BROADCAST SIGNAL TRANSMITTING DEVICE, BROADCAST SIGNAL RECEIVING DEVICE, BROADCAST SIGNAL TRANSMITTING METHOD, AND BROADCAST SIGNAL RECEIVING METHOD

Abstract
The present invention discloses a method for transmitting a broadcast signal. The method for transmitting a broadcast signal according to the present invention discloses a system capable of supporting a next-generation broadcast service in an environment supporting next-generation hybrid broadcasting using a terrestrial broadcast network and an internet network. Also disclosed is an efficient signaling scheme capable of encompassing both a terrestrial broadcast network and an internet network, in an environment supporting next-generation hybrid broadcasting.
Description
TECHNICAL FIELD

The present invention relates to an apparatus for transmitting a broadcast signal, an apparatus for receiving a broadcast signal and methods for transmitting and receiving a broadcast signal.


BACKGROUND ART

As analog broadcast signal transmission comes to an end, various technologies for transmitting/receiving digital broadcast signals are being developed. A digital broadcast signal may include a larger amount of video/audio data than an analog broadcast signal and further include various types of additional data in addition to the video/audio data.


DISCLOSURE
Technical Problem

That is, a digital broadcast system can provide HD (high definition) images, multichannel audio and various additional services. However, data transmission efficiency for transmission of large amounts of data, robustness of transmission/reception networks and network flexibility in consideration of mobile reception equipment need to be improved for digital broadcast.


Technical Solution

The present invention provides a system capable of effectively supporting future broadcast services in an environment supporting future hybrid broadcasting using terrestrial broadcast networks and the Internet and related signaling methods


Advantageous Effects

The present invention may effectively support a next-generation broadcast service in an environment for supporting a next-generation hybrid broadcast using a terrestrial broadcast network and the Internet.


The present invention may provide a signaling structure for each layer in a hybrid broadcast system.


The present invention may provide a signaling method for execution of an application related to a broadcast service.


The present invention may provide a signaling method for presentation of an application related to a broadcast signal at an appropriate timing.





DESCRIPTION OF DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the principle of the invention. In the drawings:



FIG. 1 illustrates a receiver protocol stack according to an embodiment of the present invention;



FIG. 2 illustrates a relation between an SLT and service layer signaling (SLS) according to an embodiment of the present invention;



FIG. 3 illustrates an SLT according to an embodiment of the present invention;



FIG. 4 illustrates SLS bootstrapping and a service discovery process according to an embodiment of the present invention;



FIG. 5 illustrates a USBD fragment for ROUTE/DASH according to an embodiment of the present invention;



FIG. 6 illustrates an S-TSID fragment for ROUTE/DASH according to an embodiment of the present invention;



FIG. 7 illustrates a USBD/USD fragment for MMT according to an embodiment of the present invention;



FIG. 8 illustrates a link layer protocol architecture according to an embodiment of the present invention;



FIG. 9 illustrates a structure of a base header of a link layer packet according to an embodiment of the present invention;



FIG. 10 illustrates a structure of an additional header of a link layer packet according to an embodiment of the present invention;



FIG. 11 illustrates a structure of an additional header of a link layer packet according to another embodiment of the present invention;



FIG. 12 illustrates a header structure of a link layer packet for an MPEG-2 TS packet and an encapsulation process thereof according to an embodiment of the present invention;



FIG. 13 illustrates an example of adaptation modes in IP header compression according to an embodiment of the present invention (transmitting side);



FIG. 14 illustrates a link mapping table (LMT) and an RoHC-U description table according to an embodiment of the present invention;



FIG. 15 illustrates a structure of a link layer on a transmitter side according to an embodiment of the present invention;



FIG. 16 illustrates a structure of a link layer on a receiver side according to an embodiment of the present invention;



FIG. 17 illustrates a configuration of signaling transmission through a link layer according to an embodiment of the present invention (transmitting/receiving sides);



FIG. 18 is a block diagram illustrating a configuration of a broadcast signal transmission apparatus for future broadcast services according to an embodiment of the present invention;



FIG. 19 is a block diagram illustrating a bit interleaved coding & modulation (BICM) block according to an embodiment of the present invention;



FIG. 20 is a block diagram illustrating a BICM block according to another embodiment of the present invention;



FIG. 21 illustrates a bit interleaving process of physical layer signaling (PLS) according to an embodiment of the present invention;



FIG. 22 is a block diagram illustrating a configuration of a broadcast signal reception apparatus for future broadcast services according to an embodiment of the present invention;



FIG. 23 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention;



FIG. 24 is a table illustrating PLS1 data according to an embodiment of the present invention;



FIG. 25 is a table illustrating PLS2 data according to an embodiment of the present invention;



FIG. 26 is a table illustrating PLS2 data according to another embodiment of the present invention;



FIG. 27 illustrates a logical structure of a frame according to an embodiment of the present invention;



FIG. 28 illustrates PLS mapping according to an embodiment of the present invention;



FIG. 29 illustrates time interleaving according to an embodiment of the present invention;



FIG. 30 illustrates a basic operation of a twisted row-column block interleaver according to an embodiment of the present invention;



FIG. 31 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention;



FIG. 32 is a block diagram illustrating an interlaving address generator including a main pseudo-random binary sequence (PRBS) generator and a sub-PRBS generator according to each FFT mode according to an embodiment of the present invention;



FIG. 33 illustrates a main PRBS used for all FFT modes according to an embodiment of the present invention;



FIG. 34 illustrates a sub-PRBS used for FFT modes and an interleaving address for frequency interleaving according to an embodiment of the present invention;



FIG. 35 illustrates a write operation of a time interleaver according to an embodiment of the present invention;



FIG. 36 is a table illustrating an interleaving type applied according to the number of PLPs;



FIG. 37 is a block diagram including a first example of a structure of a hybrid time interleaver;



FIG. 38 is a block diagram including a second example of the structure of the hybrid time interleaver;



FIG. 39 is a block diagram including a first example of a structure of a hybrid time deinterleaver;



FIG. 40 is a block diagram including a second example of the structure of the hybrid time deinterleaver;



FIG. 41 is a diagram illustrating a part of an ApplicationList element according to an embodiment of the present invention;



FIG. 42 is a diagram illustrating another part of the ApplicationList element according to an embodiment of the present invention;



FIG. 43 is a diagram illustrating an event message table (EMT) according to an embodiment of the present invention;



FIG. 44 is a diagram illustrating AST transmitted in broadcast according to an embodiment of the present invention;



FIG. 45 is a diagram illustrating AST transmitted through a broadband according to an embodiment of the present invention;



FIG. 46 is a diagram illustrating an event transmitted in the form of EventStream element in broadcast according to an embodiment of the present invention;



FIG. 47 is a diagram illustrating an event transmitted in the form of emsg box in broadcast according to an embodiment of the present invention;



FIG. 48 is a diagram showing an event transmitted in the form of EventStream element through a broadband according to an embodiment of the present invention;



FIG. 49 is a diagram showing an event transmitted in the form of emsg box in a broadband according to an embodiment of the present invention;



FIG. 50 is a diagram illustrating API and an event listener according to an embodiment of the present invention;



FIG. 51 is a view illustrating a configuration of a broadcast reception device according to another embodiment of the present invention;



FIG. 52 is a view illustrating a configuration of a complex video component according to an embodiment of the present invention;



FIG. 53 is a view illustrating a complex video component according to another embodiment of the present invention;



FIG. 54 is a view illustrating a complex video component according to another embodiment of the present invention;



FIG. 55 is a view illustrating a media component configuration of audio service according to an embodiment of the present invention;



FIG. 56 is a view illustrating a configuration of a broadcast service including both audio and video according to an embodiment of the present invention;



FIG. 57 is a view illustrating a configuration of a user request content service according to an embodiment of the present invention;



FIG. 58 is a view illustrating a configuration of a stand-alone NRT data service according to an embodiment of the present invention;



FIG. 59 is a view illustrating media component information according to an embodiment of the present invention;



FIG. 60 is a view illustrating a value of a component_data field in media component signaling information according to another embodiment of the present invention;



FIG. 61 is a view illustrating complex component information according to an embodiment of the present invention;



FIG. 62 is a view illustrating a descriptor including complex component information according to an embodiment of the present invention;



FIG. 63 is a view illustrating related component list information according to an embodiment of the present invention;



FIG. 64 is a view of an NRT information table according to an embodiment of the present invention;



FIG. 65 is a view illustrating an NRT information block according to an embodiment of the present invention;



FIG. 66 is a view of an NRT service descriptor according to an embodiment of the present invention;



FIG. 67 is a view illustrating graphic icon information according to an embodiment of the present invention;



FIG. 68 is a view illustrating a value that an icon_transport_mode field of graphic icon information has according to an embodiment of the present invention;



FIG. 69 is a view illustrating a value that a coordinate_system field of graphic icon information has according to an embodiment of the present invention;



FIG. 70 is a view illustrating media component list information according to an embodiment of the present invention;



FIG. 71 is a view when a media component or a broadcast service is mapped through URI in a broadcast service signaling table according to an embodiment of the present invention;



FIG. 72 is a view illustrating targeting criterion information signaling the targeting criterion of a broadcast service or a media component;



FIG. 73 is a view illustrating text information for describing a broadcast service or a media component;



FIG. 74 is a view illustrating title information of a broadcast service, a program, or a show segment;



FIG. 75 is a view illustrating genre information of a broadcast service, a program, or a show segment;



FIG. 76 is a view illustrating target device information signaling a target device relating to a media component or a content item;



FIG. 77 is a view when a broadcast service is divided into a plurality of segments;



FIG. 78 is a view illustrating show information according to an embodiment of the present invention;



FIG. 79 is a view illustrating a show information block according to an embodiment of the present invention;



FIG. 80 is a view illustrating a segment information block according to an embodiment of the present invention;



FIG. 81 is a view when a broadcast transmission device transmits broadcast signals including at least one of show information and segment information according to an embodiment of the present invention;



FIG. 82 is a view when a broadcast reception device receives broadcast signal including at least one of show information and segment information according to an embodiment of the present invention;



FIG. 83 is a view illustrating program information according to an embodiment of the present invention;



FIG. 84 is a view illustrating a program information block according to an embodiment of the present invention;



FIG. 85 is a view illustrating a program information block according to another embodiment of the present invention;



FIG. 86 is a view illustrating a program information block according to another embodiment of the present invention.



FIG. 87 is a view illustrating a program information block according to another embodiment of the present invention;



FIG. 88 is a view illustrating a program information block according to another embodiment of the present invention;



FIG. 89 is a view illustrating segment information according to an embodiment of the present invention;



FIG. 90 is a view illustrating a segment information block according to an embodiment of the present invention.



