Not applicable
Not applicable
1. Field of the Invention
The invention relates to telecommunications, and in particular, to systems that provide access between GR-303 systems and broadband systems.
2. Background of the Prior Art
At present, broadband systems are being developed and implemented. Broadband systems provide telecommunications service providers with many benefits, including higher capacities, more efficient use of bandwidth, and the ability to integrate voice, data, and video communications. These broadband systems provide callers with increased capabilities at lower costs. However, callers may not have broadband terminals that can access these broadband systems. These callers need an effective interface that provides them with access to sophisticated broadband systems without the need for their own broadband terminals. Telecommunications service providers also need such an interface in order to use their broadband systems to provide services to a larger base of users.
The invention includes a telecommunications system that interworks between a broadband system, such as an Asynchronous Transfer Mode (ATM) system, and a GR-303 system for telecommunications calls. The telecommunications system-comprises a signaling processing system, a signaling interface, and a bearer interface. The signaling processing system is operational to process call signaling from the GR-303 system and from the ATM system, to select at least one of a GR-303 connection and an ATM connection for each call, and to provide control messages that identify the selected connections. The signaling interface that is operational to exchange the call signaling between the GR-303 system and the signaling processing system. The bearer interface that is operational to receive the control messages from the signaling processing system and to interwork call communications between the GR-303 system and the ATM system on the selected connections based on the control messages.
In some embodiments the signaling processing system is also operational to interwork the signaling from the GR-303 system and Signaling System #7 (SS7) signaling. Other embodiments include a remote digital terminal, an ATM cross-connect, an ATM multiplexer, a signaling converter, or a signaling processor.
The invention also includes a method for operating a telecommunications system that interworks between a GR-303 system and an Asynchronous Transfer Mode (ATM) system for telecommunications calls. The method comprises receiving GR-303 signaling and GR-303 communications into the telecommunications system. The GR-303 signaling is converted into Signaling System #7 (SS7) signaling, which is processed to select ATM connections. The GR-303 connections are interworked with the selected ATM connections.
In some embodiments, the method also includes receiving SS7 signaling and ATM communications into the telecommunications system. The SS7 signaling is processed to select GR-303 connections, and the ATM communications are interworked with the selected GR-303 connections. In some embodiments, the method also includes receiving additional GR-303 signaling and additional GR-303 communications into the telecommunications system. The additional GR-303 signaling is converted into additional Signaling System #7 (SS7) signaling which is processed to select GR-303 connections. The additional GR-303 communications are interconnected with the selected GR-303 connections.
The invention provides callers with an effective interface to sophisticated broadband systems without the need for their own broadband terminals. The invention provides telecommunications service providers with an interface that can use broadband systems to provide services to a large base of users.
The operation of broadband system 200 includes the conversion of bearer communications and signaling from one format into another. Bearer communications are the user information, for example, voice traffic. Signaling is information used by the network, for example, a called number. In some embodiments the conversion process is described with the term “interworking”. This term is well known to those in the art. For example, GR-303 signaling is interworked with SS7 signaling by converting GR-303 signaling into analogous SS7 signaling and by converting SS7 signaling into analogous GR-303 signaling. GR-303 bearer communications are interworked with ATM communications by converting GR-303 bearer communications into analogous ATM communications and by converting ATM communications into analogous GR-303 communications.
Broadband system interface 200 accepts calls in the GR-303 format from connection 230 and link 231 and from connection 232 and link 233. Broadband system interface 200 provides a bearer interface for the GR-303 bearer channels and a signaling interface for the GR-303 signaling channels. The signaling interface provides the GR-303 signaling to a signaling processing system in broadband system interface 200. The signaling processing system processes the call signaling and selects connections for the calls. The bearer interface receives communications from the GR-303 bearer channels and implements the selected connections in response to instructions from the signaling processing system. Typically, this requires interworking between GR-303 connections and broadband connections, and the connections can be selected on a call-by-call basis. Broadband system interface 200 may route calls to one of the other telephones connected to remote digital terminals 220 or 222. In addition, broadband interface system 200 may route calls over broadband connection 240 and associated signaling over link 242. Connection 240 and link 242 could connect callers to many other networks and network elements that provide numerous services.
It can be seen that broadband system interface 200 provides callers with access to a broadband system. In can also be seen that broadband system 200 is capable of accepting calls in the standard GR-303 format currently used by local switches.
Telephones 310-315, remote digital terminals 320 and 322, connections 330 and 332, and links 331 and 333 are as described above. Connections 320 and 322 and links 331 and 333 comprise GR-303 multiplexed digital signals. The GR-303 multiplexed digital signal is comprised of multiple bearer channels that carry caller communications and a signaling channel that carries caller signaling. Link 352 could be any link capable of transporting control messages. Examples of such a link could be SS7 links, UDP/IP or TCP/IP over ethernet, or a bus arrangement using a conventional bus protocol. Link 354 carries DS0s that comprise GR-303 signaling channels. Links 342 and 364 are SS7 links. Connection 340 is an ATM connection.
