Broadband optics for manipulating light beams and images

Information

  • Patent Grant
  • 10036886
  • Patent Number
    10,036,886
  • Date Filed
    Monday, January 30, 2017
    7 years ago
  • Date Issued
    Tuesday, July 31, 2018
    6 years ago
Abstract
Pointing and positioning system of light beams and images including a plurality of cycloidal diffractive waveplates, each waveplate capable of deviating a generally broadband light beam over a predetermined angle. The lateral translation and deviation angles of the light beams are controlled by controlling the relative distance, rotational position, and the diffraction efficiency of at least one in the plurality of waveplates.
Description
FIELD OF THE INVENTION

This invention relates to optical beam control and, in particular, to methods, systems, apparatus and devices for manipulating with light beams, including laser beams and beams with wide spectra and divergence angles, by translating them in the lateral direction and varying their propagation direction for optical switching, beam scanning, spectral modulation, optical tweezers, thermal seeker, imaging, information displays, and other photonics applications.


BACKGROUND OF THE INVENTION

The present invention relates to optical systems for controlling with propagation of light beams. Pointing and positioning systems are enabling components for most laser applications. Conventionally, this is accomplished using mirrors, scan wheels, optical wedges, and other two-axis gimbal arrangements as exemplified, for example, in the U.S. Pat. No. 7,319,566 to Prince et al. These opto-mechanical systems are complex, bulky and heavy for large area beams. For example, the prism apex angle, hence its thickness is increased to achieve larger deflection angles. The electromechanical systems for rotation, translation or oscillation of such mirrors, prisms, and other optical components require high electrical power for their operation. They are relatively slow and have limited range of angles that could be covered within given time period.


Thus, there is a need for thin, light-weight, fast, and inexpensive pointing, positioning, and switching systems for light beams, particularly, for laser beams. The state-of-the-art developments include all-electronics systems and rotating diffraction gratings. The all-electronics systems with no moving parts, as reviewed in P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, E. A. Watson, A Review of Phased Array Steering for Narrow-Band Electrooptical Systems, Proceedings of the IEEE, Vol. 97, pages 1078-1096 (2009), require a large number of high efficiency diffraction gratings and spatial light modulators and/or electrically controlled waveplates. As a result, the overall transmission of these systems is reduced along with their radiation damage threshold, and their speed is limited by the speed of liquid crystal spatial light modulators and variable retarders.


Rotating diffraction gratings as described in J. C. Wyant, “Rotating diffraction grating laser beam scanner,” Applied Optics, 14, pages 1057-1058 (1975), and in the U.S. Pat. No. 3,721,486 to Bramley, partially solves the problem of obtaining larger diffraction angle in thinner optical system, compared, for example to the system of Risley prisms. The light beam diffracted by the first grating in the path of the beam is further diffracted by the second grating. Depending on orientation of those gratings with respect to each other, the deflection angle of the beam can thus be varied between nearly 0 to double of the diffraction angle exhibited by a single grating. The problem with such systems is that phase gratings typically diffract light into multiple orders that need to be blocked along with the 0th order beam. High efficiency Bragg type gratings have narrow spectral and angular range as described in the U.S. Pat. No. 7,324,286 to Glebov et al., and can be used practically for laser beams only, expanded and collimated to minimize divergence. Blazed gratings such as proposed in the U.S. Pat. No. 6,792,028 to Cook et al., still exhibit a multitude of diffraction orders due to their discontinuous structure and do not improve considerably on the width of angular selectivity and diffraction efficiency.


The cycloidal diffractive waveplates (CDWs), essentially, anisotropic plates meeting half-wave condition but with optical axis orientation rotating in the plane of the waveplate in a cycloidal manner, as described in the review S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, “Optical Axis Gratings in Liquid Crystals and their use for Polarization insensitive optical switching,” J. Nonlinear Opt. Phys. & Mat., 18, 1-47 (2009), do not have the disadvantages of conventional phase gratings. Moreover, DWs, referred to also as optical axis gratings and polarization gratings, can provide nearly 100% diffraction efficiency in micrometer thin layers. Furthermore, due to their waveplate nature, their diffraction spectrum is broadband, and can even be made practically achromatic. Due to their thinness and high transparency, they can be used in high power laser systems.


Thus, replacing Risley prisms, wedges, mirrors and/or phase gratings with DWs, provides many advantages for manipulating with light beams and imaging. As shown in S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, Polarization insensitive imaging through polarization gratings, Optics Express, 17, 1817-1830 (2009), not only laser beams, but complex images can be steered over large angles without light attenuation or image deformation. The paper further showed that utilizing a pair of closely spaced CDWs, one of them with switchable diffraction, it is possible to manipulate with transmission of unpolarized beams and images through apertures. This concept suggested and demonstrated in S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, “Polarization insensitive imaging through polarization gratings,” Optics Express, 17, 1817-1830 (2009) was subsequently cited and tested in C. Oh, J. Kim, J. F. Muth, M. Escuti, “A new beam steering concept: Riesley gratings,” Proc. SPIE, vol. 7466, pp. 74660J1-J8 (2009).