FIG. 91 is a view illustrating a targeting segment set information according to an embodiment of the present invention;



FIG. 92 is a view when a broadcast transmission device transmits broadcast signal including at least one of program information and segment information according to an embodiment of the present invention;



FIG. 93 is a view when a broadcast reception device receives broadcast signal including at least one of program information and segment information according to an embodiment of the present invention;



FIG. 94 is a view illustrating a continuous component class, an audio component class, a video component class, and a closed caption component class;



FIG. 95 is a view illustrating an elementary audio component class, an elementary video component class, and an elementary closed caption component class;



FIG. 96 is a view illustrating a composite audio component class and a composite video component class;



FIG. 97 is a view illustrating a PickOne component class;



FIG. 98 is a view illustrating a presentable component class, a presentable video component class, a presentable audio component class, and a presentable subtitle component class;



FIG. 99 is a view illustrating an OnDemand component class;



FIG. 100 is a view illustrating an NRT content item class and an NRT file class;



FIG. 101 is a view illustrating an OnDemand component class according to another embodiment of the present invention;



FIG. 102 is a view illustrating an NRT content item class and an NRT file class according to another embodiment of the present invention;



FIG. 103 is a view illustrating a linear service class;



FIG. 104 is a view illustrating an App class and an App-based enhancement service;



FIG. 105 is a view illustrating a time base class and a notification stream class;



FIG. 106 is a view illustrating an App-based service class;



FIG. 107 is a view illustrating a program class;



FIG. 108 is a view illustrating a show class;



FIG. 109 is a view illustrating a segment class, a show segment class, and an interstitial segment class;



FIG. 110 is a diagram for explanation of the terms used in a system for transmitting and receiving a broadcast signal according to an embodiment of the present invention;



FIG. 111 is a diagram showing a service type and a component type according to another embodiment of the present invention;



FIG. 112 is a diagram for explanation of attribute of OnDemand Component Service Model Class and OnDemand Component class according to an embodiment of the present invention;



FIG. 113 is a diagram for explanation of an NRT Content Item class and attribute of the NRT Content Item class according to an embodiment of the present invention;



FIG. 114 is a diagram for explanation of an NRT File class and attribute of the NRT File class according to an embodiment of the present invention;



FIG. 115 is a diagram for explanation of a Service class and attribute of the Service class according to an embodiment of the present invention;



FIG. 116 is a diagram for explanation of ContentAdvisoryRating class and attribute of the ContentAdvisoryRating class according to an embodiment of the present invention;



FIG. 117 is a diagram showing a relationship of a unified modeling language (UML) class according to an embodiment of the present invention;



FIG. 118 is a diagram showing a function provided by a broadcast system according to an embodiment of the present invention;



FIG. 119 is a diagram showing a function provided by a broadcast system according to an embodiment of the present invention;



FIG. 120 is a diagram for explanation of terms used in a system for transmitting and receiving a broadcast signal according to another embodiment of the present invention;



FIG. 121 is a diagram showing a service type and component type structure according to another embodiment of the present invention;



FIG. 122 is a diagram showing a relationship of Presentable Component in a service including video according to another embodiment of the present invention;



FIG. 123 is a diagram for explanation of App class and attribute of the App class according to another embodiment of the present invention;



FIG. 124 is a diagram showing a protocol applied to features according to an embodiment of the present invention;



FIG. 125 is a diagram showing Message Structure Format for HTTP Request according to an embodiment of the present invention:



FIG. 126 is a diagram showing message structure format for HTTP Response and WebSocket Response according to an embodiment of the present invention;



FIG. 127 is a diagram showing message structure format for WebSocket Subscription according to an embodiment of the present invention;



FIG. 128 is a diagram showing message structure format for WebSocket Subscription Renewal according to an embodiment of the present invention;



FIG. 129 is a diagram showing message structure format for WebSocket Subscription Cancel according to an embodiment of the present invention;



FIG. 130 is a diagram showing a method of transmitting a broadcast signal according to an embodiment of the present invention; and



FIG. 131 illustrates a structure of a broadcast signal transmitting apparatus according to an embodiment of the present invention.





BEST MODE

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention, rather than to show the only embodiments that can be implemented according to the present invention. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without such specific details.


Although the terms used in the present invention are selected from generally known and used terms, some of the terms mentioned in the description of the present invention have been selected by the applicant at his or her discretion, the detailed meanings of which are described in relevant parts of the description herein. Furthermore, it is required that the present invention is understood, not simply by the actual terms used but by the meanings of each term lying within.


The present invention provides apparatuses and methods for transmitting and receiving broadcast signals for future broadcast services. Future broadcast services according to an embodiment of the present invention include a terrestrial broadcast service, a mobile broadcast service, an ultra high definition television (UHDTV) service, etc. The present invention may process broadcast signals for the future broadcast services through non-MIMO (Multiple Input Multiple Output) or MIMO according to one embodiment. A non-MIMO scheme according to an embodiment of the present invention may include a MISO (Multiple Input Single Output) scheme, a SISO (Single Input Single Output) scheme, etc.



FIG. 1 illustrates a receiver protocol stack according to an embodiment of the present invention.


Two schemes may be used in broadcast service delivery through a broadcast network.


In a first scheme, media processing units (MPUs) are transmitted using an MMT protocol (MMTP) based on MPEG media transport (MMT). In a second scheme, dynamic adaptive streaming over HTTP (DASH) segments may be transmitted using real time object delivery over unidirectional transport (ROUTE) based on MPEG DASH.


Non-timed content including NRT media, EPG data, and other files is delivered with ROUTE. Signaling may be delivered over MMTP and/or ROUTE, while bootstrap signaling information is provided by the means of the Service List Table (SLT).


In hybrid service delivery, MPEG DASH over HTTP/TCP/IP is used on the broadband side. Media files in ISO Base Media File Format (BMFF) are used as the delivery, media encapsulation and synchronization format for both broadcast and broadband delivery. Here, hybrid service delivery may refer to a case in which one or more program elements are delivered through a broadband path.


Services are delivered using three functional layers. These are the physical layer, the delivery layer and the service management layer. The physical layer provides the mechanism by which signaling, service announcement and IP packet streams are transported over the broadcast physical layer and/or broadband physical layer. The delivery layer provides object and object flow transport functionality. It is enabled by the MMTP or the ROUTE protocol, operating on a UDP/IP multicast over the broadcast physical layer, and enabled by the HTTP protocol on a TCP/IP unicast over the broadband physical layer. The service management layer enables any type of service, such as linear TV or HTML5 application service, to be carried by the underlying delivery and physical layers.


In this figure, a protocol stack part on a broadcast side may be divided into a part transmitted through the SLT and the MMTP, and a part transmitted through ROUTE.


The SLT may be encapsulated through UDP and IP layers. Here, the SLT will be described below. The MMTP may transmit data formatted in an MPU format defined in MMT, and signaling information according to the MMTP. The data may be encapsulated through the UDP and IP layers. ROUTE may transmit data formatted in a DASH segment form, signaling information, and non-timed data such as NRT data, etc. The data may be encapsulated through the UDP and IP layers. According to a given embodiment, some or all processing according to the UDP and IP layers may be omitted. Here, the illustrated signaling information may be signaling information related to a service.


The part transmitted through the SLT and the MMTP and the part transmitted through ROUTE may be processed in the UDP and IP layers, and then encapsulated again in a data link layer. The link layer will be described below. Broadcast data processed in the link layer may be multicast as a broadcast signal through processes such as encoding/interleaving, etc. in the physical layer.


In this figure, a protocol stack part on a broadband side may be transmitted through HTTP as described above. Data formatted in a DASH segment form, signaling information, NRT information, etc. may be transmitted through HTTP. Here, the illustrated signaling information may be signaling information related to a service. The data may be processed through the TCP layer and the IP layer, and then encapsulated into the link layer. According to a given embodiment, some or all of the TCP, the IP, and the link layer may be omitted. Broadband data processed thereafter may be transmitted by unicast in the broadband through a process for transmission in the physical layer.


Service can be a collection of media components presented to the user in aggregate; components can be of multiple media types; a Service can be either continuous or intermittent; a Service can be Real Time or Non-Real Time; Real Time Service can consist of a sequence of TV programs.



FIG. 2 illustrates a relation between the SLT and SLS according to an embodiment of the present invention.


Service signaling provides service discovery and description information, and comprises two functional components: Bootstrap signaling via the Service List Table (SLT) and the Service Layer Signaling (SLS). These represent the information which is necessary to discover and acquire user services. The SLT enables the receiver to build a basic service list, and bootstrap the discovery of the SLS for each service.


The SLT can enable very rapid acquisition of basic service information. The SLS enables the receiver to discover and access services and their content components. Details of the SLT and SLS will be described below.


As described in the foregoing, the SLT may be transmitted through UDP/IP. In this instance, according to a given embodiment, data corresponding to the SLT may be delivered through the most robust scheme in this transmission.


The SLT may have access information for accessing SLS delivered by the ROUTE protocol. In other words, the SLT may be bootstrapped into SLS according to the ROUTE protocol. The SLS is signaling information positioned in an upper layer of ROUTE in the above-described protocol stack, and may be delivered through ROUTE/UDP/IP. The SLS may be transmitted through one of LCT sessions included in a ROUTE session. It is possible to access a service component corresponding to a desired service using the SLS.


In addition, the SLT may have access information for accessing an MMT signaling component delivered by MMTP. In other words, the SLT may be bootstrapped into SLS according to the MMTP. The SLS may be delivered by an MMTP signaling message defined in MMT. It is possible to access a streaming service component (MPU) corresponding to a desired service using the SLS. As described in the foregoing, in the present invention, an NRT service component is delivered through the ROUTE protocol, and the SLS according to the MMTP may include information for accessing the ROUTE protocol. In broadband delivery, the SLS is carried over HTTP(S)/TCP/IP.



FIG. 3 illustrates an SLT according to an embodiment of the present invention.


First, a description will be given of a relation among respective logical entities of service management, delivery, and a physical layer.


Services may be signaled as being one of two basic types. First type is a linear audio/video or audio-only service that may have an app-based enhancement. Second type is a service whose presentation and composition is controlled by a downloaded application that is executed upon acquisition of the service. The latter can be called an “app-based” service.


The rules regarding presence of ROUTE/LCT sessions and/or MMTP sessions for carrying the content components of a service may be as follows.


For broadcast delivery of a linear service without app-based enhancement, the service's content components can be carried by either (but not both): (1) one or more ROUTE/LCT sessions, or (2) one or more MMTP sessions.


For broadcast delivery of a linear service with app-based enhancement, the service's content components can be carried by: (1) one or more ROUTE/LCT sessions, and (2) zero or more MMTP sessions.