Mux 350 provides the bearer interface and the signaling interface. Mux 350 is operational to receive GR-303 formatted communications over connections 330 and 332 and links 331 and 333. The bearer channels from connections 330 and 332 and the signaling channels from links 331 and 333 are in the well known DS0 format. Mux 350 is able to connect each DS0 to any other DS0. Mux 350 connects the DS0 from link 331 to a DS0 of link 354 to provide a GR-303 signaling channel from remote digital terminal 320 to signaling converter 362. Mux 350 connects the DS0 from link 333 to a DS0 of link 354 to provide a GR-303 signaling channel from remote digital terminal 322 to signaling converter 362. Mux 350 can also connect DS0s that carry user communications. For example, a DS0 from telephone 310 could be connected to a DS0 for telephone 314. Mux 350 can make this latter DS0 to DS0 connection in response to control instructions from signaling processor 360 that are received over link 352.
Mux 350 is also operational to convert DS0s into ATM cells with selected Virtual Path Identifiers/Virtual Channel Identifiers (VPI/VCIs). This conversion is known as ATM interworking. These ATM cells are transmitted over connection 340. Typically, they are provided to an ATM cross-connect device that routes the cells according to their VPI/VCI. Since DS0s are bi-directional, a companion VPI/VCI will typically be pre-assigned to the selected VPI/VCI to provide a call connection back to the caller. The mux would convert ATM cells from this companion VPI/VCI into the return path of the DS0. Mux 350 makes the DS0/ATM conversions in response to control instructions from signaling processor 360 that are received over link 352.
In this embodiment, mux 350 also includes digital signal processing capability that can detect and provide tones for particular DS0s. For example, Mux 350 could apply dial tone to a particular DS0 in response to a control instruction from signaling converter 362. Mux 350 could then detect the DTMF inputs received from the caller over the DS0 and provide this information to signaling converter 362 over link 352. A detailed description of the mux is given below.
Signaling processor 360 and signaling converter 362 comprise a signaling processing system that is operational to receive GR-303 signaling and select connections. It can also receive SS7 signaling and select connections. These two components can be integrated or remain discreet.
Signaling converter 362 interworks between GR-303 signaling and SS7 signaling. Signaling converter 362 exchanges GR-303 signaling with remote terminal devices 320 and 322 over links 354, 331, and 333 (and through mux 350). Signaling converter 362 exchanges SS7 signaling with signaling processor 360 over link 364. GR-303 relies on the LAPD and Q.931 protocols established for ISDN D channel signaling. Devices that convert ISDN D channel signaling onto the SS7 format are known. One skilled in the art will appreciate how such a device could be adapted to convert GR-303 signaling into the SS7 format.
In some embodiments, signaling converter 362 will generate and transmit control instructions to mux 350 over link 354 to collect DTMF input from a caller. This will typically occur in response to a GR-303 set-up message. After these digits are collected by mux 350, signaling converter 362 will receive a message from mux 350 over link 352 that identifies the digits dialed by the caller. These digits will be incorporated into an SS7 message sent to signaling processor 360. Signaling converter 362 may also instruct mux 350 to provide ringback to caller at the far end of the call. The mux would provide a ringback to the caller at the far end that indicates the called party at the near end was being alerted. Where appropriate, a busy signal may be provided. Signaling converter 262 may also instruct the mux to provide the callers number to the called party. This could be used for the caller ID feature.
Signaling processor 360 is operational to process signaling. The signaling processor will typically process an SS7 Initial Address Message (IAM) for call set-up. The signaling information is processed by signaling processor 360 in order to select a particular connection for a particular call. This connection might be a DS0 or a VPI/VCI. Signaling processor 360 sends control instructions to mux 350 identifying the selected connections. A detailed description of the signaling processor follows below.
The signaling processor processes the SS7 IAM and selects a connection. For a cross-country call, this connection would typically be a VPI/VCI provisioned to a long distance network. The signaling processor will generate an SS7 IAM and send it on to the relevant network element to extend the call. The signaling processor also sends a control instruction to the mux identifying the DS0 and VPI/VCI.
Once the far end has received all information required for the call, it will return an SS7 Address Complete Message (ACM) to the signaling processor, which will pass another ACM to the signaling converter. At this time, the far end typically returns a ringback tone that indicates that the called party is being alerted (or a busy signal if appropriate). This ringback tone is passed to the telephone over the VPI/VCI—DS0 connection. If the called party answers, the signaling processor will receive an SS7 Answer Message (ANM) from the far end. The signaling processor will send an SS7 ANM message to the converter, and the converter will send an analogous GR-303 connect message to the remote digital terminal.
