The present invention relates to a brine filtering device, applicable to an injection machine used to inject brine in pieces of meat product. The filtering device is used to filter the brine that is supplied to the injection machine as well as the surplus brine from the injection process, which is again recycled towards the injection machine during the operation thereof.
The proposed filtering device can be used for other machines which require precise filtering of brine to be used in a later step.
Patent ES-A-2015398, which is incorporated by reference discloses fluid substance recycling and filtering equipment applicable to a meat mass injection machine. The filtering and recycling equipment comprises a pre-filtering unit with a pre-filtration drum arranged to rotate about a horizontal rotation axis and provided with a filtering wall around said horizontal rotation axis, and a safety filtering unit with a safety filtering drum arranged to rotate coaxially together with the pre-filtration drum and provided with a corresponding filtering wall around the horizontal rotation axis.
The brine from the injection machine is poured over an upper region of the pre-filtration drum such that it penetrates into same by gravity through its filtering wall, and exits the pre-filtration drum through an open side wall thereof. The pre-filtered brine is collected in a tub. The safety filtering drum is arranged such that its filtering wall rotates partially submerged in the pre-filtered brine contained in the tub.
The brine of the tub enters into the safety filtering drum through open side walls thereof. The tub has an outlet located below and very close to a lower region of the filtering wall of the safety filtering drum, and the brine is forced out of the safety filtering drum through its filtering wall and through the outlet by suction means. In the upper region of the safety filtering drum there is an automatic cleaning device which uses outside to inside pressurized water jets through the filtering wall.
Patent EP-A-1275305, which is incorporated by reference describes a filtering apparatus applicable to a meat materials injection machine, comprising a pre-filtering unit with a pre-filtration drum arranged to rotate about a horizontal rotation axis and provided with a filtering wall around said horizontal rotation axis, and a safety filtering unit with a pair of safety filtering sleeves horizontally submerged in a tank. The brine from the injection machine is poured over an upper region of the pre-filtration drum such that it penetrates into same by gravity through its filtering wall, and exits the pre-filtration drum through open side walls thereof and through a lower region of the filtering wall. The pre-filtered brine is collected and poured into the mentioned tank inside which the safety filtering sleeves are located. The safety filtering sleeves are connected to an outlet and the brine is forced into the safety filtering sleeves through their filtering wall and through the outlet by suction means.
The safety filtering sleeves can independently pivot towards a straight position emerging from the brine for cleaning and maintenance tasks. A valve device allows operating alternately by means of one of the safety filtering sleeves while the other one is subjected to the cleaning and maintenance operations.
It has been observed that a single pre-filtration drum in the pre-filtering unit may not be enough to provide efficient pre-filtering of the brine from the injection machine, which can still incorporate particles or small pieces of meat mixed therewith, and this results in a higher amount of particles retained by the filtering wall of the safety filter, with the risk of obstruction and the need to perform the cleaning and maintenance operations more frequently.
Document DE-A-2505565, which is incorporated by reference discloses a method for separating suspended material from water using a revolving drum having a microsieve filtering wall. The aqueous suspension is applied onto the outer face of the drum filtering wall, the separated material is then loosened from the drum filtering wall by a water jet from a nozzle directed onto the inner face of the drum filtering wall, and the separated material then flows onto a scraper blade bearing against the outer face of the drum. In a variant, the process is carried out in two stages: first the suspension is applied onto the inner face of a coarse drum with the washing jets on the outside, and then the liquid from this first stage is applied onto the outer face of a microsieve drum with the washing jets on the inside, as in the first variant.
A drawback with the cited DE-A-2505565, which is incorporated by reference is that the use of water jets for washing the drum filtering wall makes unfeasible using the device for filtering brine because the water from the water jets will mix with the brine and will dilute the brine.
The present invention contributes to overcoming the aforementioned drawback by providing a brine filtering device, applicable to a meat product injection machine, integrating a pre-filtering unit and one or more safety filtering units to assure that the particles in the brine filtered by said units do not exceed a pre-determined size. According to the invention, the pre-filtering unit comprises at least first and second filtration drums arranged to rotate coaxially together about a horizontal rotation axis and provided with respective first and second filtering walls around said horizontal rotation axis, and an inlet hopper configured to receive brine to be filtered and to force it into said first pre-filtration drum through said first filtering wall in an upper region thereof. A tub is arranged below the first and second filtration drums to collect the brine filtered through the first filtering wall, which exits a lower region of the first pre-filtration drum.