BRIEF SUMMARY OF THE INVENTION

Thus, the objective of the present invention is providing an optical system for translating light beams over predetermined distances and deviating over predetermined angles using a set of CDWs, the system generally being capable of controlling light beams of arbitrary polarization, wide wavelength spectrum and divergence angles, including images.


The second objective of the present invention is providing means for controlling the optical properties of said set of CDWs mechanically, by varying the relative distance and angular positions between the CDWs, as well as by using other stimuli such as electromagnetic fields and temperature that vary the diffraction efficiency of at least one CDW in the set.


A further objective of the present invention is providing an optical system wherein the light translated or deflected by the set of CDWs is further controlled with the aid of apertures, filters, and other optical elements.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS


FIG. 1A schematically shows deflection of a circularly polarized light beam with a pair of diffractive waveplates.



FIG. 1B describes the pattern of spatial modulation of optical axis orientation of a cycloidal diffractive waveplate along a single coordinate axis.



FIG. 1C schematically shows the structure of cycloidal diffractive waveplates at different rotational positions.



FIG. 1D schematically shows the structure of cycloidal diffractive waveplates at anti-parallel rotational positions.



FIG. 2A shows sample dependence of the deflection angle of a light beam at the output of a pair of cycloidal diffractive waveplates as a function of the rotational angle between the waveplates.



FIG. 2B demonstrates the capability of a pair of cycloidal diffractive waveplates to steer with no distortions complex images carried by an unpolarized light.



FIG. 3 schematically shows the displacement of a light beam by a pair of diffractive waveplates with parallel orientation of their optical axis modulation directions.



FIG. 4A schematically shows increasing of the deflection angle of a light beam by a set of four diffractive waveplates each arranged anti-parallel with respect to the previous one.



FIG. 4B demonstrates increasing deflection angle of a light beam by increasing the number of diffractive waveplates from one to four.



FIG. 4C shows increasing deflection angle of a light beam by a system of diffractive waveplates tilted with respect to each other.



FIG. 5A schematically shows a fragment of a cycloidal orientation pattern for molecules of an azobenzene liquid crystal in trans-isomer state.



FIG. 5B schematically shows transformation of the trans isomer of azobenzene liquid crystal molecules into cis isomer state due to absorption of radiation, and respective loss of cycloidal pattern.



FIG. 5C schematically shows randomization of liquid crystal orientation due to temperature induced phase transition to isotropic liquid state, and related loss of cycloidal orientation pattern.



FIG. 6A schematically shows orientation of liquid crystal molecules between electrodes.



FIG. 6B schematically shows transformation of cycloidal orientation pattern into a homogeneous alignment pattern at the influence of an electric field.



FIGS. 7A and B schematically show switching between transmittive and deflective states of a pair of cycloidal diffractive waveplates when switching one of the diffractive waveplates into an optically homogeneous non-diffractive state.



FIG. 8A schematically shows two layers of cycloidal diffractive waveplates bonded with each other on a single substrate.



FIG. 8B schematically shows two layers of cycloidal diffractive waveplates bonded with each other with a liquid crystal cell acting as a spacer.





DETAILED DESCRIPTION OF THE INVENTION

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not limitation.


The preferred embodiment of the present invention includes two CDWs (cycloidal diffractive waveplates), marked with numerals 103 and 105 in FIG. 1A, arranged parallel to each other in close proximity such as the light diffracted by the first CDW 103 is fully captured by the aperture of the second CDW 105. At the output of the set of CDWs 103 and 105, the pointing direction of the light beam 108 circularly polarized as indicated by spiral 107 is, in general, different from the propagation direction of the incident light beam 101 circularly polarized as indicated by spiral 102. The deflection angle of the beam is controlled by varying the relative geometrical positioning between the CDWs, for example, by mechanical rotation of the CDWs schematically shown by arrows 104 and 106.


It is convenient to depict the spatially modulated orientation direction of the optical axis in a CDW by elongated ellipses 111 as shown in FIG. 1B. The optical axis orientation angle α in a CDW varies along a single coordinate axis x′: α=qx′. The modulation period Λ defined by the wavevector q, Λ=π/q, determines the magnitude of the diffraction angle of the CDWs. The orientation angles β and γ of the x′-axes of the CDWs with respect to a fixed x-axis in the laboratory coordinate system, FIG. 1C, determine the diffraction direction. The minimum deflection angle is 0 and it is achieved for parallel arrangement of the CDWs wherein α=qx′ for both CDWs. This corresponds to the case where β=γ in FIG. 1C. The largest deflection angle is double of the diffraction angle produced by individual CDWs, and it is achieved for their anti-parallel arrangement, schematically shown in FIG. 1D, wherein γ=β+π.


The plot of output angles measured for a sample system as a function of angular position between the CDWs in S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, “Polarization insensitive imaging through polarization gratings,” Optics Express, 17 (3), 1817-1830 (2009) is shown in FIG. 2A for normal incidence of the beam on the first CDW. In the setup shown in FIG. 1A, the polarization of the incident beam is assumed circular, as schematically shown by the spiral 102. The output beam 108 in this case maintains the circular polarization state 107. In case of incident unpolarized or linearly polarized beam, two beams of orthogonal circular polarization are generated at the output of the system of two CDWs, FIG. 2B. The angle between those beams changes from 0 to four times the diffraction angle when the relative rotational position between the CDWs is varied from parallel to anti-parallel. This situation, along with the photos of the two diffracted beams corresponding to some intermediate relative rotational positions of the CDWs is demonstrated in FIG. 2B for beams carrying a complex image. No image distortions occur in this process.