At this point, the call is connected and a conversation, fax transmission, etc., may take place. The mux converts caller information on the DS0 into ATM cells for the selected VPI/VCI. Additionally, the mux converts ATM cells received from the companion VPI/VCI into the return path of the DS0. As a result, the caller has access to an ATM system through the GR-303 interface. Advantageously, the VPI/VCI is selected on a call-by-call basis by the signaling processor. This allows the signaling processor to select a virtual connection that has been pre-provisioned to an appropriate destination.
The remote digital terminal provides seizure and an alerting signal to the telephone. The remote digital terminal will send a GR-303 alerting message to the signaling converter and the signaling converter will send an analogous SS7 Address Complete Message (ACM) to the signaling processor. The signaling converter will also instruct the mux to provide a ringback tone to the originating side of the call (or a busy signal where appropriate). The mux will provide a ringback to the caller indicating to the caller that the called party is being alerted. The signaling processor will send an SS7 ACM to the origination side of the call.
The remote digital terminal will sense a silent interval after the first ring and will send a GR-303 notify message to the signaling converter. Upon receipt, the signaling converter instruct the mux to pass the calling number to the telephone and the mux will pass the requisite DTMF tones to the telephone. When the remote digital terminal senses that the telephone has been answered, it will send a GR-303 connect message to the signaling converter, and the signaling converter will provide an analogous SS7 ANM to the signaling processor. The signaling processor will 'send an SS7 ANM to the originating side of the call. The signaling processor will instruct the mux to stop the ringback and provide cut-through for the call. At this point, the call is connected.
In
The mux may implement DS0 to DS0 connections for particular calls. Referring to
In some embodiments, particular telephones may be pulse dial instead of DTMF tone dial. The remote digital terminals are operational to detect the digits outpulsed by the telephones and to provide GR-303 information messages to the signaling converter (through the mux). The remote digital terminal can also receive an information message and outpulse the calling number to a called telephone. In these scenarios, the mux will not need to exchange DTMF with the telephones. The signaling converter exchanges GR-303 information messages with the remote digital interfaces. The signaling processor will exchange this information with the signaling converter through SS7 messages, and will not need to instruct the mux to exchange DTMF with the caller.
In an alternative embodiment, the remote digital interface could be adapted to exchange DTMF digits and provide dial tone to the telephones. In this embodiment, the mux would not need to handle DTMF or dial tone. GR-303 set-up and information messages could be used to convey dialed numbers between the remote digital interface and the converter.
In some embodiments, the remote digital interface may use hybrid GR-303 signaling. Hybrid GR-303 signaling employs robbed-bit ABCD signaling for on-hook/off-hook status in addition to a channel for additional signaling. In these embodiments, the mux would be adapted to forward the signaling from the signaling channel and the ABCD robbed signaling bits to the converter. The converter would be adapted to convert both into analogous SS7 messages.
This is accomplished without the need for an ATM switch. This provides a distinct advantage over current ATM switch based systems in terms of cost and control. ATM switches are typically very expensive and control over the switch is relegated to the switch supplier. In the invention, the signaling processor exerts the control, and the signaling processor does not need to be obtained from an ATM switch supplier.
The ATM Interworking Multiplexer
DS0 interface 1255 accepts GR-303 formatted signals over connections 1230 and 1232; and links 1231 and 1233. DS0 interface 1255 is operational to cross-connect particular DS0s to other particular DS0s in response to control instructions. DS0 interface 1255 cross-connects the signaling channel DS0s of links 1231 and 1233 to the signaling channel DS0s of link 1254 to the signaling converter. The bearer channel DS0s are coupled to digital signal processor 1256 or AAL 1257 in response to control instructions. In some embodiments, DS0 interface 1255 can also monitor ABCD bits from hybrid GR-303 connections and provide this information to control interface 1250 for transfer to the signaling converter. DS0 interface 1255 provides reciprocal processing in the reverse direction as well. For example, GR-303 signaling messages from the signaling converter received over link 1254 are sent to the remote digital interface along with DS0 from either AAL 1257 or digital signal processor 1256.
DS0 interface 1255 receives the DS0s and handles them in accord with signaling processor instructions received through control interface 1250. This would include interconnecting particular DS0s to other DS0s on particular calls. It would also include connecting particular DS0s to particular functions of digital signal processor 1256 or AAL 1257.
Digital signal processor 1256 is operational to apply various digital processes to particular DS0s in response to control instructions received through control interface 1250. Examples of digital processing include: tone detection, tone transmission, loopbacks, voice detection, voice messaging, echo cancellation, compression, and encryption. For example, the signaling processor may instruct the mux to collect a DTMF dialed number, and then to apply echo cancellation to the DS0 prior to conversion to ATM.