In certain embodiments, use of both MMTP and ROUTE for streaming media components in the same service may not be allowed.


For broadcast delivery of an app-based service, the service's content components can be carried by one or more ROUTE/LCT sessions.


Each ROUTE session comprises one or more LCT sessions which carry as a whole, or in part, the content components that make up the service. In streaming services delivery, an LCT session may carry an individual component of a user service such as an audio, video or closed caption stream. Streaming media is formatted as DASH Segments.


Each MMTP session comprises one or more MMTP packet flows which carry MMT signaling messages or as a whole, or in part, the content component. An MMTP packet flow may carry MMT signaling messages or components formatted as MPUs.


For the delivery of NRT User Services or system metadata, an LCT session carries file-based content items. These content files may consist of continuous (time-based) or discrete (non-time-based) media components of an NRT service, or metadata such as Service Signaling or ESG fragments. Delivery of system metadata such as service signaling or ESG fragments may also be achieved through the signaling message mode of MMTP.


A broadcast stream is the abstraction for an RF channel, which is defined in terms of a carrier frequency centered within a specified bandwidth. It is identified by the pair [geographic area, frequency]. A physical layer pipe (PLP) corresponds to a portion of the RF channel. Each PLP has certain modulation and coding parameters. It is identified by a PLP identifier (PLPID), which is unique within the broadcast stream it belongs to. Here, PLP can be referred to as DP (data pipe).


Each service is identified by two forms of service identifier: a compact form that is used in the SLT and is unique only within the broadcast area; and a globally unique form that is used in the SLS and the ESG. A ROUTE session is identified by a source IP address, destination IP address and destination port number. An LCT session (associated with the service component(s) it carries) is identified by a transport session identifier (TSI) which is unique within the scope of the parent ROUTE session. Properties common to the LCT sessions, and certain properties unique to individual LCT sessions, are given in a ROUTE signaling structure called a service-based transport session instance description (S-TSID), which is part of the service layer signaling. Each LCT session is carried over a single physical layer pipe. According to a given embodiment, one LCT session may be transmitted through a plurality of PLPs. Different LCT sessions of a ROUTE session may or may not be contained in different physical layer pipes. Here, the ROUTE session may be delivered through a plurality of PLPs. The properties described in the S-TSID include the TSI value and PLPID for each LCT session, descriptors for the delivery objects/files, and application layer FEC parameters.


A MMTP session is identified by destination IP address and destination port number. An MMTP packet flow (associated with the service component(s) it carries) is identified by a packet_id which is unique within the scope of the parent MMTP session. Properties common to each MMTP packet flow, and certain properties of MMTP packet flows, are given in the SLT. Properties for each MMTP session are given by MMT signaling messages, which may be carried within the MMTP session. Different MMTP packet flows of a MMTP session may or may not be contained in different physical layer pipes. Here, the MMTP session may be delivered through a plurality of PLPs. The properties described in the MMT signaling messages include the packet_id value and PLPID for each MMTP packet flow. Here, the MMT signaling messages may have a form defined in MMT, or have a deformed form according to embodiments to be described below.


Hereinafter, a description will be given of low level signaling (LLS).


Signaling information which is carried in the payload of IP packets with a well-known address/port dedicated to this function is referred to as low level signaling (LLS). The IP address and the port number may be differently configured depending on embodiments. In one embodiment, LLS can be transported in IP packets with address 224.0.23.60 and destination port 4937/udp. LLS may be positioned in a portion expressed by “SLT” on the above-described protocol stack. However, according to a given embodiment, the LLS may be transmitted through a separate physical channel (dedicated channel) in a signal frame without being subjected to processing of the UDP/IP layer.


UDP/IP packets that deliver LLS data may be formatted in a form referred to as an LLS table. A first byte of each UDP/IP packet that delivers the LLS data may correspond to a start of the LLS table. The maximum length of any LLS table is limited by the largest IP packet that can be delivered from the PHY layer, 65,507 bytes.


The LLS table may include an LLS table ID field that identifies a type of the LLS table, and an LLS table version field that identifies a version of the LLS table. According to a value indicated by the LLS table ID field, the LLS table may include the above-described SLT or a rating region table (RRT). The RRT may have information about content advisory rating.


Hereinafter, the SLT will be described. LLS can be signaling information which supports rapid channel scans and bootstrapping of service acquisition by the receiver, and SLT can be a table of signaling information which is used to build a basic service listing and provide bootstrap discovery of SLS.


The function of the SLT is similar to that of the program association table (PAT) in MPEG-2 Systems, and the fast information channel (FIC) found in ATSC Systems. For a receiver first encountering the broadcast emission, this is the place to start. SLT supports a rapid channel scan which allows a receiver to build a list of all the services it can receive, with their channel name, channel number, etc., and SLT provides bootstrap information that allows a receiver to discover the SLS for each service. For ROUTE/DASH-delivered services, the bootstrap information includes the destination IP address and destination port of the LCT session that carries the SLS. For MMT/MPU-delivered services, the bootstrap information includes the destination IP address and destination port of the MMTP session carrying the SLS.


The SLT supports rapid channel scans and service acquisition by including the following information about each service in the broadcast stream. First, the SLT can include information necessary to allow the presentation of a service list that is meaningful to viewers and that can support initial service selection via channel number or up/down selection. Second, the SLT can include information necessary to locate the service layer signaling for each service listed. That is, the SLT may include access information related to a location at which the SLS is delivered.


The illustrated SLT according to the present embodiment is expressed as an XML document having an SLT root element. According to a given embodiment, the SLT may be expressed in a binary format or an XML document.


The SLT root element of the SLT illustrated in the figure may include @bsid, @ sltSectionVersion, @sltSectionNumber, @totalSltSectionNumbers, @language, @capabilities, InetSigLoc and/or Service. According to a given embodiment, the SLT root element may further include @providerId. According to a given embodiment, the SLT root element may not include @language.


The service element may include @serviceId, @SLTserviceSeqNumber, @protected, @majorChannelNo, @minorChannelNo, @serviceCategory, @shortServiceName, @hidden, @slsProtocolType, BroadcastSignaling, @slsPlpId, @ slsDestinationIpAddress, @ slsDestinationUdpPort, @ slsSourceIpAddress, @ slsMajorProtocolVersion, @SlsMinorProtocolVersion, @serviceLanguage, @broadbandAccessRequired, @capabilities and/or InetSigLoc.


According to a given embodiment, an attribute or an element of the SLT may be added/changed/deleted. Each element included in the SLT may additionally have a separate attribute or element, and some attribute or elements according to the present embodiment may be omitted. Here, a field which is marked with @ may correspond to an attribute, and a field which is not marked with @ may correspond to an element.


@bsid is an identifier of the whole broadcast stream. The value of BSID may be unique on a regional level.


@providerId can be an index of broadcaster that is using part or all of this broadcast stream. This is an optional attribute. When it's not present, it means that this broadcast stream is being used by one broadcaster. @providerId is not illustrated in the figure.


@sltSectionVersion can be a version number of the SLT section. The sltSectionVersion can be incremented by 1 when a change in the information carried within the slt occurs. When it reaches maximum value, it wraps around to 0.


@sltSectionNumber can be the number, counting from 1, of this section of the SLT. In other words, @sltSectionNumber may correspond to a section number of the SLT section. When this field is not used, @sltSectionNumber may be set to a default value of 1.


@totalSltSectionNumbers can be the total number of sections (that is, the section with the highest sltSectionNumber) of the SLT of which this section is part. sltSectionNumber and totalSltSectionNumbers together can be considered to indicate “Part M of N” of one portion of the SLT when it is sent in fragments. In other words, when the SLT is transmitted, transmission through fragmentation may be supported. When this field is not used, @totalSltSectionNumbers may be set to a default value of 1. A case in which this field is not used may correspond to a case in which the SLT is not transmitted by being fragmented.


@language can indicate primary language of the services included in this slt instance. According to a given embodiment, a value of this field may have be a three-character language code defined in the ISO. This field may be omitted.


@capabilities can indicate required capabilities for decoding and meaningfully presenting the content for all the services in this slt instance.


InetSigLoc can provide a URL telling the receiver where it can acquire any requested type of data from external server(s) via broadband. This element may include @urlType as a lower field. According to a value of the @urlType field, a type of a URL provided by InetSigLoc may be indicated. According to a given embodiment, when the @urlType field has a value of 0, InetSigLoc may provide a URL of a signaling server. When the @urlType field has a value of 1, InetSigLoc may provide a URL of an ESG server. When the @urlType field has other values, the field may be reserved for future use.


The service field is an element having information about each service, and may correspond to a service entry. Service element fields corresponding to the number of services indicated by the SLT may be present. Hereinafter, a description will be given of a lower attribute/element of the service field.


@serviceId can be an integer number that uniquely identify this service within the scope of this broadcast area. According to a given embodiment, a scope of @serviceId may be changed. @SLTserviceSeqNumber can be an integer number that indicates the sequence number of the SLT service information with service ID equal to the serviceId attribute above. SLTserviceSeqNumber value can start at 0 for each service and can be incremented by 1 every time any attribute in this service element is changed. If no attribute values are changed compared to the previous Service element with a particular value of ServiceID then SLTserviceSeqNumber would not be incremented. The SLTserviceSeqNumber field wraps back to 0 after reaching the maximum value.


@protected is flag information which may indicate whether one or more components for significant reproduction of the service are in a protected state. When set to “1” (true), that one or more components necessary for meaningful presentation is protected. When set to “0” (false), this flag indicates that no components necessary for meaningful presentation of the service are protected. Default value is false.


@majorChannelNo is an integer number representing the “major” channel number of the service. An example of the field may have a range of 1 to 999.


@minorChannelNo is an integer number representing the “minor” channel number of the service. An example of the field may have a range of 1 to 999.


@serviceCategory can indicate the category of this service. This field may indicate a type that varies depending on embodiments. According to a given embodiment, when this field has values of 1, 2, and 3, the values may correspond to a linear A/V service, a linear audio only service, and an app-based service, respectively. When this field has a value of 0, the value may correspond to a service of an undefined category. When this field has other values except for 1, 2, and 3, the field may be reserved for future use. @shortServiceName can be a short string name of the Service.


@hidden can be boolean value that when present and set to “true” indicates that the service is intended for testing or proprietary use, and is not to be selected by ordinary TV receivers. The default value is “false” when not present.


@slsProtocolType can be an attribute indicating the type of protocol of Service Layer Signaling used by this service. This field may indicate a type that varies depending on embodiments. According to a given embodiment, when this field has values of 1 and 2, protocols of SLS used by respective corresponding services may be ROUTE and MMTP, respectively. When this field has other values except for 0, the field may be reserved for future use. This field may be referred to as @slsProtocol.


