Please refer to
A broadband antenna 10 of the present invention may be used in a portable device for wireless transmissions, such as for a Wireless Wide Area Network (WWAN). The portable device may be a notebook computer, a mobile phone, a PDA, etc. The broadband antenna 10 is preferably made of metal having good conductivity, such as a copper alloy or other metal.
The broadband antenna 10 comprises a radiating element 21, a grounding element 22, a connecting element 23 and a parasitic element 31. The radiating element 21 comprises a first radiation area 211, a second radiation area 212 and a third radiation area 213. The first radiation area 211 and the second radiation area 212 are perpendicularly adjacent to each other; the first radiation area 211 and the third radiation area 213 are perpendicularly adjacent to each other. The connecting element 23 comprises a first end 231 and a second end 232. The grounding element 22 comprises a first panel 221 and a second panel 222. The radiating element 21 is made of a metal plate; when fed a current, the radiating element 21 can radiate energy via charge carrier excitement. The first end 231 of the connecting element 23 is electrically connected to the second radiation area 212 of the radiating element 21, and the second end 232 is electrically connected to the first panel 221 of the grounding element 22. The second end 232 and the first panel 221 are perpendicularly adjacent to each other. A bending line is located between the first panel 221 and the second panel 222 of the grounding element 22, so that the first panel 221 and the second panel 222 are vertically adjacent to each other. Besides, surface of the first panel 221 is smaller than surface of the second panel 222. The connecting element 23 further comprises a feeding point 41, and the feeding point 41 is electrically connected to a feeding line (not shown). The current signal between the radiating element 21 and a wireless signal module is sent via the feeding line from the feeding point 41. With the above mentioned structure, the broadband antenna 10 is able to reduce the height from the radiating element 21 to the grounding element 22, and thus provides a smaller volume.
The parasitic element 31 in the broadband antenna 10 is a long metal plate strip, which is placed at the end of the second end 232, and which increases the bandwidth of the broadband antenna 10. In contrast to the prior art, the third radiation area 213 further extends from the radiating element 21. The third radiation area 213 is an L-shaped metal plate. The first radiation area 211 and the third radiation area 213 are perpendicularly adjacent to each other; therefore, the parasitic element 31 and the third radiation area 213 are parallel with each other. The broadband antenna 10 can use the length of the parasitic element 31 to control the bandwidth frequency range, which permits the broadband antenna 10 to improve the frequency bandwidth at high frequencies. In the present invention, the first radiation area 211 and the second radiation area 212 of the radiating element 21 can transmit wireless signals in the 900 MHz range. The third radiation area 213 and the second radiation area 212 of the radiating element 21 utilize the end of the first radiation area 211 to transmit wireless signals in the 1800 MHz range. The parasitic element 31 can transmit wireless signals in the 2100 MHz range. With the structure provided by the broadband antenna 10 and the third radiation area 213, the broadband antenna 10 has a better frequency bandwidth and radiation characteristics than the prior art antenna 90. The voltage standing wave ratio of the broadband antenna 10 is shown in
Finally, as shown in
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
095218592 | Oct 2006 | TW | national |