Digital signal processor 1256 is connected to AAL 1257. As discussed, DS0s from DS0 interface 1255 may bypass digital signal processor 1256 and be directly coupled to AAL 1257. AAL 1257 comprises both a convergence sublayer and a segmentation and reassembly (SAR) layer. AAL 1257 is operational to accept the DS0 format and convert the DS0 information into ATM cells. AALs are known in the art and information about AALs is provided by International Telecommunications Union (ITU) document I.363. An AAL for voice is also described in U.S. Pat. No. 5,606,553, which is hereby incorporated by reference into this application. AAL 1257 obtains the virtual path identifier (VPI) and virtual channel identifier (VCI) for each call from control interface 1250. AAL 1257 also obtains the identity of the DS0 for each call (or the DS0s for an Nx64 call). Control interface 1250 receives these instructions from the signaling processor. AAL 1257 then converts user information between the identified DS0 and the identified ATM virtual connection. Acknowledgments that the assignments have been implemented may be sent back to the signaling processor if desired. Calls with a bit rate that are a multiple of 64 kbit/second are known as Nx64 calls. If desired, AAL 1257 can be capable of accepting control messages through control interface 1250 for Nx64 calls. The signaling processor would instruct AAL 1257 to group the DS0s for the call.
As discussed above, the mux also handles calls in the opposite direction—from SONET interface 1258 to DS0 interface 1255. For this communications, the VPI/VCI has typically been selected and the communications routed through the cross-connect. As a result, AAL 1257 needs only to identify the DS0 for that particular VPI/VCI. The signaling processor could provide this assignment through control interface 1250 to AAL 1257. A technique for processing VPI/VCIs is disclosed in U.S. Pat. No. 5,940,393, which is hereby incorporated by reference into this application.
DS0 connections are bi-directional and ATM connections are typically uni-directional. As a result, two virtual connections in opposing directions will typically be required for each DS0. Those skilled in the art will appreciate how this can be accomplished in the context of the invention. For example, the broadband system could be provisioned with a second set of VPI/VCIs in the opposite direction as the original set of VPI/VCIs. On each call, the mux would be configured to automatically invoke this second VPI/VCI to provide a bi-directional virtual connection to match the bi-directional DS0 on the call.
The Signaling Processor
The signaling processor is referred to as a call/connection manager (CCM), and it receives and processes telecommunications call signaling and control messages to select connections that establish communication paths for calls. In the preferred embodiment, the CCM processes SS7 signaling to select connections for a call. CCM processing is described in U.S. Pat. No. 6,031,840, which is incorporated herein by reference.
In addition to selecting connections, the CCM performs many other functions in the context of call processing. It not only can control routing and select the actual connections, but it can also validate callers, control echo cancelers, generate billing information, invoke intelligent network functions, access remote databases, manage traffic, and balance network loads. One skilled in the art will appreciate how the CCM described below can be adapted to operate in the above embodiments.
CCM 1300 comprises signaling platform 1310, control platform 1320, and application platform 1330. Each of the platforms 1310, 1320, and 1330 is coupled to the other platforms.
Signaling platform 1310 is externally coupled to the SS7 systems—in particular to systems having a message transfer part (MTP), an ISDN user part (ISUP), a signaling connection control part (SCCP), an intelligent network application part (INAP), and a transaction capabilities application part (TCAP). Control platform 1320 is externally coupled to a mux control, an echo control, a resource control, billing, and operations.
Signaling platform 1310 comprises MTP levels 1-3, ISUP, TCAP, SCCP, and INAP functionality and is operational to transmit and receive the SS7 messages. The ISUP, SCCP, INAP, and TCAP functionality use MTP to transmit and receive the SS7 messages. Together, this functionality is referred as an “SS7 stack,” and it is well known. The software required by one skilled in the art to configure an SS7 stack is commercially available, for example, from the Trillium company.
Control platform 1320 is comprised of various external interfaces including a mux interface, an echo interface, a resource control interface, a billing interface, and an operations interface. The mux interface exchanges messages with at least one mux. These messages comprise DS0 to VPI/VCI assignments, acknowledgments, and status information. The echo control interface exchanges messages with echo control systems. Messages exchanged with echo control systems might include instructions to enable or disable echo cancellation on particular DS0s, acknowledgments, and status information.
The resource control interface exchanges messages with external resources. Examples of such resources are devices that implement continuity testing, encryption, compression, tone detection/transmission, voice detection, and voice messaging. The messages exchanged with resources are instructions to apply the resource to particular DS0s, acknowledgments, and status information. For example, a message may instruct a continuity testing resource to provide a loopback or to send and detect a tone for a continuity test.
The billing interface transfers pertinent billing information to a billing system. Typical billing information includes the parties to the call, time points for the call, and any special features applied to the call. The operations interface allows for the configuration and control of CCM 1300. One skilled in the art will appreciate how to produce the software for the interfaces in control platform 1320.
Application platform 1330 is functional to process signaling information from signaling platform 1310 in order to select connections. The identity of the selected connections are provided to control platform 1320 for the mux interface. Application platform 1330 is responsible for validation, translation, routing, call control, exceptions, screening, and error handling. In addition to providing the control requirements for the mux, application platform 1330 also provides requirements for echo control and resource control to the appropriate interface of control platform 1320. In addition, application platform 1330 generates signaling information for transmission by signaling platform 1310. The signaling information might be ISUP, INAP, or TCAP messages to external network elements. Pertinent information for each call is stored in a call control block (CCB) for the call. The CCB can be used for tracking and billing the call.
