The present invention is generally directed to a contact-type slip ring system that is utilized to transfer signals from a stationary reference frame to a moving reference frame and, more specifically, to a contact-type slip ring system that is suitable for high data rate communication.
Contact-type slip rings have been widely used to transmit signals between two frames that move in rotational relation to each other. Prior art slip rings of this nature have utilized precious alloy conductive probes to make contact with a rotating ring system. These probes have traditionally been constructed using round-wire, composite materials, button contacts or multi-filament conductive fiber brushes. The corresponding concentric contact rings of the slip ring are typically shaped to provide a cross-section shape appropriate for the sliding contact. Typical ring shapes have included V-grooves, U-grooves and flat rings. Similar schemes have been used with systems that exhibit translational motion rather than rotary motion.
When transmitting high-frequency signals through slip rings, a major limiting factor to the maximum transmission rate is distortion of the waveforms due to reflections from impedance discontinuities. Impedance discontinuities can occur throughout the slip ring wherever different forms of transmission lines interconnect and have different surge impedances. Significant impedance mismatches often occur where transmission lines interconnect a slip ring to an external interface, at the brush contact structures and where the transmission lines connect those brush contact structures to their external interfaces. Severe distortion to high-frequency signals can occur from either of those impedance mismatched transitions of the transmission lines. Further, severe distortion can also occur due to phase errors from multiple parallel brush connections.
The loss of energy through slip rings increases with frequency due to a variety of effects, such as multiple reflections from impedance mismatches, circuit resonance, distributed inductance and capacitance, dielectric losses and skin effect. High-frequency analog and digital communications across rotary interfaces have also been achieved or proposed by other techniques, such as fiber optic interfaces, capacitive coupling, inductive coupling and direct transmission of electromagnetic radiation across an intervening space. However, systems employing these techniques tend to be relatively expensive.
What is needed is a slip ring system that addresses the above-referenced problems, while providing a readily producible, economical slip ring system.
An embodiment of the present invention is directed to a contacting probe system that includes at least one flat brush contact and a printed circuit board (PCB). The PCB includes a feedline for coupling the flat brush contact to an external interface. The flat brush contact is located on a first side of the PCB and the PCB includes a plated through eyelet that interconnects the flat brush contact to the feedline.
According to another embodiment of the present invention, a contacting ring system includes first and second dielectric materials with first and second sides. The first dielectric material includes a plurality of concentric spaced conductive rings located on its first side and first and second conductive feedlines located on its second side. A first side of the second dielectric material is attached to the second side of the first dielectric material and a ground plane is located on the second side of the second dielectric material. The first feedline is coupled to a first one of the plurality of concentric spaced conductive rings, through a first conductive via, and the second feedline is coupled to a second one of the plurality of concentric spaced conductive rings, through a second conductive via. A groove may be formed in the first dielectric material between the first and second ones of the plurality of concentric spaced conductive rings.
These and other features, advantages and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims and appended drawings.
In the drawings:
As is disclosed herein, a broadband contacting slip ring system is designed for high-speed data transmission over a frequency range from DC to several GHz. Embodiments of the present invention employ a conductive printed circuit board (PCB) slip ring platter that utilizes high-frequency materials and techniques and an associated transmission line that interconnects conductive rings of the PCB slip ring platter to an external interface. Embodiments of the present invention may also include a contacting probe system that also utilizes PCB construction and high-frequency techniques to minimize degradation of signals attributable to high-frequency and surge impedance effects. The contacting probe system includes a transmission line that interconnects the probes of the contacting probe system to an external interface, again utilizing various techniques to minimize degradation of signals due to high-frequency and surge impedance effects. Various embodiments of the present invention address the difficulty of controlling factors that constrain high-frequency performance of a slip ring. Specifically, embodiments of the present invention control the impedance of transmission line structures and address other concerns related to high-frequency reflection and losses.
One embodiment of the present invention addresses key problem areas related to high-frequency reflections and losses associated with the sliding electrical contact system of slip rings. Various embodiments of the present invention utilize a concentric ring system of flat conductive rings and flat interdigitated precious metal electrical contacts. Both structures are fabricated utilizing PCB materials and may implement microstrip and stripline transmission lines and variations thereof.
Flat Form Brush Contact System
In general, utilizing a flat form brush contact provides significant benefits related to high-frequency slip rings, as compared to round wire contacts and other contact forms. These benefits include: reduced skin effect, as larger surface areas tend to reduce high-frequency losses; lower inductance, as a flat cross-section tends to reduce inductance and high-frequency loss; lower surge impedance, which is more compatible with slip ring differential impedances; higher compliance (low spring rate), which is tolerant of axial run-out of a slip ring platter; compatibility with surface mount PCB technology; and high lateral rigidity, which allows brushes to run accurately on a flat ring system.
High lateral rigidity is generally desirable to create a slip ring contact system that operates successfully with a flat ring system. Such a flat ring system can readily utilize PCB technology in the creation of the ring system. In general, PCB technology is capable of providing a well controlled impedance characteristic that can be of significantly higher impedance value than allowed by prior art techniques. This higher impedance makes it possible to match the characteristic impedance of common transmission lines, again addressing one of the problems associated with high-frequency data transmission.
Interdigitated contacts, i.e., bifurcated contacts, trifurcated contacts or contacts otherwise divided into multiple parallel finger contacts, have other significant advantages germane to slip ring operation. Parallel contact points are a traditional feature of slip rings from the design standpoint of providing acceptably low dynamic resistance. With conventional slip rings, dynamic noise can have a significant inductive component from the wiring necessary to implement multiple parallel contacts. Flat brush contacts offer multiple low inductance contact points operating in parallel and provide a significant improvement in dynamic noise performance.