In the preferred embodiment, CDWs are made of liquid crystal polymers though other optically anisotropic materials and material structures such as subwavelength gratings can be used as well. In general, the layer of CDW, typically only a few micrometer thick, is obtained as a coating on a substrate for stability and robustness. The substrate can be made of a material adequate for the particular application. As an example, a fused silica can be used when controlling UV light beams, and ZnSe, BaF2 and silicon can be used for controlling laser beams of infrared wavelengths.


Varying the distance Δz between two parallel arranged identical CDWs 302 and 304, FIG. 3, introduces transverse shift Δx of the beam 305 emerging from the system with respect to the position of the input beam 301 as a result of deflection of the beam 301 by the first CDW 302 into the beam 303 before it is further diffracted by the CDW 304. Said emerging beam 305 propagates parallel to the input beam 301. The beam can be translated over larger distances or steered over larger angles by adding CDWs into the set. Four CDWs, 406-409, are shown in FIG. 4A as an example. The input light 401 undergoes four deflections, 402-405. In order for each subsequent deflection to further increase the resultant deflection angle, the CDWs 407 and 409 have to be arranged anti-parallel to CDWs 406 and 408. A demonstration of light deflection by such a system of four CDWs is shown in FIG. 4B. CDWs can be tilted with respect to each other such as each of the subsequent CDWs is nearly perpendicular to the beam deflected by the previous CDW. The CDWs 407 and 409 in FIG. 4C are anti-parallel to the CDWs 406 and 408, and all four deflected beams 402-405 of the input beam 401 subsequently increase total deflection angle.


In another embodiment, the relative geometrical positioning of a light beam is controlled by incorporating in a set of CDWs one or more CDWs with variable diffraction efficiency and spectrum, particularly, switchable between diffractive and non-diffractive states at the influence of stimuli such as optical, thermal, electrical, or mechanical. For example, the variable CDW can be made of azobenzene liquid crystal that can be transformed into isotropic state due to trans-cis photoisomerization as shown in S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, “Optical Axis Gratings in Liquid Crystals and their use for Polarization insensitive optical switching,” J. Nonlinear Opt. Phys. & Mat., 18, 1-47 (2009). FIG. 5 demonstrates the effect of photoisomerization and temperature on the cycloidal alignment pattern of a CDW structure shown in FIG. 5A. In case of photoisomerization, FIG. 5B, the molecules of azobenzene liquid crystal isomerize into molecular structure with no mesogenic ability. Thus, the optical anisotropy of the material is reduced with accumulation of those cis-isomers and is eventually lost at sufficiently high concentration levels. For commercially available materials such as room temperature azobenzene liquid crystal 1005 (BEAM Co.), the energy required for full transformation into the isotropic state is of the order of 0.4 J/cm2 for a light beam of 409 nm wavelength according to the product specifications. Azobenzene liquid crystal may also be used as a dopant to randomize a host liquid crystal orientation as a result of photoisomerization.


Similar process, reducing optical anisotropy till its complete disappearance may take place also when heating the liquid crystal to the isotropic state. In this case, the molecules of the liquid crystal do not isomerize, but lose the orientational order as shown in FIG. 5C. This phase transition temperature varies for different materials. For example, it is nearly equal to 35° C. for the nematic liquid crystal 4-pentyl-4′-cyanobiphenyl widely known under the trade name 5CB.


Alternatively, spatially modulated orientation pattern in a CDW in a set can be transformed into homogeneous orientation state by electrical fields. In the preferred embodiment shown in FIG. 6, the electrodes 611 are deposited on one of the substrates 610 of a cell with cycloidal orientation of a liquid crystal 620. Application of an electric field 612 through the electrodes 611 aligns the liquid crystal molecules along the electric field thus transforming the diffractive structure of spatially modulated liquid crystal orientation into a homogeneous orientated non-diffractive state 630. Sinusoidal electric field at around 1 kHz frequency can be used for realignment with the strength of the field varying from nearly 1 V to 100 V depending on material properties and electrode spacing.


U.S. patent application Ser. No. 13/387,942 by Escuti assumes electric field applied across the liquid crystal layer, see, for example, FIG. 9B. This results in out-of-plane reorientation. Out-of-plane reorientation results in long transient light scattering states. Our invention relates with using in-plane reorientation by having the electrodes on one substrate of the liquid crystal phase modulator only. Our study has shown that, as opposed to out-of-plane reorientation of liquid crystal gratings, in-plane reorientation does not invoke generation of transient light scattering states.