Application platform 1330 operates in general accord with the Basic Call Model (BCM) defined by the ITU. An instance of the BCM is created to handle each call. The BCM includes an originating process and a terminating process. Application platform 1330 includes a service switching function (SSF) that is used to invoke the service control function (SCF). Typically, the SCF is contained in a service control point (SCP). The SCF is queried with TCAP or INAP messages. The originating or terminating processes will access remote databases with intelligent network (IN) functionality via the SSF function.
Software requirements for application platform 1330 can be produced in specification and description language (SDL) defined in ITU-T Z.100. The SDL can be converted into C code. Additional C and C++ code can be added as required to establish the environment.
CCM 1300 can be comprised of the above-described software loaded onto a computer. The computer can be an Integrated Micro Products (IMP) FT-Sparc 600 using the Solaris operating system and conventional database systems. It may be desirable to utilize the multi-threading capability of a Unix operating system.
From
SS7 Message Designations
SS7 messages are well known. Designations for various SS7 messages commonly are used. Those skilled in the art are familiar with the following message designations:
ACM—Address Complete Message
ANM—Answer Message
BLO—Blocking
BLA—Blocking Acknowledgment
CPG—Call Progress
CRG—Charge Information
CGB—Circuit Group Blocking
CGBA—Circuit Group Blocking Acknowledgment
GRS—Circuit Group Reset
GRA—Circuit Group Reset Acknowledgment
CGU—Circuit Group Unblocking
CGUA—Circuit Group Unblocking Acknowledgment
CQM—Circuit Group Query
CQR—Circuit Group Query Response
CRM—Circuit Reservation Message
CRA—Circuit Reservation Acknowledgment
CVT—Circuit Validation Test
CVR—Circuit Validation Response
CFN—Confusion
COT—Continuity
CCR—Continuity Check Request
EXM—Exit Message
INF—Information
INR—Information Request
IAM—Initial Address
LPA—Loop Back Acknowledgment
PAM—Pass Along
REL—Release
RLC—Release Complete
RSC—Reset Circuit
RES—Resume
SUS—Suspend
UBL—Unblocking
UBA—Unblocking Acknowledgment
UCIC—Unequipped Circuit Identification Code.
CCM Tables
Call processing typically entails two aspects. First, an incoming or “originating” connection is recognized by an originating call process. For example, the initial connection that a call uses to enter a network is the originating connection in that network. Second, an outgoing or “terminating” connection is selected by a terminating call process. For example, the terminating connection is coupled to the originating connection in order to extend the call through the network. These two aspects of call processing are referred to as the originating side of the call the terminating side of the call.
Trunk circuit table 1400 contains information related to the connections. Typically, the connections are DS0 or ATM connections. Initially, trunk circuit table 1400 is used to retrieve information about the originating connection. Later, the table is used to retrieve information about the terminating connection. When the originating connection is being processed, the trunk group number in trunk circuit table 1400 points to the applicable trunk group for the originating connection in trunk group table 1402.
Trunk group table 1402 contains information related to the originating and terminating trunk groups. When the originating connection is being processed, trunk group table 1402 provides information relevant to the trunk group for the originating connection and typically points to exception table 1404.
Exception table 1404 is used to identify various exception conditions related to the call that may influence the routing or other handling of the call. Typically, exception table 1404 points to ANI table 1406. Although, exception table 1404 may point directly to trunk group table 1402, called number table 1408, or routing table 1410.
ANI table 1406 is used to identify any special characteristics related to the caller's number. The caller's number is commonly known as automatic number identification (ANI). ANI table 1406 typically points to called number table 1408. Although, ANI table 1406 may point directly to trunk group table 1402 or routing table 1410.
Called number table 1408 is used to identify routing requirements based on the called number. This will be the case for standard telephone calls. Called number table 1408 typically points to routing table 1410. Although, it may point to trunk group table 1402.
Routing table 1410 has information relating to the routing of the call for the various connections. Routing table 1410 is entered from a pointer in either exception table 1404, ANI table 1406, or called number table 1408. Routing table 1410 typically points to a trunk group in trunk group table 1402.
When exception table 1404, ANI table 1406, called number table 1408, or routing table 1410 point to trunk group table 1402, they effectively select the terminating trunk group. When the terminating connection is being processed, the trunk group number in trunk group table 1402 points to the trunk group that contains the applicable terminating connection in trunk circuit table 1402.
The terminating trunk circuit is used to extend the call. The trunk circuit is typically a VPI/VCI or a DS0. Thus it can be seen that by migrating through the tables, a terminating connection can be selected for a call.
CCM ID table 1500 contains various CCM SS7 point codes. It can be accessed from trunk group table 1402, and it points back to trunk group table 1402.
