Global navigation satellite systems (GNSS) are widely used for high-precision positioning, such as the US Global Positioning System (GPS) and Russian global navigation system GLONASS, as well as some others. A GNSS antenna has to provide signal reception in the whole GNSS range, namely, a low-frequency band 1164-1300 MHz and high-frequency band 1525-1610 MHz.
One of the most important positioning errors in GNSS systems is a so-called multipath error, when a signal reflected from the underlying ground surface appears at the input of the receiving antenna along with the line-of-sight signal.
The value of the multipath error is proportional to the ratio
This ratio is normally called the Down/Up ratio. In this ratio, θ is the elevation angle over the horizon, and F(+/−θ) is the antenna pattern (AP) at angle θ above and under the local horizon (θ=0°) correspondingly. A spatial region where θ>0 is the upper or front hemisphere, otherwise, a spatial region at θ<0 is called the lower or backward hemisphere.
To provide a stable and reliable operation of positioning systems, quality signal reception from all satellites over the local horizon is required. The value F(θ) in the upper hemisphere is not to highly vary. At the same time, the value F(θ) in the lower hemisphere should be as small as possible. So the value F(θ) should have a sharp drop in the vicinity of the local horizon (i.e., near θ=0°).
Receiving antennas thus need to provide such an AP whose level is negligibly varied in the upper hemisphere, sharply drops in crossing the direction to the local horizon, and is small in the lower hemisphere. Also, such an antenna pattern needs to be provided over whole operational frequency range.
The objective of the invention is an antenna with an antenna pattern whose level varies slightly in the upper hemisphere, drops in the direction of the local horizon, and is small in the lower hemisphere, over the entire desired frequency range.
To implement this objective, a circularly-polarized antenna is utilized in the backfire operation mode. The antenna includes a hollow dielectric cylinder (used as mechanical support for the conductors) oriented along a vertical axis; four spiral conducting elements wrapped around the cylinder; the four spiral conducting elements are divided into a plurality of longitudinal sections. The conducting elements in each section have a constant winding angle (pitch angle, i.e., angle relative to a plane normal to antenna axis) around the cylinder. The winding angle of all of the conducting elements in the same longitudinal section is the same. Neighboring longitudinal sections have different winding angles relative to each other. An excitation circuit is connected to the conducting elements.
In another embodiment, an antenna for receiving circularly polarized signals includes a (hollow) dielectric cylinder oriented along a vertical axis; four spiral conducting elements wrapped around the cylinder; the four spiral conducting elements divided into the first (upper) longitudinal section and a second (lower) longitudinal section located below the first section; inductors connecting corresponding spiral elements of the first and second longitudinal sections. The conducting elements in each section have a constant winding angle around the cylinder. The winding angle of all of the conducting elements in the same longitudinal section is the same. The winding angle of the first longitudinal section is lower than the winding of the second longitudinal section. An excitation circuit is connected to the conducting elements.
Optionally, more sections can be located below the second longitudinal section.
Optionally, a third (bottom, or last) longitudinal section includes conducting elements wound in an opposite direction relative to the above located longitudinal sections. Optionally, impedance elements are connecting the lower longitudinal section to a base of the antenna. Optionally, the impedance elements are resistive, or resistive and series- or parallel-inductive.
Optionally, the winding angle of the first (topmost) longitudinal section is 10°-30°. Optionally, the winding angle of the second longitudinal section is 35°-70°. Optionally, a first set of additional parasitic conductive elements in a first plane perpendicular to the vertical axis and rotationally symmetric around the vertical axis, wherein the first plane is located approximately where the inductors are located. Optionally, the additional parasitic conductive elements are straight. Optionally, the additional parasitic conductive elements are bent. Optionally, there is a second set of additional parasitic conductive elements in a second plane perpendicular to the vertical axis and rotationally symmetric around the vertical axis, wherein the second plane is above the upper longitudinal section.
Additional features and advantages of the invention will be set forth in the description that follows, and in part will be apparent from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
A wideband circularly-polarized antenna is proposed to receive GNSS signals. According to
The excitation circuit 102 is located above, and, thereby, the backfire operation mode is implemented. The power cable 103 is in the center of the antenna. The upper end of the power cable 103 is connected to the excitation circuit 102. The lower end of the power cable 103 is connected to the input of a low-noise amplifier (the LNA is not shown).