BroadcastSignaling and lower attributes/elements thereof may provide information related to broadcast signaling. When the BroadcastSignaling element is not present, the child element InetSigLoc of the parent service element can be present and its attribute urlType includes URL_type 0x00 (URL to signaling server). In this case attribute url supports the query parameter svc=<service_id> where service_id corresponds to the serviceId attribute for the parent service element.


Alternatively when the BroadcastSignaling element is not present, the element InetSigLoc can be present as a child element of the slt root element and the attribute urlType of that InetSigLoc element includes URL_type 0x00 (URL to signaling server). In this case, attribute url for URL_type 0x00 supports the query parameter svc=<service_id> where service_id corresponds to the serviceId attribute for the parent Service element.


@slsPlpId can be a string representing an integer number indicating the PLP ID of the physical layer pipe carrying the SLS for this service.


@slsDestinationIpAddress can be a string containing the dotted-IPv4 destination address of the packets carrying SLS data for this service.


@slsDestinationUdpPort can be a string containing the port number of the packets carrying SLS data for this service. As described in the foregoing, SLS bootstrapping may be performed by destination IP/UDP information.


@slsSourceIpAddress can be a string containing the dotted-IPv4 source address of the packets carrying SLS data for this service.


@slsMajorProtocolVersion can be major version number of the protocol used to deliver the service layer signaling for this service. Default value is 1.


@SlsMinorProtocolVersion can be minor version number of the protocol used to deliver the service layer signaling for this service. Default value is 0.


@serviceLanguage can be a three-character language code indicating the primary language of the service. A value of this field may have a form that varies depending on embodiments.


@broadbandAccessRequired can be a Boolean indicating that broadband access is required for a receiver to make a meaningful presentation of the service. Default value is false. When this field has a value of True, the receiver needs to access a broadband for significant service reproduction, which may correspond to a case of hybrid service delivery.


@capabilities can represent required capabilities for decoding and meaningfully presenting the content for the service with service ID equal to the service Id attribute above.


InetSigLoc can provide a URL for access to signaling or announcement information via broadband, if available. Its data type can be an extension of the any URL data type, adding an @urlType attribute that indicates what the URL gives access to. An @urlType field of this field may indicate the same meaning as that of the @urlType field of InetSigLoc described above. When an InetSigLoc element of attribute URL_type 0x00 is present as an element of the SLT, it can be used to make HTTP requests for signaling metadata. The HTTP POST message body may include a service term. When the InetSigLoc element appears at the section level, the service term is used to indicate the service to which the requested signaling metadata objects apply. If the service term is not present, then the signaling metadata objects for all services in the section are requested. When the InetSigLoc appears at the service level, then no service term is needed to designate the desired service. When an InetSigLoc element of attribute URL_type 0x01 is provided, it can be used to retrieve ESG data via broadband. If the element appears as a child element of the service element, then the URL can be used to retrieve ESG data for that service. If the element appears as a child element of the SLT element, then the URL can be used to retrieve ESG data for all services in that section.


In another example of the SLT, @sltSectionVersion, @sltSectionNumber, @totalSltSectionNumbers and/or @language fields of the SLT may be omitted


In addition, the above-described InetSigLoc field may be replaced by @sltInetSigUri and/or @sltInetEsgUri field. The two fields may include the URI of the signaling server and URI information of the ESG server, respectively. The InetSigLoc field corresponding to a lower field of the SLT and the InetSigLoc field corresponding to a lower field of the service field may be replaced in a similar manner.


The suggested default values may vary depending on embodiments. An illustrated “use” column relates to the respective fields. Here, “1” may indicate that a corresponding field is an essential field, and “0 . . . 1” may indicate that a corresponding field is an optional field.



FIG. 4 illustrates SLS bootstrapping and a service discovery process according to an embodiment of the present invention.


Hereinafter, SLS will be described.


SLS can be signaling which provides information for discovery and acquisition of services and their content components.


For ROUTE/DASH, the SLS for each service describes characteristics of the service, such as a list of its components and where to acquire them, and the receiver capabilities required to make a meaningful presentation of the service. In the ROUTE/DASH system, the SLS includes the user service bundle description (USBD), the S-TSID and the DASH media presentation description (MPD). Here, USBD or user service description (USD) is one of SLS XML fragments, and may function as a signaling herb that describes specific descriptive information. USBD/USD may be extended beyond 3GPP MBMS. Details of USBD/USD will be described below.


The service signaling focuses on basic attributes of the service itself, especially those attributes needed to acquire the service. Properties of the service and programming that are intended for viewers appear as service announcement, or ESG data.


Having separate Service Signaling for each service permits a receiver to acquire the appropriate SLS for a service of interest without the need to parse the entire SLS carried within a broadcast stream.


For optional broadband delivery of Service Signaling, the SLT can include HTTP URLs where the Service Signaling files can be obtained, as described above.


LLS is used for bootstrapping SLS acquisition, and subsequently, the SLS is used to acquire service components delivered on either ROUTE sessions or MMTP sessions. The described figure illustrates the following signaling sequences. Receiver starts acquiring the SLT described above. Each service identified by service_id delivered over ROUTE sessions provides SLS bootstrapping information: PLPID(#1), source IP address (sIP1), destination IP address (dIP1), and destination port number (dPort1). Each service identified by service_id delivered over MMTP sessions provides SLS bootstrapping information: PLPID(#2), destination IP address (dIP2), and destination port number (dPort2).


For streaming services delivery using ROUTE, the receiver can acquire SLS fragments carried over the IP/UDP/LCT session and PLP; whereas for streaming services delivery using MMTP, the receiver can acquire SLS fragments carried over an MMTP session and PLP. For service delivery using ROUTE, these SLS fragments include USBD/USD fragments, S-TSID fragments, and MPD fragments. They are relevant to one service. USBD/USD fragments describe service layer properties and provide URI references to S-TSID fragments and URI references to MPD fragments. In other words, the USBD/USD may refer to S-TSID and MPD. For service delivery using MMTP, the USBD references the MMT signaling's MPT message, the MP Table of which provides identification of package ID and location information for assets belonging to the service. Here, an asset is a multimedia data entity, and may refer to a data entity which is combined into one unique ID and is used to generate one multimedia presentation. The asset may correspond to a service component included in one service. The MPT message is a message having the MP table of MMT. Here, the MP table may be an MMT package table having information about content and an MMT asset. Details may be similar to a definition in MMT. Here, media presentation may correspond to a collection of data that establishes bounded/unbounded presentation of media content.


The S-TSID fragment provides component acquisition information associated with one service and mapping between DASH Representations found in the MPD and in the TSI corresponding to the component of the service. The S-TSID can provide component acquisition information in the form of a TSI and the associated DASH representation identifier, and PLPID carrying DASH segments associated with the DASH representation. By the PLPID and TSI values, the receiver collects the audio/video components from the service and begins buffering DASH media segments then applies the appropriate decoding processes.


For USBD listing service components delivered on MMTP sessions, as illustrated by “Service #2” in the described figure, the receiver also acquires an MPT message with matching MMT_package_id to complete the SLS. An MPF message provides the full list of service components comprising a service and the acquisition information for each component. Component acquisition information includes MMTP session information, the PLPID carrying the session and the packet_id within that session.


According to a given embodiment, for example, in ROUTE, two or more S-TSID fragments may be used. Each fragment may provide access information related to LCT sessions delivering content of each service.


In ROUTE, S-TSID, USBD/USD, MPD, or an LCT session delivering S-TSID, USBD/USD or MPD may be referred to as a service signaling channel. In MMTP, USBD/UD, an MMT signaling message, or a packet flow delivering the MMTP or USBD/UD may be referred to as a service signaling channel.


Unlike the illustrated example, one ROUTE or MMTP session may be delivered through a plurality of PLPs. In other words, one service may be delivered through one or more PLPs. As described in the foregoing, one LCT session may be delivered through one PLP. Unlike the figure, according to a given embodiment, components included in one service may be delivered through different ROUTE sessions. In addition, according to a given embodiment, components included in one service may be delivered through different MMTP sessions. According to a given embodiment, components included in one service may be delivered separately through a ROUTE session and an MMTP session. Although not illustrated, components included in one service may be delivered via broadband (hybrid delivery).



FIG. 5 illustrates a USBD fragment for ROUTE/DASH according to an embodiment of the present invention.


Hereinafter, a description will be given of SLS in delivery based on ROUTE.


SLS provides detailed technical information to the receiver to enable the discovery and access of services and their content components. It can include a set of XML-encoded metadata fragments carried over a dedicated LCT session. That LCT session can be acquired using the bootstrap information contained in the SLT as described above. The SLS is defined on a per-service level, and it describes the characteristics and access information of the service, such as a list of its content components and how to acquire them, and the receiver capabilities required to make a meaningful presentation of the service. In the ROUTE/DASH system, for linear services delivery, the SLS consists of the following metadata fragments: USBD, S-TSID and the DASH MPD. The SLS fragments can be delivered on a dedicated LCT transport session with TSI=0. According to a given embodiment, a TSI of a particular LCT session (dedicated LCT session) in which an SLS fragment is delivered may have a different value. According to a given embodiment, an LCT session in which an SLS fragment is delivered may be signaled using the SLT or another scheme.


ROUTE/DASH SLS can include the user service bundle description (USBD) and service-based transport session instance description (S-TSID) metadata fragments. These service signaling fragments are applicable to both linear and application-based services. The USBD fragment contains service identification, device capabilities information, references to other SLS fragments required to access the service and constituent media components, and metadata to enable the receiver to determine the transport mode (broadcast and/or broadband) of service components. The S-TSID fragment, referenced by the USBD, provides transport session descriptions for the one or more ROUTE/LCT sessions in which the media content components of a service are delivered, and descriptions of the delivery objects carried in those LCT sessions. The USBD and S-TSID will be described below.


In streaming content signaling in ROUTE-based delivery, a streaming content signaling component of SLS corresponds to an MPD fragment. The MPD is typically associated with linear services for the delivery of DASH Segments as streaming content. The MPD provides the resource identifiers for individual media components of the linear/streaming service in the form of Segment URLs, and the context of the identified resources within the Media Presentation. Details of the MPD will be described below.


In app-based enhancement signaling in ROUTE-based delivery, app-based enhancement signaling pertains to the delivery of app-based enhancement components, such as an application logic file, locally-cached media files, network content items, or a notification stream. An application can also retrieve locally-cached data over a broadband connection when available.


Hereinafter, a description will be given of details of USBD/USD illustrated in the figure.