Treatment table 1504 identifies various special actions to be taken in the course of call processing. This will typically result in the transmission of a release message (REL) and a cause value. Treatment table 1504 can be accessed from trunk circuit table 1400, trunk group table 1402, exception table 1404, ANI table 1406, called number table 1408, routing table 1410, and query/response table 1506.
Query/response table 1506 has information used to invoke the SCF. It can be accessed by trunk group table 1402, exception table 1404, ANI table 1406, called number table 1408, and routing table 1410. It points to trunk group table 1402, exception table 1404, ANI table 1406, called number table 1408, routing table 1410, and treatment table 1504.
Message table 1508 is used to provide instructions for messages from the termination side of the call. It can be accessed by trunk group table 1402 and points to trunk group table 1402.
The table also contains the circuit identification code (CIC). The CIC identifies the circuit which is typically a DS0 or a VPI/VCI. Thus, the invention is capable of mapping the SS7 CICs to the ATM VPI/VCI. If the circuit is ATM, the virtual path (VP) and the virtual channel (VC) also can be used for identification. The group member number is a numeric code that is used for terminating circuit selection. The hardware identifier identifies the location of the hardware associated with the originating circuit. The echo canceler (EC) identification (ID) entry identifies the echo canceler for the originating circuit.
The remaining fields are dynamic in that they are filled during call processing. The echo control entry is filled based on three fields in signaling messages: the echo suppresser indicator in the IAM or CRM, the echo control device indicator in the ACM or CPM, and the information transfer capability in the IAM. This information is used to determine if echo control is required on the call. The satellite indicator is filled with the satellite indicator in the IAM or CRM. It may be used to reject a call if too many satellites are used. The circuit status indicates if the given circuit is idle, blocked, or not blocked. The circuit state indicates the current state of the circuit, for example, active or transient. The time/date indicates when the idle circuit went idle.
The common language location identifier (CLLI) entry is a Bellcore standardized entry. The satellite trunk group entry indicates that the trunk group uses a satellite. The satellite trunk group entry is used in conjunction with the satellite indicator field described above to determine if the call has used too many satellite connections and, therefore, must be rejected. The service indicator indicates if the incoming message is from a CCM (ATM) or a switch (TDM). The outgoing message index (OMI) points to the message table so that outgoing messages can obtain parameters. The associated number plan area (NPA) entry identifies the area code.
Selection sequence indicates the methodology that will be used to select a connection. The selection sequence field designations tell the trunk group to select circuits based on the following: least idle, most idle, ascending, descending, clockwise, and counterclockwise. The hop counter is decremented from the IAM. If the hop counter is zero, the call is released. Automatic congestion control (ACC) active indicates whether or not congestion control is active. If automatic congestion control is active, the CCM may release the call. During termination processing, the next function and index are used to enter the trunk circuit table.
The called party “digits from” and “digits to” focus further processing unique to a defined range of called numbers. The “digits from” field is a decimal number ranging from 1-15 digits. It can be any length and, if filled with less than 15 digits, is filled with 0s for the remaining digits. The “digits to” field is a decimal number ranging from 1-15 digits. It can be any length and, if filled with less than 15 digits, is filled with 9s for the remaining digits. The next function and next index entries point to the next table which is typically the ANI table.
The “digits from” and “digits to” focus further processing unique to ANI within a given range. The data entry indicates if the ANI represents a data device that does not need echo control. Originating line information (OLI) differentiates among, ordinary subscriber, multiparty line, ANI failure, station level rating, special operator handling, automatic identified outward dialing, coin or non-coin call using database access, 800/888 service call, coin, prison/inmate service, intercept (blank, trouble, and regular), operator handled call, outward wide area telecommunications service, telecommunications relay service (TRS), cellular services, private paystation, and access for private virtual network types of service. The next function and next index point to the next table which is typically the called number table.
It can be seen from
Those skilled in the art will appreciate that variations from the specific embodiments disclosed above are contemplated by the invention. The invention should not be restricted to the above embodiments, but should be measured by the following claims.
This application is a continuation of U.S. patent application Ser. No. 10/237,759, which is a continuation of U.S. Pat. No. 6,470,009, which is a continuation of U.S. Pat. No. 6,304,580, which is a continuation of U.S. Pat. No. 6,023,474, and which are all incorporated by reference into this application.