The brine pre-filtered by the first pre-filtration drum passes from the mentioned collection tub into said second pre-filtration drum through the second cylindrical filtering wall in a lower region thereof and is poured from inside the second pre-filtration drum into a tank through an open side wall of the second pre-filtration drum. The safety filtering unit comprises at least one safety filter sleeve submerged in said tank. The safety filter sleeve is connected to an outlet of the tank and suction means are provided to suck the brine contained in the tank through a filtering wall of the safety filter sleeve and said outlet.
The brine is thus first passed through the first filtering wall from outside to inside the first pre-filtration drum, then it is passed through the second filtering wall from outside to inside the second pre-filtration drum, and finally it is passed through the filtering wall of the safety filter sleeve before being directed towards the outlet. The first and second filtering walls of the first and second pre-filtration drums can have the same mesh size, or the second filtering wall can have a smaller or larger mesh size than that of the first filtering wall. The filtering wall of the safety filter sleeve will have a mesh size that is smaller than or equal to that of the first and second filtering walls of the first and second pre-filtration drums.
The pre-filtered brine can pass from inside the first pre-filtration drum to the tub through the lower region of the corresponding first filtering wall and furthermore through completely or partially open side walls arranged at opposite ends of the first pre-filtration drum. The second pre-filtration drum has a closed side wall at the end adjacent to the first pre-filtration drum and the mentioned open side wall at the end adjacent to the tank of the safety filtering unit. The end of the tub adjacent to the open side wall of the second pre-filtration drum is sealed by dynamic sealing means arranged between the tub and the second pre-filtration drum, such that the brine can only enter second pre-filtration drum through the lower region of its cylindrical filtering wall submerged in the brine of the tub.
The pre-filtered brine exiting the second pre-filtration drum through its open side wall can optionally be passed through one or more additional filtering drums before being poured into the tank of the safety filtering unit. To that end, in one embodiment the pre-filtering unit comprises at least one third additional pre-filtration drum arranged to rotate coaxially together with the first and second filtration drums, and provided with an additional filtering wall around the horizontal rotation axis. The tub in turn comprises at least one additional compartment separated from the tub by the dynamic sealing means arranged between the tub and the second pre-filtration drum. This additional compartment of the tub thus receives the pre-filtered brine poured from the open side wall of the second pre-filtration drum.
The additional pre-filtration drum has a closed side wall at an end adjacent to the second pre-filtration drum and an open side wall adjacent to the tank of the safety filtering unit. Additional dynamic sealing means are arranged between the additional compartment of the tub and an end of the additional pre-filtration drum adjacent to said open side wall thereof. The pre-filtered brine is thus forced from the additional compartment of the tub into the additional pre-filtration drum through a lower region of the additional filtering wall and is poured from inside the additional pre-filtration drum into the tank of the safety filtering unit through the mentioned open side wall of the additional pre-filtration drum. Similarly, the pre-filtering unit can include several additional pre-filtration drums.
In one embodiment, the safety filtering unit comprises at least two of the mentioned safety filtering sleeves connected to said outlet through respective independent valve devices, according to technique that is known through the mentioned documents. Each of said valve devices has a mobile body connected to a support on which the corresponding safety filter sleeve is installed. The valve device is operated by a pivoting movement of said support between a working position, in which the safety filter sleeve is submerged in the brine in the tank and the corresponding valve device is open and a cleaning and maintenance position, in which the safety filter sleeve is emerged from the brine of the tank and the corresponding valve device is closed.
Thus, the filtering device can operate with one of the safety filtering sleeves the support of which is arranged in the working position while the support of another safety filtering sleeve can be in the cleaning and maintenance position, allowing the extraction of the corresponding safety filter sleeve for its cleaning, maintenance or replacement. To that end, each safety filter sleeve is fixed to its corresponding support by fixing means that can be easily released manually without needing tools, for example by means of a simple snap-fitting, allowing an extraction and placement of the safety filter sleeve by axially sliding it along the support.