A preferred embodiment of a system for positioning a light beam with the aid of a variable CDW is shown in FIG. 7 when a CDW 703 with a fixed diffractive property is paired with a variable CDW 702 in parallel arrangement. As described above, according to S. R. Nersisyan, N. V. Tabiryan, L. Hoke, D. M. Steeves, B. Kimball, “Polarization insensitive imaging through polarization gratings,” Optics Express, 17 (3), 1817-1830 (2009), the incident light beam 700 in this case, FIG. 7A, emerges from the set of CDWs as the beam 701 propagating along the propagation direction of the incident beam 700. As such, the beam 701 may propagate through the aperture 705.


In case the CDW 702 is transformed into a non-diffractive state 706, FIG. 7B, the incident light 700 is deflected by the CDW 703 into the beams 707 and 708 for circular polarized beams of different handedness. Both diffraction orders, 707 and 708, shown in FIG. 7B are present for unpolarized or linearly polarized incident beam. The diffracted beams may be blocked from further propagation by the aperture 705.


One advantage for controlling with pointing and positioning of light beams with the aid of variable CDWs is the opportunity for having a compact system where CDWs are physically attached to each other as schematically shown in FIG. 8A. Since each CDW layer is only a few micrometer thick, multiple layers of desired orientation and sequence can be deposited on a single support substrate. In a preferred embodiment, a variable liquid crystal polymer CDW 801 is deposited on a support substrate 810 and serves as basis for a second, not stimuli responsive CDW layer 802. In another preferred embodiment, the two CDW layers 803 and 804 in FIG. 8B are separated with a spacer layer that may, in general, be a functional layer by itself for performing functions such as spectral filtering and phase modulation. In the preferred embodiment shown in FIG. 8B the functional spacer is a liquid crystal 830 sandwiched between glass substrates 811 and 812 and acting as an electrically or optically controlled phase modulator. FIG. 8B shows the case of electrical control with said substrates having transparent electrodes 821 and 822.


The pointing and positioning functionality of the set of CDWs of the present invention can be extended to new applications by incorporating other optical components in the system, particularly, at its output. An optical system with variable transmission is an example of such functionality obtained, for example, by arranging an aperture 705 at the output of the set of CDWs shown in FIG. 7. In the preferred embodiment, the system is in high transmission state when both CDWs, 702 and 703, are in diffractive state. The system undergoes switching onto a low transmission state, FIG. 7B, as a result of switching the structure of one of the CDWs from diffractive state 702 onto a non-diffractive state 706 since the deflected beams are blocked by the aperture 705.


The same considerations apply to the CDW system shown in FIG. 8. Note that changing diffraction spectrum of the variable CDW system shown in FIG. 7 and FIG. 8, generally, results in changing spectrum of the light transmitted though the aperture 705.


Although the present invention has been described above by way of a preferred embodiment, this embodiment can be modified at will, within the scope of the appended claims, without departing from the spirit and nature of the subject invention.

Claims
  • 1. A system for positioning light beams comprising: (a) at least one light source, each light source for generating a light beam;(b) a set of at least two cycloidal diffractive waveplates for deviating the light beam over a predetermined angle; and(c) a device controlling a relative geometrical positioning of said cycloidal diffractive waveplates, for varying a deflection angle of the beam.
  • 2. The system as in claim 1 wherein a diffraction spectrum of at least one in the set of cycloidal diffractive waveplates is variable at an influence of one or a combination of the following stimuli: electric field, optical radiation, temperature and mechanical stress.
  • 3. The system as in claim 2 further comprising means for applying and controlling said stimuli.
  • 4. The system of claim 1 wherein the device for controlling the relative geometrical positioning of said cycloidal diffractive waveplates includes one or a combination of mechanical rotation assembly and a translation assembly.
  • 5. The system of claim 1 wherein said cycloidal diffractive waveplates diffract light with near 100% efficiency in at least 300 nm wide spectrum of wavelengths.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a Divisional patent application of U.S. patent application Ser. No. 14/162,809 filed Jan. 24, 2014, now U.S. Pat. No. 9,557,456, which is a Continuation In Part of U.S. patent application Ser. No. 13/916,627 filed Jun. 13, 2013, now Abandoned, which is a Continuation of U.S. patent application Ser. No. 12/697,083 filed Jan. 29, 2010 now abandoned. The entire disclosure of each of the applications listed in this paragraph are incorporated by specific reference thereto. This invention claims priority to the publication S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, “Optical Axis Gratings in Liquid Crystals and their use for Polarization insensitive optical switching,” J. Nonlinear Opt. Phys. & Mat., 18, 1-47 (March 2009), incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government support under Contract No. W911QY-07-C-0032. The invention described herein may be manufactured and used by or for the Government of the United States for all governmental purposes without the payment of any royalty.