The top level or entry point SLS fragment is the USBD fragment. An illustrated USBD fragment is an example of the present invention, basic fields of the USBD fragment not illustrated in the figure may be additionally provided according to a given embodiment. As described in the foregoing, the illustrated USBD fragment has an extended form, and may have fields added to a basic configuration.


The illustrated USBD may have a bundleDescription root element. The bundleDescription root element may have a userServiceDescription element. The userServiceDescription element may correspond to an instance for one service.


The userServiceDescription element may include @serviceId, @atsc:serviceId, @atsc:serviceStatus, @atsc:fullMPDUri, @atsc:sTSIDUri, name, serviceLanguage, atsc:capabilityCode and/or deliveryMethod.


@serviceId can be a globally unique URI that identifies a service, unique within the scope of the BSID. This parameter can be used to link to ESG data (Service@globalServiceID).


@atsc:serviceId is a reference to corresponding service entry in LLS(SLT). The value of this attribute is the same value of serviceId assigned to the entry.


@atsc:serviceStatus can specify the status of this service. The value indicates whether this service is active or inactive. When set to “1” (true), that indicates service is active. When this field is not used, @atsc:serviceStatus may be set to a default value of 1.


@atsc:fullMPDUri can reference an MPD fragment which contains descriptions for contents components of the service delivered over broadcast and optionally, also over broadband.


@atsc:sTSIDUri can reference the S-TSID fragment which provides access related parameters to the Transport sessions carrying contents of this service.


name can indicate name of the service as given by the lang attribute. name element can include lang attribute, which indicating language of the service name. The language can be specified according to XML data types.


serviceLanguage can represent available languages of the service. The language can be specified according to XML data types.


atsc:capabilityCode can specify the capabilities required in the receiver to be able to create a meaningful presentation of the content of this service. According to a given embodiment, this field may specify a predefined capability group. Here, the capability group may be a group of capability attribute values for significant presentation. This field may be omitted according to a given embodiment.


deliveryMethod can be a container of transport related information pertaining to the contents of the service over broadcast and (optionally) broadband modes of access. Referring to data included in the service, when the number of the data is N, delivery schemes for respective data may be described by this element. The deliveryMethod may include an r12:broadcastAppService element and an r12:unicastAppService element. Each lower element may include a basePattern element as a lower element.


r12:broadcastAppService can be a DASH Representation delivered over broadcast, in multiplexed or non-multiplexed form, containing the corresponding media component(s) belonging to the service, across all Periods of the affiliated media presentation. In other words, each of the fields may indicate DASH representation delivered through the broadcast network.


r12:unicastAppService can be a DASH Representation delivered over broadband, in multiplexed or non-multiplexed form, containing the constituent media content component(s) belonging to the service, across all periods of the affiliated media presentation. In other words, each of the fields may indicate DASH representation delivered via broadband.


basePattern can be a character pattern for use by the receiver to match against any portion of the segment URL used by the DASH client to request media segments of a parent representation under its containing period. A match implies that the corresponding requested media segment is carried over broadcast transport. In a URL address for receiving DASH representation expressed by each of the r12:broadcastAppService element and the r12:unicastAppService element, a part of the URL, etc. may have a particular pattern. The pattern may be described by this field. Some data may be distinguished using this information. The proposed default values may vary depending on embodiments. The “use” column illustrated in the figure relates to each field. Here, M may denote an essential field, O may denote an optional field, OD may denote an optional field having a default value, and CM may denote a conditional essential field. 0 . . . 1 to 0 . . . N may indicate the number of available fields.



FIG. 6 illustrates an S-TSID fragment for ROUTE/DASH according to an embodiment of the present invention.


Hereinafter, a description will be given of the S-TSID illustrated in the figure in detail.


S-TSID can be an SLS XML fragment which provides the overall session description information for transport session(s) which carry the content components of a service. The S-TSID is the SLS metadata fragment that contains the overall transport session description information for the zero or more ROUTE sessions and constituent LCT sessions in which the media content components of a service are delivered. The S-TSID also includes file metadata for the delivery object or object flow carried in the LCT sessions of the service, as well as additional information on the payload formats and content components carried in those LCT sessions.


Each instance of the S-TSID fragment is referenced in the USBD fragment by the @atsc:sTSIDUri attribute of the userServiceDescription element. The illustrated S-TSID according to the present embodiment is expressed as an XML document. According to a given embodiment, the S-TSID may be expressed in a binary format or as an XML document.


The illustrated S-TSID may have an S-TSID root element. The S-TSID root element may include @serviceId and/or RS.


@serviceID can be a reference corresponding service element in the USD. The value of this attribute can reference a service with a corresponding value of service_id.


The RS element may have information about a ROUTE session for delivering the service data. Service data or service components may be delivered through a plurality of ROUTE sessions, and thus the number of RS elements may be 1 to N.


The RS element may include @bsid, @sIpAddr, @dIpAddr, @dport, @PLPID and/or LS.


@bsid can be an identifier of the broadcast stream within which the content component(s) of the broadcastAppService are carried. When this attribute is absent, the default broadcast stream is the one whose PLPs carry SLS fragments for this service. Its value can be identical to that of the broadcast_stream_id in the SLT.


@sIpAddr can indicate source IP address. Here, the source IP address may be a source IP address of a ROUTE session for delivering a service component included in the service. As described in the foregoing, service components of one service may be delivered through a plurality of ROUTE sessions. Thus, the service components may be transmitted using another ROUTE session other than the ROUTE session for delivering the S-TSID. Therefore, this field may be used to indicate the source IP address of the ROUTE session. A default value of this field may be a source IP address of a current ROUTE session. When a service component is delivered through another ROUTE session, and thus the ROUTE session needs to be indicated, a value of this field may be a value of a source IP address of the ROUTE session. In this case, this field may correspond to M, that is, an essential field.


@dIpAddr can indicate destination IP address. Here, a destination IP address may be a destination IP address of a ROUTE session that delivers a service component included in a service. For a similar case to the above description of @sIpAddr, this field may indicate a destination IP address of a ROUTE session that delivers a service component. A default value of this field may be a destination IP address of a current ROUTE session. When a service component is delivered through another ROUTE session, and thus the ROUTE session needs to be indicated, a value of this field may be a value of a destination IP address of the ROUTE session. In this case, this field may correspond to M, that is, an essential field.


@dport can indicate destination port. Here, a destination port may be a destination port of a ROUTE session that delivers a service component included in a service. For a similar case to the above description of @sIpAddr, this field may indicate a destination port of a ROUTE session that delivers a service component. A default value of this field may be a destination port number of a current ROUTE session. When a service component is delivered through another ROUTE session, and thus the ROUTE session needs to be indicated, a value of this field may be a destination port number value of the ROUTE session. In this case, this field may correspond to M, that is, an essential field.


@PLPID may be an ID of a PLP for a ROUTE session expressed by an RS. A default value may be an ID of a PLP of an LCT session including a current S-TSID. According to a given embodiment, this field may have an ID value of a PLP for an LCT session for delivering an S-TSID in the ROUTE session, and may have ID values of all PLPs for the ROUTE session.


An LS element may have information about an LCT session for delivering a service data. Service data or service components may be delivered through a plurality of LCT sessions, and thus the number of LS elements may be 1 to N.


The LS element may include @tsi, @PLPID, @bw, @startTime, @endTime, SrcFlow and/or RprFlow.


@tsi may indicate a TSI value of an LCT session for delivering a service component of a service.


@PLPID may have ID information of a PLP for the LCT session. This value may be overwritten on a basic ROUTE session value.


@bw may indicate a maximum bandwidth value. @startTime may indicate a start time of the LCT session. @endTime may indicate an end time of the LCT session. A SrcFlow element may describe a source flow of ROUTE. A RprFlow element may describe a repair flow of ROUTE.


The proposed default values may be varied according to an embodiment. The “use” column illustrated in the figure relates to each field. Here, M may denote an essential field, O may denote an optional field, OD may denote an optional field having a default value, and CM may denote a conditional essential field. 0 . . . 1 to 0 . . . N may indicate the number of available fields.


Hereinafter, a description will be given of MPD for ROUTE/DASH.


The MPD is an SLS metadata fragment which contains a formalized description of a DASH Media Presentation, corresponding to a linear service of a given duration defined by the broadcaster (for example a single TV program, or the set of contiguous linear TV programs over a period of time). The contents of the MPD provide the resource identifiers for Segments and the context for the identified resources within the Media Presentation. The data structure and semantics of the MPD fragment can be according to the MPD defined by MPEG DASH.


One or more of the DASH Representations conveyed in the MPD can be carried over broadcast. The MPD may describe additional Representations delivered over broadband, e.g. in the case of a hybrid service, or to support service continuity in handoff from broadcast to broadcast due to broadcast signal degradation (e.g. driving through a tunnel).



FIG. 7 illustrates a USBD/USD fragment for MMT according to an embodiment of the present invention.


MMT SLS for linear services comprises the USBD fragment and the MMT Package (MP) table. The MP table is as described above. The USBD fragment contains service identification, device capabilities information, references to other SLS information required to access the service and constituent media components, and the metadata to enable the receiver to determine the transport mode (broadcast and/or broadband) of the service components. The MP table for MPU components, referenced by the USBD, provides transport session descriptions for the MMTP sessions in which the media content components of a service are delivered and the descriptions of the Assets carried in those MMTP sessions.


The streaming content signaling component of the SLS for MPU components corresponds to the MP table defined in MMT. The MP table provides a list of MMT assets where each asset corresponds to a single service component and the description of the location information for this component.


USBD fragments may also contain references to the S-TSID and the MPD as described above, for service components delivered by the ROUTE protocol and the broadband, respectively. According to a given embodiment, in delivery through MMT, a service component delivered through the ROUTE protocol is NRT data, etc. Thus, in this case, MPD may be unnecessary. In addition, in delivery through MMT, information about an LCT session for delivering a service component, which is delivered via broadband, is unnecessary, and thus an S-TSID may be unnecessary. Here, an MMT package may be a logical collection of media data delivered using MMT. Here, an MMTP packet may refer to a formatted unit of media data delivered using MMT. An MPU may refer to a generic container of independently decodable timed/non-timed data. Here, data in the MPU is media codec agnostic.


Hereinafter, a description will be given of details of the USBD/USD illustrated in the figure.


The illustrated USBD fragment is an example of the present invention, and basic fields of the USBD fragment may be additionally provided according to an embodiment. As described in the foregoing, the illustrated USBD fragment has an extended form, and may have fields added to a basic structure.


The illustrated USBD according to an embodiment of the present invention is expressed as an XML document. According to a given embodiment, the USBD may be expressed in a binary format or as an XML document.


The illustrated USBD may have a bundleDescription root element. The bundleDescription root element may have a userServiceDescription element. The userServiceDescription element may be an instance for one service.


