The present disclosure relates generally to antennas and, more particularly, to multi-layer patch antennas.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Wireless communication requires the use of an antenna to transmit and receive electromagnetic signals. Several antenna types are available for a variety of purposes and the choice of selecting one type of antenna or another typically depends upon the particular application of the antenna. To select an antenna, various operating characteristics of the antennas may be evaluated and compared to determine the type of antenna that provides the most benefit or is best suited for a specific application.
Occasionally, one antenna having all or most of the desired operating characteristics for a particular application may not exist and there may be several antennas having varying combinations of favorable and unfavorable aspects. For instance, a small antenna with a low profile and a wide bandwidth may generally be preferred for modern wireless communication. A microstrip or patch antenna is a relatively inexpensive antenna that is capable of being easily integrated with many electronic devices. Although the patch antenna may feature a low-profile, its relatively large size (approximately one-half wavelength) and narrow bandwidth (approximately 5%) may be a disincentive for its use in some wireless applications. However, various techniques have been developed to significantly reduce the size of the patch antenna. For example, by shorting one edge of the patch antenna and/or folding the patch antenna over itself, a reduction to one-fourth its original size may be achieved. Unfortunately, reducing the size of the patch antenna in this manner may also significantly reduce its bandwidth, e.g., 1.3% fractional bandwidth. The bandwidth of current patch antennas is therefore too narrow for practical use in short to medium range wireless communication systems, e.g., wireless microphones, wireless audio monitoring systems, local wireless data networks, wireless medical devices.
Example apparatus and methods to provide an antenna for use in a wireless system are herein described. In one example embodiment, the antenna includes a main patch, a parasitic patch, and a ground plane having a ground strip extending from the ground plane. The main patch includes a first strip and a second strip, wherein at least a portion of the first strip of the main patch is positioned above the ground strip and forms a first radiating edge with the ground strip, and at least a portion of the second strip of the main patch is positioned below the ground strip and forms a second radiating edge with the ground plane. The parasitic patch is coupled to the main patch along at least a portion of a non-radiating edge of the main patch. The parasitic patch includes a first strip and a second strip, wherein at least a portion of the first strip of the parasitic patch is disposed above the ground strip and at least a portion of the second strip of the parasitic patch is disposed below the ground strip.
If desired, the antenna may include a tuning strip directly coupled to the parasitic patch and the ground strip. The antenna may further include at least a portion of the first strip of the main patch and at least a portion of the first strip of the parasitic patch lie in a first plane, and at least a portion of the second strip of the main patch and at least a portion of the second strip of the parasitic patch lie in a second plane, wherein the first plane and the second plane are different and the first plane may or may not be parallel to the second plane. Additionally, a second parasitic patch may be coupled to the main patch along at least a portion of a second non-radiating edge of the main patch. The second parasitic patch includes a first strip and a second strip, at least a portion of the first strip of the second parasitic patch is disposed above the ground strip and at least a portion of the second strip of the second parasitic patch disposed below the ground strip. The main patch, first parasitic patch, and second parasitic patch each include a length and a width. The lengths of the main patch, first parasitic patch, and second parasitic patch may be the same or different, and the widths of the main patch, first parasitic patch, and second parasitic patch may be the same or different.
Another example embodiment of the antenna may include a flexible printed circuit board including the main patch and one or both of the first and second parasitic patches. The flexible printed circuit board is folded about the ground strip and a stiffener to support the flexible circuit board and may be attached to one or more supports. An alternative implementation of the antenna may include a plurality of printed circuit boards, wherein a first printed circuit board includes the first strip of the main patch and the first strip of one or both of the first and second parasitic patches, a second printed circuit board includes the ground strip, and a third printed circuit board includes the second strip of the main patch and the second strip of one or both of the first and second parasitic strips. A first connector operatively couples the first strip of the main patch to the second strip of the main patch and a second connector operatively couples the first strip of the parasitic patch to the second strip of the parasitic patch. If a second parasitic patch is used, a third connector operatively couples the first and second strips of the second parasitic patch. One or more spacers and one or more supports may be utilized to separate and arrange the first, second, and third printed circuit boards in a layered, low-profile configuration.