US Referenced Citations (121)
Number Name Date Kind
2435616 Vittum Feb 1948 A
3721486 Bramley Mar 1973 A
3897136 Bryngdahl Jul 1975 A
4160598 Firester et al. Jul 1979 A
4301023 Schuberth Nov 1981 A
4698816 Chun Oct 1987 A
4956141 Allen Sep 1990 A
4983332 Hahn Jan 1991 A
5032009 Gibbons Jul 1991 A
5042950 Salmon, Jr. Aug 1991 A
5047847 Toda Sep 1991 A
5100231 Sasnett et al. Mar 1992 A
5142411 Fiala Aug 1992 A
5150234 Takahashi Sep 1992 A
5218610 Dixon Jun 1993 A
5325218 Willett Jun 1994 A
5446596 Mostrorocco Aug 1995 A
5621525 Vogeler et al. Apr 1997 A
5895422 Hauber Apr 1999 A
5903330 Funschilling May 1999 A
5989758 Komatsu et al. Nov 1999 A
6107617 Love et al. Aug 2000 A
6139147 Zhang Oct 2000 A
6191880 Schuster Feb 2001 B1
6219185 Hyde Apr 2001 B1
6320663 Ershov Nov 2001 B1
6373549 Tombling Apr 2002 B1
6452145 Graves et al. Sep 2002 B1
6551531 Ford Apr 2003 B1
6678042 Tabirian et al. Jan 2004 B2
6728049 Tabirian et al. Apr 2004 B1
6792028 Cook Sep 2004 B2
7048619 Park May 2006 B2
7094304 Nystrom Aug 2006 B2
7095772 Delfyett et al. Aug 2006 B1
7196758 Crawford Mar 2007 B2
7319566 Prince Jan 2008 B2
7324286 Glebov Jan 2008 B1
7450213 Kim et al. Nov 2008 B2
7764426 Lipson Jul 2010 B2
8045130 Son Oct 2011 B2
8077388 Gerton Dec 2011 B2
8264623 Marrucci Sep 2012 B2
8520170 Escuti Aug 2013 B2
8582094 Shortt Nov 2013 B1
8643822 Tan Feb 2014 B2
8982313 Escuti Mar 2015 B2
9541772 De Sio et al. Jan 2017 B2
9557456 Tabirian et al. Jan 2017 B2
9592116 De Sio et al. Mar 2017 B2
9617205 Tabirian et al. Apr 2017 B2
9658512 Tabirian et al. May 2017 B2
9715048 Tabirian et al. Jul 2017 B2
9753193 Tabirian et al. Sep 2017 B2
9976911 Tabirian et al. May 2018 B1
9983479 Tabirian et al. May 2018 B2
20010002895 Kawano Jun 2001 A1
20010018612 Carson et al. Aug 2001 A1
20010030720 Ichihashi Oct 2001 A1
20020027624 Seiberle Mar 2002 A1
20020097361 Ham Jul 2002 A1
20020167639 Coates Nov 2002 A1
20030021526 Bouevitch Jan 2003 A1
20030072896 Kwok Apr 2003 A1
20030152712 Motomura Aug 2003 A1
20030206288 Tabirian et al. Nov 2003 A1
20030214700 Sidorin Nov 2003 A1
20030218801 Korniski Nov 2003 A1
20040105059 Ohyama Jun 2004 A1
20040165126 Ooi Aug 2004 A1
20050030457 Kuan et al. Feb 2005 A1
20050110942 Ide May 2005 A1
20050219696 Albert et al. Oct 2005 A1
20050271325 Anderson et al. Dec 2005 A1
20060008649 Shinichiro Jan 2006 A1
20060055883 Morris et al. Mar 2006 A1
20060109532 Savas May 2006 A1
20060221449 Glebov et al. Oct 2006 A1
20060222783 Hayashi Oct 2006 A1
20070032866 Portney Feb 2007 A1
20070040469 Yacoubian Feb 2007 A1
20070115551 Spilman May 2007 A1
20070122573 Yasuike May 2007 A1
20070132930 Ryu et al. Jun 2007 A1
20070247586 Tabirian Oct 2007 A1
20070258677 Chigrinov Nov 2007 A1
20080226844 Shemo Sep 2008 A1
20080278675 Escuti Nov 2008 A1
20090002588 Lee et al. Jan 2009 A1
20090073331 Shi Mar 2009 A1
20090122402 Shemo May 2009 A1
20090141216 Marrucci Jun 2009 A1
20090256977 Haddock Oct 2009 A1
20090257106 Tan Oct 2009 A1
20090264707 Hendricks Oct 2009 A1
20100003605 Gil Jan 2010 A1
20100066929 Shemo Mar 2010 A1
20110069377 Wu et al. Mar 2011 A1
20110075073 Oiwa Mar 2011 A1
20110085117 Moon et al. Apr 2011 A1
20110097557 May Apr 2011 A1
20110109874 Piers et al. May 2011 A1
20110135850 Saha et al. Jun 2011 A1
20110188120 Tabirian et al. Aug 2011 A1
20110234944 Powers Sep 2011 A1
20110262844 Tabirian Oct 2011 A1
20120140167 Blum Jun 2012 A1
20120162433 Fuentes Gonzalez Jun 2012 A1
20120188467 Escuti Jul 2012 A1
20130057814 Prushinskiy et al. Mar 2013 A1
20130202246 Meade Aug 2013 A1
20140055740 Spaulding Feb 2014 A1
20140211145 Tabirian Jul 2014 A1
20140252666 Tabirian Sep 2014 A1
20150049487 Connor Feb 2015 A1
20150081016 De Sio et al. Mar 2015 A1
20150276997 Tabirian Oct 2015 A1
20160023993 Tabirian Jan 2016 A1
20160047955 Tabirian et al. Feb 2016 A1
20160047956 Tabirian et al. Feb 2016 A1
20170010397 Tabirian et al. Jan 2017 A1
Foreign Referenced Citations (8)
Number Date Country
1970734 Sep 2008 EP
2088456 Dec 2009 EP
2209751 May 1989 GB
2001142033 May 2001 JP
2004226752 Aug 2004 JP
2007122573 Nov 2007 WO
2008130555 Oct 2008 WO
WO 2008130559 Oct 2008 WO
Non-Patent Literature Citations (82)