The userServiceDescription element may include @serviceId, @atsc:serviceId, name, serviceLanguage, atsc:capabilityCode, atsc:Channel, atsc:mpuComponent, atsc:routeComponent, atsc:broadbandComponent and/or atsc:ComponentInfo.


Here, @serviceId, @atsc:serviceId, name, serviceLanguage, and atsc:capabilityCode may be as described above. The lang field below the name field may be as described above. atsc:capabilityCode may be omitted according to a given embodiment.


The userServiceDescription element may further include an atsc:contentAdvisoryRating element according to an embodiment. This element may be an optional element. atsc:contentAdvisoryRating can specify the content advisory rating. This field is not illustrated in the figure.


atsc:Channel may have information about a channel of a service. The atsc:Channel element may include @atsc:majorChannelNo, @atsc:minorChannelNo, @atsc:serviceLang, @atsc:serviceGenre, @atsc:serviceIcon and/or atsc:ServiceDescription. @atsc:majorChannelNo, @atsc:minorChannelNo, and @atsc:serviceLang may be omitted according to a given embodiment.


@atsc:majorChannelNo is an attribute that indicates the major channel number of the service.


@atsc:minorChannelNo is an attribute that indicates the minor channel number of the service.


@atsc:serviceLang is an attribute that indicates the primary language used in the service.


@atsc:serviceGenre is an attribute that indicates primary genre of the service.


@atsc:serviceIcon is an attribute that indicates the Uniform Resource Locator (URL) for the icon used to represent this service.


atsc:ServiceDescription includes service description, possibly in multiple languages. atsc:ServiceDescription includes can include @atsc:serviceDescrText and/or @atsc:serviceDescrLang.


@atsc:serviceDescrText is an attribute that indicates description of the service.


@atsc:serviceDescrLang is an attribute that indicates the language of the serviceDescrText attribute above.


atsc:mpuComponent may have information about a content component of a service delivered in a form of an MPU. atsc:mpuComponent may include @atsc:mmtPackageId and/or @atsc:nextMmtPackageId.


@atsc:mmtPackageId can reference a MMT Package for content components of the service delivered as MPUs.


@atsc:nextMmtPackageId can reference a MMT Package to be used after the one referenced by @atsc:mmtPackageId in time for content components of the service delivered as MPUs.


atsc:routeComponent may have information about a content component of a service delivered through ROUTE. atsc:routeComponent may include @atsc:sTSIDUri, @sTSIDPlpId, @ sTSIDDestinationIpAddress, @sTSIDDestinationUdpPort, @sTSIDSourceIpAddress, @sTSIDMajorProtocolVersion and/or @sTSIDMinorProtocolVersion.


@atsc:sTSIDUri can be a reference to the S-TSID fragment which provides access related parameters to the Transport sessions carrying contents of this service. This field may be the same as a URI for referring to an S-TSID in USBD for ROUTE described above. As described in the foregoing, in service delivery by the MMTP, service components, which are delivered through NRT, etc., may be delivered by ROUTE. This field may be used to refer to the S-TSID therefor.


@sTSIDPlpId can be a string representing an integer number indicating the PLP ID of the physical layer pipe carrying the S-TSID for this service. (default: current physical layer pipe).


@sTSIDDestinationIpAddress can be a string containing the dotted-IPv4 destination address of the packets carrying S-TSID for this service. (default: current MMTP session's source IP address)


@sTSIDDestinationUdpPort can be a string containing the port number of the packets carrying S-TSID for this service.


@sTSIDSourceIpAddress can be a string containing the dotted-IPv4 source address of the packets carrying S-TSID for this service.


@sTSIDMajorProtocolVersion can indicate major version number of the protocol used to deliver the S-TSID for this service. Default value is 1.


@sTSIDMinorProtocolVersion can indicate minor version number of the protocol used to deliver the S-TSID for this service. Default value is 0.


atsc:broadbandComponent may have information about a content component of a service delivered via broadband. In other words, atsc:broadbandComponent may be a field on the assumption of hybrid delivery. atsc:broadbandComponent may further include @atsc:fullfMPDUri.


@atsc:fullfMPDUri can be a reference to an MPD fragment which contains descriptions for contents components of the service delivered over broadband.


An atsc:ComponentInfo field may have information about an available component of a service. The atsc:ComponenInfo field may have information about a type, a role, a name, etc. of each component. The number of atsc:ComponenInfo fields may correspond to the number (N) of respective components. The atsc:ComponentInfo field may include @atsc:componentType, @atsc:componentRole, @atsc:componentProtectedFlag, @atsc:componentId and/or @atsc:componentName.


@atsc:componentType is an attribute that indicates the type of this component. Value of 0 indicates an audio component. Value of 1 indicates a video component. Value of 2 indicated a closed caption component. Value of 3 indicates an application component. Values 4 to 7 are reserved. A meaning of a value of this field may be differently set depending on embodiments.


@atsc:componentRole is an attribute that indicates the role or kind of this component.


For audio (when componentType attribute above is equal to 0): values of componentRole attribute are as follows: 0=Complete main, 1=Music and Effects, 2=Dialog, 3=Commentary, 4=Visually Impaired, 5=Hearing Impaired, 6=Voice-Over, 7-254=reserved, 255=unknown.


For video (when componentType attribute above is equal to 1) values of componentRole attribute are as follows: 0=Primary video, 1=Alternative camera view, 2=Other alternative video component, 3=Sign language inset, 4=Follow subject video, 5=3D video left view, 6=3D video right view, 7=3D video depth information, 8=Part of video array <x,y> of <n,m>, 9=Follow-Subject metadata, 10-254=reserved, 255=unknown.


For Closed Caption component (when componentType attribute above is equal to 2) values of componentRole attribute are as follows: 0=Normal, 1=Easy reader, 2-254=reserved, 255=unknown.


When componentType attribute above is between 3 to 7, inclusive, the componentRole can be equal to 255. A meaning of a value of this field may be differently set depending on embodiments.


@atsc:componentProtectedFlag is an attribute that indicates if this component is protected (e.g. encrypted). When this flag is set to a value of 1 this component is protected (e.g. encrypted). When this flag is set to a value of 0 this component is not protected (e.g. encrypted). When not present the value of componentProtectedFlag attribute is inferred to be equal to 0. A meaning of a value of this field may be differently set depending on embodiments.


@atsc:componentId is an attribute that indicates the identifier of this component. The value of this attribute can be the same as the asset_id in the MP table corresponding to this component.


@atsc:componentName is an attribute that indicates the human readable name of this component.


The proposed default values may vary depending on embodiments. The “use” column illustrated in the figure relates to each field. Here, M may denote an essential field, O may denote an optional field, OD may denote an optional field having a default value, and CM may denote a conditional essential field. 0 . . . 1 to 0 . . . N may indicate the number of available fields.


Hereinafter, a description will be given of MPD for MMT.


The Media Presentation Description is an SLS metadata fragment corresponding to a linear service of a given duration defined by the broadcaster (for example a single TV program, or the set of contiguous linear TV programs over a period of time). The contents of the MPD provide the resource identifiers for segments and the context for the identified resources within the media presentation. The data structure and semantics of the MPD can be according to the MPD defined by MPEG DASH.


In the present embodiment, an MPD delivered by an MMTP session describes Representations delivered over broadband, e.g. in the case of a hybrid service, or to support service continuity in handoff from broadcast to broadband due to broadcast signal degradation (e.g. driving under a mountain or through a tunnel).


Hereinafter, a description will be given of an MMT signaling message for MMT.


When MMTP sessions are used to carry a streaming service, MMT signaling messages defined by MMT are delivered by MMTP packets according to signaling message mode defined by MMT. The value of the packet_id field of MMTP packets carrying service layer signaling is set to ‘00’ except for MMTP packets carrying MMT signaling messages specific to an asset, which can be set to the same packet_id value as the MMTP packets carrying the asset. Identifiers referencing the appropriate package for each service are signaled by the USBD fragment as described above. MMT Package Table (MPT) messages with matching MMT_package_id can be delivered on the MMTP session signaled in the SLT. Each MMTP session carries MMT signaling messages specific to its session or each asset delivered by the MMTP session.


In other words, it is possible to access USBD of the MMTP session by specifying an IP destination address/port number, etc. of a packet having the SLS for a particular service in the SLT. As described in the foregoing, a packet ID of an MMTP packet carrying the SLS may be designated as a particular value such as 00, etc. It is possible to access an MPT message having a matched packet ID using the above-described package IP information of USBD. As described below, the MPT message may be used to access each service component/asset.


The following MMTP messages can be delivered by the MMTP session signaled in the SLT.


MMT Package Table (MPT) message: This message carries an MP (MMT Package) table which contains the list of all Assets and their location information as defined by MMT. If an Asset is delivered by a PLP different from the current PLP delivering the MP table, the identifier of the PLP carrying the asset can be provided in the MP table using physical layer pipe identifier descriptor. The physical layer pipe identifier descriptor will be described below.


MMT ATSC3 (MA3) message mmt_atsc3_message( ): This message carries system metadata specific for services including service layer signaling as described above. mmt_atsc3_message( ) will be described below.


The following MMTP messages can be delivered by the MMTP session signaled in the SLT, if required.


Media Presentation Information (MPI) message: This message carries an MPI table which contains the whole document or a subset of a document of presentation information. An MP table associated with the MPI table also can be delivered by this message.


Clock Relation Information (CRI) message: This message carries a CRI table which contains clock related information for the mapping between the NTP timestamp and the MPEG-2 STC. According to a given embodiment, the CRI message may not be delivered through the MMTP session.


The following MMTP messages can be delivered by each MMTP session carrying streaming content.


Hypothetical Receiver Buffer Model message: This message carries information required by the receiver to manage its buffer.


Hypothetical Receiver Buffer Model Removal message: This message carries information required by the receiver to manage its MMT de-capsulation buffer.


Hereinafter, a description will be given of mmt_atsc3_message( ) corresponding to one of MMT signaling messages. An MMT Signaling message mmt_atsc3_message( ) is defined to deliver information specific to services according to the present invention described above. The signaling message may include message ID, version, and/or length fields corresponding to basic fields of the MMT signaling message. A payload of the signaling message may include service ID information, content type information, content version information, content compression information and/or URI information. The content type information may indicate a type of data included in the payload of the signaling message. The content version information may indicate a version of data included in the payload, and the content compression information may indicate a type of compression applied to the data. The URI information may have URI information related to content delivered by the message.


Hereinafter, a description will be given of the physical layer pipe identifier descriptor.