Number | Name | Date | Kind |
---|---|---|---|
4491945 | Turner | Jan 1985 | A |
4683584 | Chang et al. | Jul 1987 | A |
4686669 | Chang | Aug 1987 | A |
4686701 | Ahmad et al. | Aug 1987 | A |
4720850 | Oberlander et al. | Jan 1988 | A |
4730312 | Johnson et al. | Mar 1988 | A |
4736364 | Basso et al. | Apr 1988 | A |
4748658 | Gopal et al. | May 1988 | A |
4757526 | Foster et al. | Jul 1988 | A |
4763317 | Lehman et al. | Aug 1988 | A |
4853955 | Thorn et al. | Aug 1989 | A |
4970721 | Aczel et al. | Nov 1990 | A |
4991169 | Davis et al. | Feb 1991 | A |
4991172 | Cidon et al. | Feb 1991 | A |
5003584 | Benyacar et al. | Mar 1991 | A |
5029199 | Jones et al. | Jul 1991 | A |
5048081 | Gavaras et al. | Sep 1991 | A |
5051983 | Kammerl | Sep 1991 | A |
5084816 | Boese et al. | Jan 1992 | A |
5089954 | Rago | Feb 1992 | A |
5115426 | Spanke | May 1992 | A |
5115427 | Johnson, Jr. et al. | May 1992 | A |
5185743 | Murayama et al. | Feb 1993 | A |
5204857 | Obara | Apr 1993 | A |
5251255 | Epley | Oct 1993 | A |
5258979 | Oomuro et al. | Nov 1993 | A |
5268895 | Topper | Dec 1993 | A |
5271010 | Miyake et al. | Dec 1993 | A |
5274635 | Rahman et al. | Dec 1993 | A |
5274698 | Jang | Dec 1993 | A |
5278972 | Baker et al. | Jan 1994 | A |
5282244 | Fuller et al. | Jan 1994 | A |
5289472 | Cho | Feb 1994 | A |
5291492 | Andrews et al. | Mar 1994 | A |
5297147 | Shimokasa | Mar 1994 | A |
5327421 | Hiller et al. | Jul 1994 | A |
5339318 | Tanaka et al. | Aug 1994 | A |
5345443 | D'Ambrogio et al. | Sep 1994 | A |
5345445 | Hiller et al. | Sep 1994 | A |
5345446 | Hiller et al. | Sep 1994 | A |
5363433 | Isono | Nov 1994 | A |
5375124 | D'Ambrogio et al. | Dec 1994 | A |
5377186 | Wegner et al. | Dec 1994 | A |
5392402 | Robrock, II | Feb 1995 | A |
5394463 | Fischell et al. | Feb 1995 | A |
5414701 | Shtayer et al. | May 1995 | A |
5420858 | Marshall et al. | May 1995 | A |
5422882 | Hiller et al. | Jun 1995 | A |
5425090 | Orriss | Jun 1995 | A |
5428609 | Eng et al. | Jun 1995 | A |
5434852 | La Porta et al. | Jul 1995 | A |
5434981 | Lenihan et al. | Jul 1995 | A |
5438527 | Feldbaumer et al. | Aug 1995 | A |
5438570 | Karras et al. | Aug 1995 | A |
5440563 | Isidoro et al. | Aug 1995 | A |
5440626 | Boyle et al. | Aug 1995 | A |
5444713 | Backaus et al. | Aug 1995 | A |
5452297 | Hiller et al. | Sep 1995 | A |
5452350 | Reynolds et al. | Sep 1995 | A |
5457684 | Bharucha et al. | Oct 1995 | A |
5459722 | Sherif | Oct 1995 | A |
5461669 | Vilain | Oct 1995 | A |
5469501 | Otsuka | Nov 1995 | A |
5473677 | D'Amato et al. | Dec 1995 | A |
5473679 | La Porta et al. | Dec 1995 | A |
5483527 | Doshi et al. | Jan 1996 | A |
5485455 | Dobbins et al. | Jan 1996 | A |
5495484 | Self et al. | Feb 1996 | A |
5497373 | Hulen et al. | Mar 1996 | A |
5506894 | Billings et al. | Apr 1996 | A |
5509010 | La Porta et al. | Apr 1996 | A |
5519690 | Suzuka et al. | May 1996 | A |
5519707 | Subramanian et al. | May 1996 | A |
5530724 | Abrams et al. | Jun 1996 | A |
5533115 | Hollenbach et al. | Jul 1996 | A |
5537461 | Bridges et al. | Jul 1996 | A |
5541917 | Farris | Jul 1996 | A |
5544163 | Madonna | Aug 1996 | A |
5550834 | D'Ambrogio et al. | Aug 1996 | A |
5550914 | Clarke et al. | Aug 1996 | A |
5563939 | La Porta et al. | Oct 1996 | A |
5566173 | Steinbrecher | Oct 1996 | A |
5568475 | Doshi et al. | Oct 1996 | A |
5577037 | Takatori et al. | Nov 1996 | A |
5579311 | Chopping et al. | Nov 1996 | A |
5586177 | Farris et al. | Dec 1996 | A |
5590133 | Billström et al. | Dec 1996 | A |
5592477 | Farris et al. | Jan 1997 | A |
5600643 | Robrock, II | Feb 1997 | A |