Entry
Sarkissian, et al., Periodically Aligned Liquid Crystal: Potential Application for Projection Displays, Mol. Cryst. Liq. Cryst., 2006, vol. 451, 19 pages.
Zel'Dovich, et al., Devices for Displaying Visual Information Disclosure, Jul. 2000, 10 pages.
Blinov, et al., Electrooptic Effects in Liquid Crystal Materials, Springer-Verlag New York, 1994, 17 pages.
Crawford, et al., Liquid Crystals in Complex Geomeries; Formed by Polymer and Porous Networks, Taylor and Francis, 1996, 4 pages.
Sarkissian, et al., Potential Application of Periodically Aligned Liquid Crystal Cell for Projection Displays, Optical Society of America, 2005, 3 pages.
Nersisyan, et al., Optical Axis Gratings in Liquid Crystals and Their Use for Polarization Insensitive Optical Switching, Journal of Nonlinear Optical Physics & Materials, Mar. 2009, vol. 18, No. 1, 47 pages.
Nersisyan, et al., Polarization Insensitive Imaging Through Polarization Gratings, Optics Express, Feb. 2009, vol. 17, No. 3 , 14 pages.
Sarkissian, et al., Polarization-Controlled Switching Between Diffraction Orders in Transverse-Periodically Aligned Nematic Liquid Crystals, Optics Letters, Aug. 2006, vol. 31, No. 5, 3 pages.
Oise, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Nov. 12-13, 2003, Orlando, Florida, Optical Society of America, 9 pages.
Dierking, Polymer Network-Stabilized Liquid Crystals, Advanced Materials, 2000, vol. 12, No. 3, 15 pages.
Beam Engineering for Advaced Measurements Co., et al., PCT Application No. PCT/US2016/038666 filed Jun. 22, 2016, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Oct. 10, 2016, 16 pages.
Marrucci, et al., Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain, Appl. Phys. Lett. 88, 2006, 3 pages.
Sobolewska et al., “On the inscription of period and half period surface relief gratings in azobenzene-functionalized polymers”, J. Phys. Chem., vol. 112 (15) Jan. 3, 2008, 10 pages.
Barrett et al., Model of laser driven mass transport in thin films of dye-functionalized polymers, J. Chem. Phys., vol. 109 (4), Jul. 22, 1998, 13 pages.
Tabirian, U.S. Appl. No. 14/214,375, filed Mar. 14, 2014, Office Action Summary dated Jun. 27, 2017, 10 pages.
Tabirian, et al., U.S. Appl. No. 14/688,425, filed Apr. 16, 2015, Office Action Summary dated Oct. 5, 2017, 10 pages.
Serak, et al. Diffractive Waveplate Arrays [Invited], Journal of the Optical Society of America B, May 2017, pp. B56-B63, vol. 34, No. 5, 8 pages.
Emoto, et al., Optical & Physical Applications of Photocontrollable Materials: Azobenzene-Containing & Liquid Crystalline Polymers,Polymers, Jan. 2012, 150-186, vol. 4, 38 pg.
Tabiryan, et al., The Promise of Diffractive Waveplates, OPN Optics and Photonics News, Mar. 2010, 6 pages.
Tabiryan, et al., Fabricating Vector Vortex Waveplates for Coronagraphy; Aerospace Conference, 2012, EEE; publicly available Apr. 19, 2012, 12 pages.
Tabirian, et al., PCT Application No. PCT/US15/26186 filed Apr. 16, 2015, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority dated Jul. 14, 2015, 17 pages.
Nersisyan, et al., Study of azo dye surface command photoalignment material for photonics applications, Applied Optics, vol. 49, No. 10, Apr. 1, 2010, 8 pages.
Nersisyan, et al., Characterization of optically imprinted polarization gratings, Applied Optics, vol. 48, No. 21, Jul. 20, 2009, 6 pages.
Nersisyan, et al., Fabrication of Liquid Crystal Polymer Axial Waveplates for UV-IR Wavelengths, Optics Express, vol. 17, No. 14, Jul. 2009, 9 pages.
Sarkissian, et al., Longitudinally modulated nematic bandgap structure, Optical Society of America, vol. 23, No. 8, Aug. 2008, 6 pages.
Sarkissian, et al., Polarization-universal bandgap in periodically twisted nematics, Optics Letters, vol. 31, No. 11, Jun. 1, 2006, abstract, 4 pages.
Schadt, et al., Photo-Induced Alignment and Patterning of Hybrid Liquid Crystalline Polymer Films on Single Substrates, Jpn. J. Appl. Phys., vol. 34, Part 2, No. 6B, Jun. 15, 1995, 4 pages.
Schadt , et al., Photo-Generation of Linearly Polymerized Liquid Crystal Aligning Layers Comprising Novel, Integrated Optically Patterned Retarders and Color Filters, Jpn. J. Appl. Phys., vol. 34, Part 1, No. 6A, Jun. 1995, 10 pages.
