Example embodiments generally relate to antennas and, in particular, relate to a broad band monopole antenna.
Monopole antennas have a number of advantages for designers. For example, monopole antennas can generally be made with relatively small sizes, and are easy to fabricate. Moreover, monopole antennas generally have a relatively Narrow bandwidth.
In addition to VSWR requirements, cellular communication systems generally require the direction of maximum gain of the antenna 100 to be below 30 degrees of elevation from the horizon. However, for a radiation pattern at frequency 2.7 GHz of the design of FIGS. 1-3, the antenna 100 has a direction of maximum gain at 50 degrees of elevation from the horizon. The direction of maximum gain is mainly controlled by the distance of the high density currents from the ground plane. For the antenna 100, this distance is very short, as the antenna 100 is directly mounted over the ground plane (i.e., base surface 1). Accordingly, the trapezoidal flat monopole antenna has limited bandwidth and very high direction of gain maximum at high frequency.
In an example embodiment, a broad band monopole antenna is provided. The antenna may include a planar electrically conductive base surface arranged horizontally, a planar polygonal shaped antenna element arranged vertically spaced above the base surface by a distance (D), and a planar polygonal shaped ground plane arranged vertically between the base surface and said antenna element. The ground plane may be electrically connected to the base surface.
In another example embodiment, an alternative broad band monopole antenna is provided. The antenna may include a planar electrically conductive base surface arranged horizontally, a planar polygonal shaped antenna element arranged vertically spaced above the base surface by a distance (D), a planar polygonal shaped ground plane arranged vertically between the base surface and the antenna element, and N additional antenna elements, where N is a positive integer. The ground plane may be electrically connected to the base surface, and have N opened areas. One of each of the N additional antenna elements may be installed in each respective one of the N opened areas in the ground plane.
Having thus described some example embodiments in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Some example embodiments now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all example embodiments are shown. Indeed, the examples described and pictured herein should not be construed as being limiting as to the scope, applicability or configuration of the present disclosure. Rather, these example embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout. Furthermore, as used herein, the term “or” is to be interpreted as a logical operator that results in true whenever one or more of its operands are true. As used herein, operable coupling should be understood to relate to direct or indirect connection that, in either case, enables functional interconnection of components that are operably coupled to each other.
As shown in
The broad band monopole antenna 400 of
It may be desirable for the antenna 400 to have VSWR≤2 at frequencies bands 0.70-0.96 GHz and 1.70-2.70 GHz. In this regard, VSWR vs frequency is shown in the plot 500 of
For some applications, a desirable direction of maximum gain of the antenna 400 should be below about 30 degrees of elevation from the horizon. A radiation pattern 600 of the broad band monopole antenna 400 is shown in
The antenna variant of
The broad band monopole antenna (i.e., MIMO antenna 800) of
Ground plane 24 may be electrically connected to the antenna base 22, and the ground plane 24 may further include two polygon open areas (conductor voided) 30 and 31. The antenna base 22 of this example may be made out of aluminum or other conductive metals. Moreover, the antenna base 22 of this example may have a thickness of about 0.3 inches, and an elliptical shape with a length of about 5 inches and width of about 2 inches. In some examples, the printed circuit board 25 may be made out glass-reinforced epoxy laminate material (e.g., FR-4) or an equivalent. The printed circuit board 25 may also have a square shape with dimensions such as a thickness of about 0.028 inches, a height of about 3.2 inches, and a length of about 3.2 inches. The two additional monopole antenna elements 26 and 27 may be located inside of the first and second open areas 30 and 31, respectively, and may be on the same side of antenna element 33. The two exciters 28 and 29 may be configured to have a rectangular plane shape, and may be placed within respective ones of square open areas 30 and 31 and on the 33 side of the printed circuit board 25. The ground plane 24 and two additional monopole antenna elements 26 and 27 may be situated on a first side 32 of the printed circuit board 25. The two exciters 28 and 29 may be located inside of respective ones of the rectangular shaped voided areas 30 and 31. The voided shape is significant to achieve high isolation to antenna element 23 and monopole antenna elements 26 and 27. The two exciters 28 and 29 and antenna element 23 may be situated on the same side (i.e., a second side 33 that is opposite the first side 32) on the printed circuit board 25.
The antenna element 23 may be connected to an output cable at either a first point located in the center of the lowest part of antenna element 23, or at a second point on the top of ground plane 24, which is the closest to the first point.
The additional antenna element 26 may be connected to an output cable at a first point located in the center of the lowest part of exciter 28, or at a second point, which is such point at ground plane 24 (at the bottom of open area 30) that is the closest to the first point. The additional antenna element 27 may be connected to the output cable at a first point located in the center of the lowest part of exciter 29, or at a second point, which is such point at ground plane 24 (at the bottom of open area 31) that is the closest to the first point.
In this example, the antenna element 23 has VSWR≤2.6 in frequencies ranges 0.70-0.96 GHz and 1.70-2.70 GHz. The additional monopole antenna elements 26 and 27 have VSWR≤3 in frequencies ranges 2.40-2.50 GHz and 5.00-5.80 GHz. The coupling between the antenna element 23 and each of the additional antenna elements 26 and 27 in the common frequency range 2.40-2.50 GHz is below −20 dB. The coupling between the additional antenna elements 26 and 27 in the in frequencies ranges 2.40-2.50 GHz and 5.00-5.80 GHz is below −10 dB and −20 dB correspondingly.
In an example embodiment, the structures discussed above can be modified to accommodate future 5G networks. For example, N can be larger than 2 and/or the ground plane 24 can be larger than antenna element 23 and therefore contain more than 2 antennas (N).
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. In cases where advantages, benefits or solutions to problems are described herein, it should be appreciated that such advantages, benefits and/or solutions may be applicable to some example embodiments, but not necessarily all example embodiments. Thus, any advantages, benefits or solutions described herein should not be thought of as being critical, required or essential to all embodiments or to that which is claimed herein. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
5872546 | Ihara et al. | Feb 1999 | A |
6437756 | Schantz | Aug 2002 | B1 |
6842141 | Suh et al. | Jan 2005 | B2 |
7298346 | Heyde et al. | Nov 2007 | B2 |
20160372823 | Yoon et al. | Dec 2016 | A1 |
20200028276 | Watson | Jan 2020 | A1 |
Entry |
---|
Abstract of “Planar Trapezoidal and Pentagonal Monopoles with Impedance Bandwidths in Excess of 10:1,” Evans, et al. IEEE International Symposium, vol. 3, Sep. 1999, all enclosed pages cited. |
Number | Date | Country | |
---|---|---|---|
20200243961 A1 | Jul 2020 | US |