As is shown in
As is depicted in
As is illustrated in
In those instances in which the impedances are not convenient or achievable values, the use of a gradated (i.e., changing in a continuous, albeit almost imperceptible, fashion) impedance transmission line 900 can be used as a matching section between dissimilar impedances. With reference to
Another technique for constructing a contact system for slip rings functioning beyond one GHz is shown in FIG. 11. This technique utilizes a microstrip contact 1100 to preserve the transmission line characteristics to within a few millimeters of the slip ring before transitioning to the contacts 1102 and 1104. The microstrip contact 1100 acts as a cantilever spring to provide correct brush force, as well as providing an impedance controlled transmission line. Thus, the microstrip contact 1100 acts simultaneously as a transmission line, a spring and a brush contact, with performance advantages beyond one GHz. The embodiment of
Flat-Form PCB Broadband Slip Ring Platter
Systems that implement a broadband slip ring platter with a flat interdigitated brush contact system are typically implemented utilizing multi-layer PCB techniques, although other techniques are also possible. High-frequency performance is enhanced by the use of low dielectric constant substrates and controlled impedance transmission lines utilizing microstrip, stripline, coplanar waveguide and similar techniques. Further, the use of balanced differential transmission lines is an important tool from the standpoint of controlling electromagnetic emission and susceptibility, as well as common-mode interference. Microstrip, stripline and other microwave construction techniques also promote accurate impedance control of the transmission line structures, a factor vital to the wide bandwidths necessary for high-frequency and digital signaling. A specific implementation depends primarily upon the desired impedance and bandwidth requirements.
Negative barrier 1320, i.e., a groove machined between the rings, accomplishes some of the functions of a more traditional barrier, such as increasing the surface creep distance for dielectric isolation and to providing physical protection against larger pieces of conductive debris. The negative barrier 1320 used in a high-frequency slip ring platter also has the feature of decreasing the effective dielectric constant of the ring system by replacing solid dielectric with air. The electrical advantage of this feature is that it allows higher impedance slip ring platters to be constructed than would otherwise be practical for a given dielectric.
The rings 1302A and 1302B can be fed either single-ended and referenced to the ground plane 1310 or differentially between adjacent rings. As is described above, the feedlines 1306A and 1306B can be either constant width traces sized appropriately for the desired impedance or can be gradated impedance transmission lines to aid in matching dissimilar impedances.
The PCB slip ring construction, described above, provides good high-frequency performance to frequencies of several hundred MHz, depending upon the physical size of the slip ring platter and the chosen materials. The largest constraint to the upper frequency limit of such a slip ring platter is imposed by resonance effects as the transmission lines become a significant fraction of the wavelength of the desired signal. Typically, reasonable performance can be expected up to a ring circumference of about one-tenth the electrical wavelength of the signal with reasonable values of insertion loss and standing wave ratio.
To accommodate higher frequencies or bandwidths for a given size of slip ring, the resonant frequency of the slip ring must generally be increased. One method of accomplishing this is to divide the feedline into multiple phasing lines and drive the slip ring at multiple points. The effect is to place the distributed inductances of the slip rings in parallel, which increases the resonant frequency proportional to the square-root of the inductance change.
The transmission line to rings 1402 and 1404 are connected to points 1401 and 1403, respectively, in both
The use of flexible circuitry 104 (see
Slip Ring Mounting Method
The shaft 1600 may be a computerized numerical control (CNC) manufactured component with a series of concentric grooves machined to produce a helical arrangement of mounting lands/pads 1602-1612 for the platters 102 of the slip ring system. The axial positioning of the grooves on the shaft 1600 are a function of the repeatability of the machining operation, thus one side of each slip ring is located axially to within machining accuracy with no progressive tolerance stack-up. The opposite side of each platter 102 is positioned with only the ring thickness tolerance as an additional factor. The inside diameter of the grooves is sized to provide a radial positioning surface for the inside diameter of each platter. The helically arranged lands/pads 1602-1612 provide mounting features for each platter 102. The helical arrangement provides more wire way space as each platter 102 is installed. The shape of wire way 1640 provides a way for grouping wiring 1650 for cable management and electrical isolation purposes. As is shown in
In summary, a slip ring system incorporating the features disclosed herein provides a high-frequency broadband slip ring that can be characterized by the following points, although not necessarily simultaneously in a given implementation: the use of flat interdigitated contacts in conjunction with flat PCB slip rings and transmission line techniques to achieve wide bandwidths; use of brush contact structures that include a central via coupled to a feedline, which provides performance advantages and allows for visual alignment verification between rings and brushes; PCB construction of differential transmission lines for multi-point feeding of slip rings; the use of multiple flex tape phasing lines for multi-point feeding of slip rings; the use of gradated impedance transmission line matching sections to affect impedance matching in PCB slip rings in general and specifically in the above applications; the use of a negative barrier in PCB slip ring platter design for its electrical isolation benefits as well as its high-frequency benefits attributable to a lower dielectric constant; the use of microstrip contacts, i.e., a flexible section of microstrip transmission line with embedded contacts to provide high-frequency performance advantages over more traditional approaches; and the use of a rotary shaft with steps in slip ring construction for technical improvements in mechanical positioning and wire management.
The above description is considered that of the preferred embodiments only. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention. Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 60/448,292 entitled, “BROADBAND HIGH-FREQUENCY SLIP RING SYSTEM,” by Donnie S. Coleman, filed Feb. 19, 2003, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3382387 | Marshall | May 1968 | A |
5805115 | Pellerin et al. | Sep 1998 | A |
Number | Date | Country | |
---|---|---|---|
20040161950 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
60448292 | Feb 2003 | US |