Schadt, et al., Optical patterning of multi-domain liquid-crystal displays with wide viewing angles, Nature, vol. 381, May 16, 996, 4 pages.
Escuti, et al., A Polarization-Independent Liquid Crystal Saptial-Light-Modulator, Liquid Crystals X, Proc. of SPIE, vol. 6332, 2006, 9 pages.
Escuti, et al., Polarization-Independent LC Microdisplays Using Liquid Crystal Polarization Gratings: A Viable Solution (?), Dept of Electrical & Computer Engineering @ ILCC, Jul. 1, 2008, 30 pages.
Escuti, et al., Simplified Spectropolarimetry Using Reactive Mesogen Polarization Gratings, Imaging Spectrometry XI, Proc. of SPIE, vol. 6302, 2006, 11 pages.
Gibbons, et al., Surface-mediated alignment of nematic liquid crystals with polarized laser light, Nature, vol. 351, May 2, 1991, 1 page.
Gibbons, et al., Optically Controlled Alignment of Liquid Crystals: Devices and Applications, Molecular Crystals and Liquid Crystals, vol. 251, 1994, 19 pages.
Gibbons, et al., Optically generated liquid crystal gratings, Appl. Phys. Lett., 65, Nov. 14, 1994, 3 pages.
University of Central Florida, School of Optics Creol PPCE, Optics in the Southeast, Technical Conference and Tabletop Exhibit, Nov. 12-13, 2003, 9 pages.
Ichimura, et al., Surface assisted photoalignment control of lyotropic liquid crystals, Part 1, Characterization and photoalignment of aqueous solutions of a water soluble dyes as lyotropic liquid crystals, J. Materials. Chem., vol. 12, 2002, abstract, 2 pages.
Ichimura, et al., Reversible Change in Alignment Mode of Nematic Liquid Crystals Regulated Photochemically by “Command Surfaces” Modified with an Azobenzene Monolayer, American Chemical Society, Langmuir, vol. 4, No. 5, 1988, 3 pages.
Provenzano, et al., Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces, Applied Physics Letter 89, 2006, 4 pages.
Titus, et al., Efficient polarization-independent, re ective liquid crystal phase grating, Applied Physics Letter 71, Oct. 20, 1197, 3 pages.
Chen, et al. An Electrooptically Controlled Liquid-Crystal Diffraction Grating, Applied Physics Letter 67, Oct. 30, 1995, 4 pages.
Kim, et al., Unusual Characteristics of Diffraction Gratings in a Liquid Crystal Cell, Advanced Materials, vol. 14, No. 13-14, Jul. 4, 2002, 7 pages.
Pan, et al., Surface Topography and Alignment Effects in UV-Modified Polyimide Films with Micron Size Patterns, Chinese Journal of Physics, vol. 41, No. 2, Apr. 2003, 8 pages.
Fuh, et al., Dynamic studies of holographic gratings in dye-doped liquid-crystal films, Optics Letter, vol. 26, No. 22, Nov. 15, 2001, 3 pages.
Yu, et al., Polarization Grating of Photoaligned Liquid Crystals with Oppositely Twisted Domain Structures, Molecular Crystals Liquid Crystals, vol. 433, 2005, 7 pages.
Crawford, et al., Liquid-crystal diffraction gratings using polarization holography alignment techniques, Journal of Applied Physics 98, 2005, 10 pages.
Seiberle, et al., 38.1 Invited Paper: Photo-Aligned Anisotropic Optical Thin Films, SID 03 Digest, 2003, 4 pages.
Wen, et al., Nematic liquid-crystal polarization gratings by modification of surface alignment, Applied Optics, vol. 41, No. 7, Mar. 1, 2002, 5 pages.
Anagnostis, et al., Replication produces holographic optics in volume, Laser Focus World, vol. 36, Issue 3, Mar. 1, 2000, 6 pages.
Gale, Replicated Diffractive Optics and Micro-Optics, Optics and Photonics News, Aug. 2003, 6 pages.
McEldowney, et al., Creating vortex retarders using photoaligned LC polymers, Optics Letter, vol. 33, No. 2, Jan. 15, 2008, 3 pages.
Stalder, et al., Lineraly polarized light with axial symmetry generated by liquid-crystal polarization converters, Optics Letters vol. 21, No., 1996, 3 pages.
Kakichashvili, et al., Method for phase polarization recording of holograms, Sov. J. Quantum. Electron, vol. 4, No. 6, Dec. 1974, 5 pages.
Todorov, et al., High-Sensitivity Material With Reversible Photo-Induced Anisotropy, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 4 pages.
Attia, et al., Anisoptropic Gratings Recorded From Two Circularly Polarized Coherent Waves, Optics Communications, vol. 47, No. 2, Aug. 15, 1983, 6 pages.
