(a) Field of the Invention
The present invention is related to a brightness enforcement diffusion construction, and more particularly to a diffusion plate comprised of a transparent substrate made of plastic material provided with a diffusion layer and a brightness enforcement layer respectively on the light coupling surface and light illuminant surface of the substrate to effectively refract streams of light to create diffusion and brightness enforcement results.
(b) Description of the Prior Art
Rapid advancement of the multi-media society is mostly benefited from that of semiconductor device or man-machine display. In terms of the display, the cathode ray tube (CRT) for being economic and providing excellent display quality has been dominating the market of display in recent years. However, many problems in space utility and energy consumption are found with the CRT and CRT fails to effectively provide solution to requirements of being lighter, thinner, shorter, and smaller, and lower power consumption when CRT is examined under the environment of personal operation of most of the terminals and displays or on the aspect of environmental protection in prediction of the future of CRT when energy saving is of primary concern. Therefore, the LCD featuring top picture quality, better space utilization, low power consumption, and free of radiation has gradually become the main stream of the market. It should be noted that the liquid crystal panel in LCD does not emit light and a backlight unit is provided to supply the light source needed by the liquid crystal panel to display with sufficient brightness and contrast.
Multiple optical layers (e.g., diffusion plate, brightness enforcement layer, or reflective polarization layer) are usually provided on top of the light guide plate 13 to improve the performance of luminance and brightness for the backlight unit 1. As illustrated, three optical layers require three rounds of assembly since each of those three optical layers is related to an independent member. The tedious assembly process is the primary factor attributable to the higher costs and work hours for the assembly of the backlight unit 1. Furthermore, it takes also three times of cutting for three optical layers to result in higher cutting work hours and costs.
The primary purpose of the present invention is to provide a diffusion plate that provides diffusion and brightness enforcement results at the same time to minimize the use of the diffusion layer and brightness enforcement layer as found with the prior art for effective cost reduction.
To achieve the purpose, the present invention includes a transparent substrate, a diffusion layer, and a brightness enforcement layer. The substrate is made of a plastic material e.g., PET (polyethylene terephthalate), PMMA (polymethyl methacrylate), MS (copolymer of methacrylate and styrene), PS (polystyrene) or PC (polycarbonate) and is provided on both sides respectively a light coupling surface and a light illuminating surface. The diffusion layer is disposed on one side of the light coupling or the light illuminating surface of the substrate while the brightness enforcement layer disposed on the other side. The diffusion layer contains multiple diffusion and/or acrylic particles to refract streams of light for producing diffusion results while enforcing the brightness of the streams of light that pass through the brightness enforcement layer.
FIGS. 3(A), 3(B), 3(C) and 3(D) are views showing operating status of the first preferred embodiment of the present invention.
FIGS. 8(A) and 8(B) are further perspective views showing the construction of the brightness enforcement layer of the present invention.
The prevent invention provides a brightness enforcement diffusion construction and its manufacturing process that is applied in a backlight unit. When streams of light pass the present invention turn into highly consistent and evenly distributed to minimize the use of diffusion and brightness enforcement films in the conventional optical films thus to achieve the purpose of cost reduction while promoting the quality of the brightness of the backlight unit.
A brightness enforcement diffusion construction 2 of a preferred embodiment of the present invention is comprised of a transparent substrate 21, a diffusion layer 22, and a brightness enforcement layer 23 as illustrated in
Depending on the end use purpose, the thickness of the transparent substrate may vary to produce the brightness enforcement diffusion construction either in plate or sheet form. When applied to a direct-type backlight unit as illustrated in
Now referring to
In practice, as also illustrated in
Step A: a transparent substrate made of plastic material, e.g., PET (polyethylene terephthalate), PMMA (polymethyl methacrylate), MS (copolymer of methacrylate and styrene), PS (polystyrene) or PC (polycarbonate) is provided that has a light-coupling surface and an illuminating surface respectively on both sides;
Step B: a diffusion layer containing multiple diffusion and/or acrylic particles is disposed on either of the light-coupling or the illuminating surface of the transparent substrate by coating, spraying or atomizing method; and
Step C: as illustrated in
Accordingly, the present invention may be applied in the direct type or side type of backlight unit to refract streams of light by taking advantage of diffusion and/or acrylic particles while promoting luminance of the streams of light passing through the brightness enforcement layer.
The prevent invention provides a brightness enforcement diffusion construction and its manufacturing process, and the application for a patent is duly filed accordingly. However, it is to be noted that the preferred embodiments disclosed in the specification and the accompanying drawings are not limiting the present invention; and that any construction, installation, or characteristics that is same or similar to that of the present invention should fall within the scope of the purposes and claims of the present invention.
| Number | Date | Country | Kind |
|---|---|---|---|
| 095101979 | Jan 2006 | TW | national |