An additional example embodiment is directed to providing an antenna for use in a wireless system. The method includes providing a ground strip extending from a ground plane and providing a main patch including a first strip and a second strip. The method positions the main patch about the ground strip, wherein at least a portion of the first strip of the main patch is positioned above the ground strip and forms a first radiating edge with the ground strip, and at least a portion of the second strip of the main patch is positioned below the ground strip and forms a second radiating edge with the ground plane. The method couples a parasitic patch to the main patch along at least a portion of a non-radiating edge of the main patch, wherein the parasitic patch includes a first strip and a second strip, and wherein at least a portion of the first strip of the parasitic patch is positioned above the ground strip and at least a portion of the second strip of the parasitic patch is positioned below the ground strip. The method provides for adjusting the bandwidth of the antenna by performing one or more of the following steps: attaching a tuning strip between that parasitic patch and the ground strip, changing a size of the tuning strip, changing a position of the tuning strip between the parasitic patch and the ground strip, changing a position of a feeding pin; directly coupling the main patch to the parasitic patch; gap-coupling the main patch to the parasitic patch; adjusting a spatial relationship between a gap-coupled main patch and parasitic patch; maintaining a constant spatial relationship between the first strip of the main patch and the second strip of the main patch, maintaining a constant spatial relationship between the first strip of the parasitic patch and the second strip of the parasitic patch, varying a spatial relationship between at least a portion of the first strip of the main patch and at least a portion of the second strip of the main patch, varying a spatial relationship between at least a portion of the first strip of the parasitic patch and at least a portion of the second strip of the parasitic patch, varying a spatial relationship between at least a portion of the second strip of the main patch and a ground plane, modifying a width of the main patch to be different in comparison to a width of the parasitic patch, and modifying a length of the main patch to be different in comparison to a length of the parasitic patch.
For purposes of clarification and ease of illustration, it is to be understood that certain portions of the several example embodiments of the antenna have been depicted in the figures in shading and/or hidden lines, which may or may not be present in other corresponding views and/or figures.
The disclosed apparatus and method provide for a low profile, compact, broadband antenna for use in modern wireless applications. In general, a multi-layer multi-strip configuration is utilized to overcome the known conflict in patch antenna design between size reduction and bandwidth broadening. In particular, the disclosed apparatus and method incorporate various combinations of a folded main patch with two radiating edges, one or more parasitic patches coupled to the main patch, and/or one or more shorting strips coupled between the one or more parasitic strips and a ground plane to achieve a significant size reduction in all dimensions and a significant broadening of the fractional bandwidth with respect to a conventional patch antenna.
The antenna block 110 further includes a first parasitic patch 103 (shown highlighted in
In the example embodiment shown in
Alternatively, the main patch 101 may be directly coupled to one or both of the parasitic patches 103, 104. In a direct coupling configuration, a conductor, e.g., conductive metal, connects the main patch 101 to one or both of the parasitic patches 103, 104. RF energy is propagated from the main patch 101 to the parasitic patches 103, 104 via the conductor and the RF energy potential at the point of coupling contact on the main patch may be very similar to the RF energy potential at the point of coupling contact on the parasitic patches. The location of the direct coupling determines the surface current pattern on the parasitic patches. By adjusting the location of the conductor that connects the main patch to the parasitic patches, it may be possible to attain a certain surface current distribution on the parasitic patches and broaden the antenna's bandwidth.
Referring briefly to
In
As known, a patch antenna generally resonates at a frequency determined by the length of its driven patch, and the resonant length of the driven patch is approximately λ0/(2√{square root over (∈r)}), where λ0 is the free space wavelength of the lowest operating frequency of the antenna and ∈r is the relative permittivity of the dielectric material between the patch and the ground plane or the ground strip. When the dielectric material is air, its ∈r equals to 1. The length of the main patch 101 is therefore selected according to the lowest operating frequency of the desired operating frequency range of the antenna 100. However, due to the folded arrangement of the main patch 101, the overall length of the antenna element 110 may be reduced.