Cipparrone, et al., Permanent polarization gratings in photosensitive langmuir blodget films, Applied Physics Letter, vol. 77, No. 14, Oct. 2, 2000, 4 pages.
Nikolova, et al., Diffraction Efficiency and Selectivity of Polarization Holographic Recording, Optica Acta: International Journal of Optics, vol. 31, No. 5, 1984, 11 pages.
Lee et al., “Generation of pretilt angles of liquid crystals on cinnamte-based photoalignment . . . ”, Opt., Expr., vol. 17 (26) (Dec. 2009), abstract, 4 pages.
Yaroshchuk et al. “Azodyes as photoalignment agents for polymerizable liquid crystals”, IDW'06 Digest vol. 1-3, 2006, 3 pages.
Chigrinov et al. “Anchoring properties of photoaligned azo-dye materials” Phys. Rev., E vol. 68, (Dec. 2003), 5 pages.
Pagliusi et al. Surface-induced photorefractivity in twistable nematics: toward the all-optical control of gain, Opt. Expr. vol. 16, Oct. 2008, 9 pages.
M. Honma, T. Nose, Polarization-independent liquid crystal grating fabricated by microrubbing process, Jpn. J. Appl. Phys., Part 1, Vol. 42, 2003, 3 pages.
Anderson, G., et al., Broadband Antihole Photon Sieve Telescope, Applied Optics, vol. 16, No. 18., Jun. 2007, 3 pages.
Early, J. et al., Twenty Meter Space Telescope Based on Diffractive Fresnel Lens, SPIE, U.S. Department of Energy, Lawrence Livermore National Laboratory, Jun. 2003, 11 pages.
Martinez-Cuenca, et al., Reconfigurable Shack-Hartmann Sensor Without Moving Elements,Optical Society of America, vol. 35, No. 9, May 2010, 3 pages.
Serak, S., et al., High-efficiency 1.5 mm Thick Optical Axis Grating and its Use for Laser Beam Combining, Optical Society of America, vol. 32, No., Jan. 2007, 4 pages.
Ono et al., Effects of phase shift between two photoalignment substances on diffration properties in liquid crystalline grating cells, Appl. Opt. vol. 48, Jan. 2009, 7 pgs.
Naydenova et al., “Diffraction form polarization holographic gratings with surface relief in side chain azobenzene polyesters” J. Opt. Soc. Am. B, vol. 15, (1998), 14 pages.
Oh et al., Achromatic polarization gratings as highly efficent thin-film polarizing beamsplitters for broadband light Proc. SPIE vol. 6682, (2007), 4 pages.
Nersisyan, S., et al., Polarization insensitive imaging through polarization gratins, Optics Express, vol. 17, No. 3, Feb. 2 ,2009, 14 pages.
Tabiryan, et al., Broadband waveplate lenses, Optics Express 7091, vol. 24, No. 7, Mar. 24, 2016, 12 pages.
Tabiryan, et al. Thin waveplate lenses of switchable focal length—new generation in optics, Optics Express 25783, vol. 23, No. 20, Sep. 19, 2015, 12 pages.
Tabiryan, et al. Superlens in the skies: liquid-crystal-polymer technology for telescopes, Newsroom, 2016, 2 pages.
Nersisyan, et al., The principles of laser beam control with polarization gratings introduced as diffractive waveplates, Proc. of SPIE, vol. 7775, 2010, 10 pages.
Heller, A Giant Leap for Space Telescopes, Foldable Optics, S&TR, Mar. 2003, 7 pages.
Beam Engineering for Advanced Measurements Co., PCT Application No. PCT/US2015026186, The Extended European Search Report, filed on Mar. 8, 2017, 13 pages.
Honma, et al., Liquid-Crystal Fresnel Zone Plate Fabricated by Microorubbing, Japanese Journal of Applied Phsyics, vol. 44, No. 1A, 2005, 4 pages.
Tabirian, N., et al., U.S. Appl. No. 61/757,259, filed Jan. 28, 2013, 29 pages.
Pepper, M. et al, Nonlinear Optical Phase Conjugation, IEEE, Sep. 1991, pp. 21-34, 14 pages.
Tabirian, N., Utility U.S. Appl. No. 14/194,808, filed Mar. 2, 2014, Office Action Summary dated Feb. 9, 2018, 10 pages.
Tabirian, N., Utility U.S. Appl. No. 14/324,126, filed Jul. 4, 2014, Office Action Summary dated Feb. 8, 2018, 13 pages.
Tabirian, N., U.S. Appl. No. 15/189,551, filed Jun. 22, 2016, Office Action Summary dated Feb. 27, 2018, 16 pages.
Related Publications (1)
Number Date Country
20170139203 A1 May 2017 US
Divisions (1)
Number Date Country
Parent 14162809 Jan 2014 US
Child 15419558 US
Continuations (1)
Number Date Country
Parent 12697083 Jan 2010 US
Child 13916627 US
Continuation in Parts (1)
Number Date Country
Parent 13916627 Jun 2013 US
Child 14162809 US