The physical layer pipe identifier descriptor is a descriptor that can be used as one of descriptors of the MP table described above. The physical layer pipe identifier descriptor provides information about the PLP carrying an asset. If an asset is delivered by a PLP different from the current PLP delivering the MP table, the physical layer pipe identifier descriptor can be used as an asset descriptor in the associated MP table to identify the PLP carrying the asset. The physical layer pipe identifier descriptor may further include BSID information in addition to PLP ID information. The BSID may be an ID of a broadcast stream that delivers an MMTP packet for an asset described by the descriptor.



FIG. 8 illustrates a link layer protocol architecture according to an embodiment of the present invention.


Hereinafter, a link layer will be described.


The link layer is the layer between the physical layer and the network layer, and transports the data from the network layer to the physical layer at the sending side and transports the data from the physical layer to the network layer at the receiving side. The purpose of the link layer includes abstracting all input packet types into a single format for processing by the physical layer, ensuring flexibility and future extensibility for as yet undefined input types. In addition, processing within the link layer ensures that the input data can be transmitted in an efficient manner, for example by providing options to compress redundant information in the headers of input packets. The operations of encapsulation, compression and so on are referred to as the link layer protocol and packets created using this protocol are called link layer packets. The link layer may perform functions such as packet encapsulation, overhead reduction and/or signaling transmission, etc.


Hereinafter, packet encapsulation will be described. Link layer protocol allows encapsulation of any type of packet, including ones such as IP packets and MPEG-2 TS. Using link layer protocol, the physical layer need only process one single packet format, independent of the network layer protocol type (here we consider MPEG-2 TS packet as a kind of network layer packet.) Each network layer packet or input packet is transformed into the payload of a generic link layer packet. Additionally, concatenation and segmentation can be performed in order to use the physical layer resources efficiently when the input packet sizes are particularly small or large.


As described in the foregoing, segmentation may be used in packet encapsulation. When the network layer packet is too large to process easily in the physical layer, the network layer packet is divided into two or more segments. The link layer packet header includes protocol fields to perform segmentation on the sending side and reassembly on the receiving side. When the network layer packet is segmented, each segment can be encapsulated to link layer packet in the same order as original position in the network layer packet. Also each link layer packet which includes a segment of network layer packet can be transported to PHY layer consequently.


As described in the foregoing, concatenation may be used in packet encapsulation. When the network layer packet is small enough for the payload of a link layer packet to include several network layer packets, the link layer packet header includes protocol fields to perform concatenation. The concatenation is combining of multiple small sized network layer packets into one payload. When the network layer packets are concatenated, each network layer packet can be concatenated to payload of link layer packet in the same order as original input order. Also each packet which constructs a payload of link layer packet can be whole packet, not a segment of packet.


Hereinafter, overhead reduction will be described. Use of the link layer protocol can result in significant reduction in overhead for transport of data on the physical layer. The link layer protocol according to the present invention may provide IP overhead reduction and/or MPEG-2 TS overhead reduction. In IP overhead reduction, IP packets have a fixed header format, however some of the information which is needed in a communication environment may be redundant in a broadcast environment. Link layer protocol provides mechanisms to reduce the broadcast overhead by compressing headers of IP packets. In MPEG-2 TS overhead reduction, link layer protocol provides sync byte removal, null packet deletion and/or common header removal (compression). First, sync byte removal provides an overhead reduction of one byte per TS packet, secondly a null packet deletion mechanism removes the 188 byte null TS packets in a manner that they can be re-inserted at the receiver and finally a common header removal mechanism.


For signaling transmission, in the link layer protocol, a particular format for the signaling packet may be provided for link layer signaling, which will be described below.


In the illustrated link layer protocol architecture according to an embodiment of the present invention, link layer protocol takes as input network layer packets such as IPv4, MPEG-2 TS and so on as input packets. Future extension indicates other packet types and protocol which is also possible to be input in link layer. Link layer protocol also specifies the format and signaling for any link layer signaling, including information about mapping to specific channel to the physical layer. Figure also shows how ALP incorporates mechanisms to improve the efficiency of transmission, via various header compression and deletion algorithms. In addition, the link layer protocol may basically encapsulate input packets.



FIG. 9 illustrates a structure of a base header of a link layer packet according to an embodiment of the present invention. Hereinafter, the structure of the header will be described.


A link layer packet can include a header followed by the data payload. The header of a link layer packet can include a base header, and may include an additional header depending on the control fields of the base header. The presence of an optional header is indicated from flag fields of the additional header. According to a given embodiment, a field indicating the presence of an additional header and an optional header may be positioned in the base header.


Hereinafter, the structure of the base header will be described. The base header for link layer packet encapsulation has a hierarchical structure. The base header can be two bytes in length and is the minimum length of the link layer packet header.


The illustrated base header according to the present embodiment may include a Packet_Type field, a PC field and/or a length field. According to a given embodiment, the base header may further include an HM field or an S/C field.


Packet_Type field can be a 3-bit field that indicates the original protocol or packet type of the input data before encapsulation into a link layer packet. An IPv4 packet, a compressed IP packet, a link layer signaling packet, and other types of packets may have the base header structure and may be encapsulated. However, according to a given embodiment, the MPEG-2 TS packet may have a different particular structure, and may be encapsulated. When the value of Packet_Type is “000”, “001” “100” or “111”, that is the original data type of an ALP packet is one of an IPv4 packet, a compressed IP packet, link layer signaling or extension packet. When the MPEG-2 TS packet is encapsulated, the value of Packet_Type can be “010”. Other values of the Packet_Type field may be reserved for future use.


Payload_Configuration (PC) field can be a 1-bit field that indicates the configuration of the payload. A value of 0 can indicate that the link layer packet carries a single, whole input packet and the following field is the Header_Mode field. A value of 1 can indicate that the link layer packet carries more than one input packet (concatenation) or a part of a large input packet (segmentation) and the following field is the Segmentation_Concatenation field.


Header_Mode (HM) field can be a 1-bit field, when set to 0, that can indicate there is no additional header, and that the length of the payload of the link layer packet is less than 2048 bytes. This value may be varied depending on embodiments. A value of 1 can indicate that an additional header for single packet defined below is present following the Length field. In this case, the length of the payload is larger than 2047 bytes and/or optional features can be used (sub stream identification, header extension, etc.). This value may be varied depending on embodiments. This field can be present only when Payload_Configuration field of the link layer packet has a value of 0.


Segmentation_Concatenation (S/C) field can be a 1-bit field, when set to 0, that can indicate that the payload carries a segment of an input packet and an additional header for segmentation defined below is present following the Length field. A value of 1 can indicate that the payload carries more than one complete input packet and an additional header for concatenation defined below is present following the Length field. This field can be present only when the value of Payload_Configuration field of the ALP packet is 1.


Length field can be a 11-bit field that indicates the 11 least significant bits (LSBs) of the length in bytes of payload carried by the link layer packet. When there is a Length_MSB field in the following additional header, the length field is concatenated with the Length_MSB field, and is the LSB to provide the actual total length of the payload. The number of bits of the length field may be changed to another value rather than 11 bits.


Following types of packet configuration are thus possible: a single packet without any additional header, a single packet with an additional header, a segmented packet and a concatenated packet. According to a given embodiment, more packet configurations may be made through a combination of each additional header, an optional header, an additional header for signaling information to be described below, and an additional header for time extension.



FIG. 10 illustrates a structure of an additional header of a link layer packet according to an embodiment of the present invention.


Various types of additional headers may be present. Hereinafter, a description will be given of an additional header for a single packet.


This additional header for single packet can be present when Header_Mode (HM)=“1”. The Header_Mode (HM) can be set to 1 when the length of the payload of the link layer packet is larger than 2047 bytes or when the optional fields are used. The additional header for single packet is shown in Figure (tsib10010).


Length_MSB field can be a 5-bit field that can indicate the most significant bits (MSBs) of the total payload length in bytes in the current link layer packet, and is concatenated with the Length field containing the 11 least significant bits (LSBs) to obtain the total payload length. The maximum length of the payload that can be signaled is therefore 65535 bytes. The number of bits of the length field may be changed to another value rather than 11 bits. In addition, the number of bits of the Length_MSB field may be changed, and thus a maximum expressible payload length may be changed. According to a given embodiment, each length field may indicate a length of a whole link layer packet rather than a payload.


SIF (Sub stream Identifier Flag) field can be a 1-bit field that can indicate whether the sub stream ID (SID) is present after the HEF field or not. When there is no SID in this link layer packet, SIF field can be set to 0. When there is a SID after HEF field in the link layer packet, SIF can be set to 1. The detail of SID is described below.


HEF (Header Extension Flag) field can be a 1-bit field that can indicate, when set to 1 additional header is present for future extension. A value of 0 can indicate that this extension header is not present.


Hereinafter, a description will be given of an additional header when segmentation is used.


This additional header (tsib10020) can be present when Segmentation_Concatenation (S/C)=“0”. Segment_Sequence_Number can be a 5-bit unsigned integer that can indicate the order of the corresponding segment carried by the link layer packet. For the link layer packet which carries the first segment of an input packet, the value of this field can be set to 0x0. This field can be incremented by one with each additional segment belonging to the segmented input packet.


Last_Segment_Indicator (LSI) can be a 1-bit field that can indicate, when set to 1, that the segment in this payload is the last one of input packet. A value of 0, can indicate that it is not last segment.


SIF (Sub stream Identifier Flag) can be a 1-bit field that can indicate whether the SID is present after the HEF field or not. When there is no SID in the link layer packet, SIF field can be set to 0. When there is a SID after the HEF field in the link layer packet, SIF can be set to 1.


HEF (Header Extension Flag) can be a This 1-bit field that can indicate, when set to 1, that the optional header extension is present after the additional header for future extensions of the link layer header. A value of 0 can indicate that optional header extension is not present.


According to a given embodiment, a packet ID field may be additionally provided to indicate that each segment is generated from the same input packet. This field may be unnecessary and thus be omitted when segments are transmitted in order.


Hereinafter, a description will be given of an additional header when concatenation is used.


This additional header (tsib10030) can be present when Segmentation_Concatenation (S/C)=“1”.


Length_MSB can be a 4-bit field that can indicate MSB bits of the payload length in bytes in this link layer packet. The maximum length of the payload is 32767 bytes for concatenation. As described in the foregoing, a specific numeric value may be changed.


Count can be a field that can indicate the number of the packets included in the link layer packet. The number of the packets included in the link layer packet, 2 can be set to this field. So, its maximum value of concatenated packets in a link layer packet is 9. A scheme in which the count field indicates the number may be varied depending on embodiments. That is, the numbers from 1 to 8 may be indicated.


HEF (Header Extension Flag) can be a 1-bit field that can indicate, when set to 1 the optional header extension is present after the additional header for future extensions of the link layer header. A value of 0, can indicate extension header is not present.