5610977 | Williams et al. | Mar 1997 | A |
5619561 | Reese | Apr 1997 | A |
5623491 | Skoog | Apr 1997 | A |
5635980 | Lin et al. | Jun 1997 | A |
5636261 | Fils | Jun 1997 | A |
5640446 | Everett et al. | Jun 1997 | A |
5666399 | Bales et al. | Sep 1997 | A |
5673262 | Shimizu | Sep 1997 | A |
5684792 | Ishihara | Nov 1997 | A |
5689550 | Garson et al. | Nov 1997 | A |
5689555 | Sonnenberg | Nov 1997 | A |
5701301 | Weisser, Jr. | Dec 1997 | A |
5703876 | Christie | Dec 1997 | A |
5703880 | Miura | Dec 1997 | A |
5706286 | Reiman et al. | Jan 1998 | A |
5710769 | Anderson et al. | Jan 1998 | A |
5715239 | Hyodo et al. | Feb 1998 | A |
5745553 | Mirville et al. | Apr 1998 | A |
5751706 | Land et al. | May 1998 | A |
5765108 | Martin et al. | Jun 1998 | A |
5774530 | Montgomery et al. | Jun 1998 | A |
5774675 | Uchida | Jun 1998 | A |
5784371 | Iwai | Jul 1998 | A |
5793765 | Boer et al. | Aug 1998 | A |
5793857 | Barnes et al. | Aug 1998 | A |
5802045 | Kos et al. | Sep 1998 | A |
5825780 | Christie | Oct 1998 | A |
5828666 | Focsaneanu et al. | Oct 1998 | A |
5850391 | Essigmann | Dec 1998 | A |
5862334 | Schwartz et al. | Jan 1999 | A |
5867495 | Elliott et al. | Feb 1999 | A |
5867562 | Scherer | Feb 1999 | A |
5867571 | Borchering | Feb 1999 | A |
5872779 | Vaudreuil | Feb 1999 | A |
5872785 | Kienberger | Feb 1999 | A |
5884262 | Wise et al. | Mar 1999 | A |
5892764 | Riemann et al. | Apr 1999 | A |
5915009 | Williams et al. | Jun 1999 | A |
5917815 | Byers et al. | Jun 1999 | A |
5926464 | Fraser | Jul 1999 | A |
5940393 | Duree et al. | Aug 1999 | A |
5940491 | Anderson et al. | Aug 1999 | A |
5940492 | Galloway et al. | Aug 1999 | A |
5949791 | Byers et al. | Sep 1999 | A |
5949871 | Kabay et al. | Sep 1999 | A |
5956334 | Chu et al. | Sep 1999 | A |
RE36416 | Szlam et al. | Nov 1999 | E |
5991301 | Christie | Nov 1999 | A |
5999525 | Krishnaswamy et al. | Dec 1999 | A |
5999594 | Mizoguchi et al. | Dec 1999 | A |
6014378 | Christie et al. | Jan 2000 | A |
6026091 | Christie et al. | Feb 2000 | A |
6031840 | Christie et al. | Feb 2000 | A |
6034950 | Sauer et al. | Mar 2000 | A |
6034972 | Ward et al. | Mar 2000 | A |
6038218 | Otsuka et al. | Mar 2000 | A |
6069890 | White et al. | May 2000 | A |
6088749 | Hebert et al. | Jul 2000 | A |
6137800 | Wiley et al. | Oct 2000 | A |
6175574 | Lewis | Jan 2001 | B1 |
6181703 | Christie et al. | Jan 2001 | B1 |
6324179 | Doshi et al. | Nov 2001 | B1 |
6327270 | Christie et al. | Dec 2001 | B1 |
6385193 | Civanlar et al. | May 2002 | B1 |
6487200 | Fraser | Nov 2002 | B1 |
6546003 | Farris | Apr 2003 | B1 |
6546442 | Davis et al. | Apr 2003 | B1 |
6847611 | Chase et al. | Jan 2005 | B1 |
20040174880 | White et al. | Sep 2004 | A1 |
20040193329 | Ransom et al. | Sep 2004 | A1 |
20060023676 | Whitmore et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
0439098 | Jul 1991 | EP |
0 488 399 | Jun 1992 | EP |
0935856 | Aug 1999 | EP |
71152 | Nov 1995 | HU |
1013534 | Jan 1989 | JP |
1300738 | Dec 1989 | JP |
2215247 | Aug 1990 | JP |
4180324 | Jun 1992 | JP |
4196635 | Jul 1992 | JP |
5327751 | Dec 1993 | JP |
6006320 | Jan 1994 | JP |
6209365 | Jul 1994 | JP |
7177061 | Jul 1995 | JP |
7250099 | Sep 1995 | JP |
8149137 | Jun 1996 | JP |
WO9214321 | Aug 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20040085975 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10237759 | Sep 2002 | US |
Child | 10682013 | US | |
Parent | 09800698 | Mar 2001 | US |
Child | 10237759 | US | |
Parent | 09413734 | Oct 1999 | US |
Child | 09800698 | US | |
Parent | 08755438 | Nov 1996 | US |
Child | 09413734 | US |