The width of a patch antenna generally affects the input impedance of the antenna and the dimension of the width may be selected to provide a good impedance match at the antenna input. Due in part to the coupling of the parasitic patches 103, 104 to the patch antenna 100, the width of the main patch 101 may be reduced for a particular desired bandwidth. The width of the main patch 101 may further be reduced through the implementation of the one or more tuning strips 105. Through the combination of one or more of these size reduction techniques, the width and length of the antenna block 110 may be reduced to approximately λ0/6.
The parasitic patches 103, 104 are provided in the antenna 100 to enhance the broadband performance of the antenna 100. To this end, a length and a width for each of the parasitic patches 103, 104 are selected to achieve a suitable input impedance match for the antenna 100 in a suitably wide frequency band. Although the size of the antenna 100 will generally increase with the addition of the parasitic patches 103, 104, the size increase may be offset, at least partially, by using a folded arrangement of the parasitic patches 103, 104 similar to the folded arrangement of the main patch 101. Accordingly, each of the parasitic patches 103, 104 may be folded about the ground strip 102 as illustrated in
The tuning strips 105-1, 105-2 shown in
In the layered arrangement illustrated in
In the embodiment shown in
Referring now to
In the antenna structure 900, at least a portion of the upper strip of the main patch 101 and at least a portion of the upper strips of the first and second parasitic patches 103, 104 of the flexible circuit board 905 lie in a first plane 901 in space. At least a portion of the lower strip of the main patch 101 and at least a portion of the lower strips of the first and second parasitic patches 103, 104 of the flexible circuit board 905 lie in a second plane 902 and a third plane 903, in space. The second plane 902 is not parallel to the first plane 901 or the ground plane 904. Accordingly, in this arrangement, the distance between the ground plane 904 and the non-parallel portion of the patch antenna element lying within the second plane 902 (as well as the portions of the lower strips 101-2, 103-2, 104-2 of the respective patches 101, 103, 104) is gradually increased in one direction. Increasing the ground separation generally improves radiation efficiency of the antenna, thereby decreasing the Q factor of the antenna and broadening the bandwidth of the antenna. Thus, gradual increase of the degree of separation between the ground plane 904 and the lower strips 101-2, 103-2, 104-2 of the respective patches 101, 103, 104 included within the non-parallel portion of the flexible circuit board 905 lying within the second plane 902 increases the bandwidth of the antenna without increasing the overall antenna height. It should be noted that the gradual separation feature in the antenna 900 is not limited to a flexible circuit board implementation and can be implemented in any other suitable manner (e.g., using several non-flexible circuit boards).
It can be appreciated from the description above that the antenna's operational frequency characteristics, in particular, the bandwidth, may be adjusted by performing one or more of the following steps: attaching a tuning strip between the parasitic patch and the ground strip; changing a size of the tuning strip; changing a position of the tuning strip between the parasitic patch and the ground strip; changing a position of a feeding pin; directly coupling the main patch to the parasitic patch; gap-coupling the main patch to the parasitic patch; adjusting a spatial relationship between a gap-coupled main patch and parasitic patch; maintaining a constant spatial relationship between the first strip of the main patch and the second strip of the main patch; maintaining a constant spatial relationship between the first strip of the parasitic patch and the second strip of the parasitic patch; varying a spatial relationship between at least a portion of the first strip of the main patch and at least a portion of the second strip of the main patch; varying a spatial relationship between at least a portion of the first strip of the parasitic patch and at least a portion of the second strip of the parasitic patch; varying a spatial relationship between at least a portion of the second strip of the main patch and a ground plane, modifying a length of the main patch to be different in comparison to a length of the parasitic patch; and modifying a width of the main patch to be different in comparison to a width of the parasitic patch.
Table 1000 in
Table 1100 in
The configurations and techniques described above provide several tuning options for reducing the size of a patch antenna as well as increasing the bandwidth, such as, using a folded main patch with two radiating edges, gap-coupling a parasitic patch to the main patch along at least a portion of a non-radiating edge of the main patch, using one or more tuning strips to couple one or more parasitic patches to the ground strip, gradually increasing the separation between the main and the parasitic patch(es) and the ground plane, and modifying the length and width of the main patch and one or more parasitic patches. Through the use of one or more of these tuning options, an improved patch antenna having a 40% fractional bandwidth and a 50% size reduction in all dimensions over current patch antennas was able to be attained. Such a patch antenna is suitable for short to medium range wireless communication systems, for example, wireless microphones, wireless audio monitoring systems, local wireless data networks, and wireless medical devices. In addition, the low profile, significantly reduced size, and insensitivity to mounting surfaces makes the antenna of the present invention compatible for permanent indoor installations.
