
6808287 | Lebens et al. | Oct 2004 | B1 |
6890086 | Shiu | May 2005 | B1 |
6942356 | Hahn | Sep 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20050077837 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10346537 | Jan 2003 | US |
Child | 10966426 | US |