The excitation circuit is well-known and is an equal-amplitude power splitter with one input and four outputs. The phase difference between neighboring outputs is 90 degrees. Each output of the excitation circuit is connected to a corresponding conductor of the first (upper) quadruple spiral element, thereby providing excitation of a right hand circular polarization (RHCP) wave in the positive direction of the vertical antenna axis z. The antenna pattern has maximum in this direction.
Each of quadruple spiral elements consists of four conductors wound at the same angle and forming a quadruple spiral whose axis is aligned with the z axis. Each conductor is one spiral turn of the quadruple spiral. The winding angle for the conductors is the same for the entire quadruple spiral element.
Each conductor has a first (top) and second (bottom) ends. From
The exception of this rule is conductors of the first (top) and the last (bottom) elements. First (top) conductor ends of the first quadruple spiral element are connected to the excitation circuit, and second (bottom) conductor ends of the last quadruple spiral element are open.
Thus, the antenna includes a set of two or more quadruple spiral elements. A feature of the design is the same winding angle for the conductors of the same spiral elements, while the conductors of the neighboring spiral elements have different winding angles.
First and second conductor ends of the neighboring spiral elements can mismatch.
for different embodiments. Embodiments 2 and 3 are seen to provide a DU(θ=10°) ratio at least −15 dB in the whole frequency range from 1164-1610 MHz. Embodiment 1 produces the worst ratio DU(θ=10°) in the high-frequency part of the range, but the actual antenna has the smallest dimensions, of the three embodiments discussed herein.
An antenna for receiving circularly polarized signals includes a hollow dielectric cylinder 807 (used as mechanical support for the conductors) oriented along a vertical axis 806; four spiral conducting elements wrapped around the cylinder 807; the four spiral conducting elements are divided into at least two of longitudinal sections 801, 802. In
The conducting elements in each section have a constant winding angle. Neighboring longitudinal sections have different winding angles. Each of four conducting elements at the junction of first section 801 and second section 802 has a break to which lumped inductors 8081, 8082, 8083 and 8084are connected.
The presence of the lumped inductors 808n provides such amplitude-phase ratio of currents in spiral conductors of the first and second sections that DU(θ) becomes better at a smaller overall vertical antenna size.
The number of longitudinal sections may be greater than two.
Spiral conducting elements can be manufactured on a flexible PCB bent as a cylinder. Then, the hollow dielectric cylinder 807 is made in the form of a bent substrate of PCB-board. At the top end of the cylinder there is excitation circuit 805, at the bottom end of the cylinder there are no conducting elements and this end is fixed to metal base/support 809 (
Spiral conducting elements of each section are left-handed helixes. As a variant, the conducting elements of the lower section 804 can have a reverse direction of winding and then be shaped as right-handed helix. The latter case is shown in
Another embodiment of the invention has a PCB-board 1011 with conductors of parasitic elements 1010 that can be located over the excitation circuit 805 at a certain height h5 (
As a variant, parasitic elements can be arranged onto several PCB boards spaced in height at a distance h7 (
Having thus described a preferred embodiment, it should be apparent to those skilled in the art that certain advantages of the described method and apparatus have been achieved.
It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.
This application is a continuation in part of U.S. patent application Ser. No. 14/890,610, filed on Nov. 12, 2015, which is a US National Phase of PCT/RU2015/000234, filed on Apr. 9, 2015, which are both incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3906509 | DuHamel | Sep 1975 | A |
4161737 | Albright | Jul 1979 | A |
4169267 | Wong | Sep 1979 | A |
4229743 | Vo | Oct 1980 | A |
6246379 | Josypenko | Jun 2001 | B1 |
6344834 | Josypenko | Feb 2002 | B1 |
6407720 | Josypenko | Jun 2002 | B1 |
6653987 | Lamensdorf | Nov 2003 | B1 |
7173576 | O'Neill, Jr. | Feb 2007 | B2 |
7245268 | O'Neill, Jr. | Jul 2007 | B2 |
7525508 | Sharaiha | Apr 2009 | B2 |
9837709 | Stepanenko | Dec 2017 | B2 |
20170187103 | Stepanenko | Jun 2017 | A1 |
20180090830 | McMichael | Mar 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20170301984 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14890610 | US | |
Child | 15641285 | US |