While the disclosed methods and apparatus have been described with reference to specific examples, which are intended to be illustrative only and not to be limiting of the invention, it will be apparent to those of ordinary skill in the art that changes, additions or deletions may be made to the disclosed embodiments without departing from the spirit and scope of the invention. This patent therefore covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4131893 | Munson | Dec 1978 | A |
5781158 | Ko et al. | Jul 1998 | A |
6675461 | Rowson | Jan 2004 | B1 |
7012568 | Desclos | Mar 2006 | B2 |
7551142 | Zhang | Jun 2009 | B1 |
8228243 | Rivera | Jul 2012 | B1 |
20040233111 | Desclos et al. | Nov 2004 | A1 |
20110095947 | Chou | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
WO-03003503 | Jan 2003 | WO |
Entry |
---|
Written Opinion for PCT/US2013/052185, mailed Aug. 1, 2014 (6 pages). |
International Search Report for PCT/US2013/052185, mailed Nov. 4, 2013. |
Written Opinion for PCT/US2013/052185, mailed Nov. 4, 2013. |
G. Kumar et al., “Nonradiating Edges and Four Edges Gap-Coupled Multiple Resonator Broad-Band Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, AP-33(2):173-78 (Feb. 1985). |
G. Kumar et al., “Directly Coupled Multiple Resonator Wide-Band Microstrip Antennas,” IEEE Transactions on Antennas and Propagation, AP-33(6):588-93 (Jun. 1985). |
C. Wood, “Improved Bandwidth of Microstrip Antennas Using Parasitic Elements,” IEE Proceedings H Microwaves, Optics and Antennas, 127(4):231-34 (Aug. 1980). |
N. Herscovici, “A Wide-Band Single-Layer Patch Antenna,” IEEE Transactions on Antennas and Propagation, 46(4):471-74 (Apr. 1998). |
K.M. Luk et al., “Small Rectangular Patch Antenna,” Electron. Lett., 34(25):2366-67 (Dec. 1998). |
R. Chair et al., “Small Dual Patch Antenna,” Electron. Lett., 35(10):762-64 (May 1999). |
Y-M. Jo et al., “Broad Band Patch Antennas Using a Wedge-Shaped Air Dielectric Substrate,” in IEEE Antennas and Propagation Society International Symposium, Orlando, FL, 932-35 (1999). |
C-K. Wu et al., “Broadband Microstrip Antenna with Directly Coupled and Parasitic Patches,” Microwave Opt. Technol. Lett., 22(5):348-49 (Sep. 1999). |
C-L. Tang et al., “Broadband Dual-Frequency V-Shape Patch Antenna,” Microwave Opt. Technol. Lett., 25(2):121-23 (Apr. 2000). |
K-L. Wong, “Compact and Broadband Microstrip Antennas,” Chapters 7 & 8, 232-293 (John Wiley 2002). |
R. Li et al., “Development and Analysis of a Folded Shorted-Patch Antenna with Reduced Size,” IEEE Transactions on Antennas and Propagation, 52(2):555-62 (Feb. 2004). |
I-F. Chen et al., “A Novel Reduced-Size Edge-Shorted Patch Antenna for UHF Band Applications,” IEEE Antennas and Wireless Propagation Letters, 8:475-77 (2009). |
J. Zhang et al., “Miniaturization of Multiple-Layer Folded Patch Antennas,” in EuCAP 3rd European Conference on Antennas and Propagation, Berlin 3502-06 (2009). |
Written Opinion for PCT/US2013/052185, mailed Oct. 28, 2014 (4 pages), 2014. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/052185, dated Dec. 15, 2014 (6 pages), 2015. |
Office Action in Taiwanese Application No. 102127879 dated Aug. 6, 2015, with translation, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20140062794 A1 | Mar 2014 | US |