Each of the supports of the safety filtering sleeves comprises a body which extends internally along the corresponding safety filter sleeve and there is formed in this body an inner conduit communicated with the outlet through the valve device and having one or more inlets intentionally located to be above the level of the brine in the tank when the support is in the cleaning and maintenance position. Thus, the safety filter sleeve can be extracted by axially sliding it along the support without the risk of the brine penetrating towards the valve device when the support is in the cleaning and maintenance position.
The previous and other features and advantages will be more fully understood from the following detailed description of several embodiments with reference to the attached drawings, in which:
The attached figures show a brine filtering device, applicable to a meat product injection machine, comprising a pre-filtering unit 30 with a first pre-filtration drum 1 arranged to rotate about a horizontal rotation axis and provided with a first filtering wall 2 around said horizontal rotation axis, an inlet hopper 3 configured to receive brine to be filtered and to force it into said first pre-filtration drum 1 through said first filtering wall 2 in an upper region thereof, and a tub 4 arranged to collect the brine filtered through the first filtering wall 2, which exits a lower region of the first pre-filtration drum 1, and at least one safety filtering unit 40 with at least one safety filter sleeve 7 submerged in a tank 5 into which the brine from said tub 4 is poured, and connected to an outlet 6 of said tank 5, and suction means for sucking the brine contained in the tank 5 through said safety filter sleeve 7 and through said outlet 6, all according to a known structure.
According to this invention the mentioned pre-filtering unit 30 comprises (see
The first pre-filtration drum 1 has at opposite ends thereof side walls 1a, 1b configured to allow the passage of the pre-filtered brine from inside the first pre-filtration drum 1 towards the tub 4. The pre-filtered brine can also exit the first pre-filtration drum 1 through a lower region of its filtering wall 2.
As can be seen, in particular in
The tub 4 arranged to collect the filtered brine comprises at least one additional compartment 4a separated from the tub 4 by said dynamic sealing means between the tub 4 and the second pre-filtration drum 8, in which said additional compartment 4a of the tub 4 receives the pre-filtered brine from the second pre-filtration drum 8, and in which the pre-filtered brine enters from the additional compartment 4a of the tub 4 into said additional pre-filtration drum 12 through the mentioned additional filtering wall 13 in a lower region thereof and is poured from the additional pre-filtration drum 12 into the tank 5 through an open side wall 12a of the additional pre-filtration drum 12.
In turn, the additional pre-filtration drum 12 has a closed side wall 12b adjacent to the second pre-filtration drum 8 and between the additional compartment 4a of the tub 4 and an end of the additional pre-filtration drum 12 adjacent to said open side wall 12a thereof there are arranged dynamic sealing means comprising a perimetric flange 14 extending radially outwards from said end of the additional pre-filtration drum 12 adjacent to the open side wall 12a thereof and a circular fraction channel 15 fixed to the additional compartment 4a of the tub 4 and inside which said perimetric flange 14 is partially inserted and rotates.
Due to the height of the lowest region of the mentioned circular fraction channels 11 and 15, a certain amount of brine remains in the tub 4 and in the additional compartment 4a after the operation of the filtering device is stopped. The tub 4 has in a lower region a drainage outlet 21 with a drain plug 22 and the additional compartment 4a of the tub 4 has in a lower region a drainage outlet 23 with a drain plug. In
In the event that the unit (see
With reference to
The inlets 27 of the inner conduit 26 are located such that they are above the level of the brine in the tank 5 when the support 25 is in the cleaning and maintenance position (
The valve device 24 has a base body which is retained in the operative situation inside the tank 5 by a slot and a latch 29 (
The variant shown in
In a skimming position (
A driving mechanism is arranged to intermittently pivot said movable frame 38 to a release position (
As shown in
In a further embodiment (not shown), the first pre-filtration drum 1 has a first retaining member 35 installed on a movable frame driven to move between a skimming position and a release position by a driving mechanism comprising a cam element 36 and a cam follower 37 as described above in relation with
A person skilled in the art will consider modifications and variations from the embodiments shown and described without departing from the scope of the present invention as it is defined in the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
10380068 | May 2010 | EP | regional |
This application is a Continuation-In-Part application of PCT/IB2011/00400, filed Feb. 25, 2011, which claims priority to European Patent Application No. 10380068, filed May 7, 2010, the contents of such applications being incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2011/000400 | Feb 2011 | US |
Child | 13284397 | US |