Component_Length can be a 12-bit length field that can indicate the length in byte of each packet. Component_Length fields are included in the same order as the packets present in the payload except last component packet. The number of length field can be indicated by (Count+1). According to a given embodiment, length fields, the number of which is the same as a value of the count field, may be present. When a link layer header consists of an odd number of Component_Length, four stuffing bits can follow after the last Component_Length field. These bits can be set to 0. According to a given embodiment, a Component_length field indicating a length of a last concatenated input packet may not be present. In this case, the length of the last concatenated input packet may correspond to a length obtained by subtracting a sum of values indicated by respective Component_length fields from a whole payload length.


Hereinafter, the optional header will be described.


As described in the foregoing, the optional header may be added to a rear of the additional header. The optional header field can contain SID and/or header extension. The SID is used to filter out specific packet stream in the link layer level. One example of SID is the role of service identifier in a link layer stream carrying multiple services. The mapping information between a service and the SID value corresponding to the service can be provided in the SLT, if applicable. The header extension contains extended field for future use. Receivers can ignore any header extensions which they do not understand.


SID (Sub stream Identifier) can be a 8-bit field that can indicate the sub stream identifier for the link layer packet. If there is optional header extension, SID present between additional header and optional header extension.


Header_Extension ( ) can include the fields defined below.


Extension_Type can be an 8-bit field that can indicate the type of the Header_Extension ( ).


Extension_Length can be a 8-bit field that can indicate the length of the Header Extension ( ) in bytes counting from the next byte to the last byte of the Header_Extension ( ).


Extension_Byte can be a byte representing the value of the Header_Extension ( ).



FIG. 11 illustrates a structure of an additional header of a link layer packet according to another embodiment of the present invention.


Hereinafter, a description will be given of an additional header for signaling information.


How link layer signaling is incorporated into link layer packets are as follows. Signaling packets are identified by when the Packet_Type field of the base header is equal to 100.


Figure (tsib11010) shows the structure of the link layer packets containing additional header for signaling information. In addition to the link layer header, the link layer packet can consist of two additional parts, additional header for signaling information and the actual signaling data itself. The total length of the link layer signaling packet is shown in the link layer packet header.


The additional header for signaling information can include following fields. According to a given embodiment, some fields may be omitted.


Signaling_Type can be an 8-bit field that can indicate the type of signaling.


Signaling_Type_Extension can be a 16-bit filed that can indicate the attribute of the signaling. Detail of this field can be defined in signaling specification.


Signaling_Version can be an 8-bit field that can indicate the version of signaling.


Signaling_Format can be a 2-bit field that can indicate the data format of the signaling data. Here, a signaling format may refer to a data format such as a binary format, an XML format, etc.


Signaling_Encoding can be a 2-bit field that can specify the encoding/compression format. This field may indicate whether compression is not performed and which type of compression is performed.


Hereinafter, a description will be given of an additional header for packet type extension.


In order to provide a mechanism to allow an almost unlimited number of additional protocol and packet types to be carried by link layer in the future, the additional header is defined. Packet type extension can be used when Packet_type is 111 in the base header as described above. Figure (tsib11020) shows the structure of the link layer packets containing additional header for type extension.


The additional header for type extension can include following fields. According to a given embodiment, some fields may be omitted.


extended_type can be a 16-bit field that can indicate the protocol or packet type of the input encapsulated in the link layer packet as payload. This field cannot be used for any protocol or packet type already defined by Packet_Type field.



FIG. 12 illustrates a header structure of a link layer packet for an MPEG-2 TS packet and an encapsulation process thereof according to an embodiment of the present invention.


Hereinafter, a description will be given of a format of the link layer packet when the MPEG-2 TS packet is input as an input packet.


In this case, the Packet_Type field of the base header is equal to 010. Multiple TS packets can be encapsulated within each link layer packet. The number of TS packets is signaled via the NUMTS field. In this case, as described in the foregoing, a particular link layer packet header format may be used.


Link layer provides overhead reduction mechanisms for MPEG-2 TS to enhance the transmission efficiency. The sync byte (0x47) of each TS packet can be deleted. The option to delete NULL packets and similar TS headers is also provided.


In order to avoid unnecessary transmission overhead, TS null packets (PID=0x1FFF) may be removed. Deleted null packets can be recovered in receiver side using DNP field. The DNP field indicates the count of deleted null packets. Null packet deletion mechanism using DNP field is described below.


In order to achieve more transmission efficiency, similar header of MPEG-2 TS packets can be removed. When two or more successive TS packets have sequentially increased continuity counter fields and other header fields are the same, the header is sent once at the first packet and the other headers are deleted. HDM field can indicate whether the header deletion is performed or not. Detailed procedure of common TS header deletion is described below.


When all three overhead reduction mechanisms are performed, overhead reduction can be performed in sequence of sync removal, null packet deletion, and common header deletion. According to a given embodiment, a performance order of respective mechanisms may be changed. In addition, some mechanisms may be omitted according to a given embodiment.


The overall structure of the link layer packet header when using MPEG-2 TS packet encapsulation is depicted in Figure (tsib12010).


Hereinafter, a description will be given of each illustrated field. Packet_Type can be a 3-bit field that can indicate the protocol type of input packet as describe above. For MPEG-2 TS packet encapsulation, this field can always be set to 010.


NUMTS (Number of TS packets) can be a 4-bit field that can indicate the number of TS packets in the payload of this link layer packet. A maximum of 16 TS packets can be supported in one link layer packet. The value of NUMTS=0 can indicate that 16 TS packets are carried by the payload of the link layer packet. For all other values of NUMTS, the same number of TS packets are recognized, e.g. NUMTS=0001 means one TS packet is carried.


AHF (Additional Header Flag) can be a field that can indicate whether the additional header is present of not. A value of 0 indicates that there is no additional header. A value of 1 indicates that an additional header of length 1-byte is present following the base header. If null TS packets are deleted or TS header compression is applied this field can be set to 1. The additional header for TS packet encapsulation consists of the following two fields and is present only when the value of AHF in this link layer packet is set to 1.


HDM (Header Deletion Mode) can be a 1-bit field that indicates whether TS header deletion can be applied to this link layer packet. A value of 1 indicates that TS header deletion can be applied. A value of “0” indicates that the TS header deletion method is not applied to this link layer packet.


DNP (Deleted Null Packets) can be a 7-bit field that indicates the number of deleted null TS packets prior to this link layer packet. A maximum of 128 null TS packets can be deleted. When HDM=0 the value of DNP=0 can indicate that 128 null packets are deleted. When HDM=1 the value of DNP=0 can indicate that no null packets are deleted. For all other values of DNP, the same number of null packets are recognized, e.g. DNP=5 means 5 null packets are deleted.


The number of bits of each field described above may be changed. According to the changed number of bits, a minimum/maximum value of a value indicated by the field may be changed. These numbers may be changed by a designer.


Hereinafter, SYNC byte removal will be described.


When encapsulating TS packets into the payload of a link layer packet, the SYNC byte (0x47) from the start of each TS packet can be deleted. Hence the length of the MPEG2-TS packet encapsulated in the payload of the link layer packet is always of length 187 bytes (instead of 188 bytes originally).


Hereinafter, null packet deletion will be described.


Transport Stream rules require that bit rates at the output of a transmitter's multiplexer and at the input of the receiver's de-multiplexer are constant in time and the end-to-end delay is also constant. For some Transport Stream input signals, null packets may be present in order to accommodate variable bitrate services in a constant bitrate stream. In this case, in order to avoid unnecessary transmission overhead, TS null packets (that is TS packets with PID=0x1FFF) may be removed. The process is carried-out in a way that the removed null packets can be re-inserted in the receiver in the exact place where they were originally, thus guaranteeing constant bitrate and avoiding the need for PCR time stamp updating.


Before generation of a link layer packet, a counter called DNP (Deleted Null-Packets) can first be reset to zero and then incremented for each deleted null packet preceding the first non-null TS packet to be encapsulated into the payload of the current link layer packet. Then a group of consecutive useful TS packets is encapsulated into the payload of the current link layer packet and the value of each field in its header can be determined. After the generated link layer packet is injected to the physical layer, the DNP is reset to zero. When DNP reaches its maximum allowed value, if the next packet is also a null packet, this null packet is kept as a useful packet and encapsulated into the payload of the next link layer packet. Each link layer packet can contain at least one useful TS packet in its payload.


Hereinafter, TS packet header deletion will be described. TS packet header deletion may be referred to as TS packet header compression.


When two or more successive TS packets have sequentially increased continuity counter fields and other header fields are the same, the header is sent once at the first packet and the other headers are deleted. When the duplicated MPEG-2 TS packets are included in two or more successive TS packets, header deletion cannot be applied in transmitter side. HDM field can indicate whether the header deletion is performed or not. When TS header deletion is performed, HDM can be set to 1. In the receiver side, using the first packet header, the deleted packet headers are recovered, and the continuity counter is restored by increasing it in order from that of the first header.


An example tsib12020 illustrated in the figure is an example of a process in which an input stream of a TS packet is encapsulated into a link layer packet. First, a TS stream including TS packets having SYNC byte (0x47) may be input. First, sync bytes may be deleted through a sync byte deletion process. In this example, it is presumed that null packet deletion is not performed.


Here, it is presumed that packet headers of eight TS packets have the same field values except for CC, that is, a continuity counter field value. In this case, TS packet deletion/compression may be performed. Seven remaining TS packet headers are deleted except for a first TS packet header corresponding to CC=1. The processed TS packets may be encapsulated into a payload of the link layer packet.


In a completed link layer packet, a Packet_Type field corresponds to a case in which TS packets are input, and thus may have a value of 010. A NUMTS field may indicate the number of encapsulated TS packets. An AHF field may be set to 1 to indicate the presence of an additional header since packet header deletion is performed. An HDM field may be set to 1 since header deletion is performed. DNP may be set to 0 since null packet deletion is not performed.



FIG. 13 illustrates an example of adaptation modes in IP header compression according to an embodiment of the present invention (transmitting side).


Hereinafter, IP header compression will be described.


In the link layer, IP header compression/decompression scheme can be provided. IP header compression can include two parts: header compressor/decompressor and adaptation module. The header compression scheme can be based on the Robust Header Compression (RoHC). In addition, for broadcasting usage, adaptation function is added.


In the transmitter side, ROHC compressor reduces the size of header for each packet. Then, adaptation module extracts context information and builds signaling information from each packet stream. In the receiver side, adaptation module parses the signaling information associated with the received packet stream and attaches context information to the received packet stream. ROHC decompressor reconstructs the original IP packet by recovering the packet header.


The header compression scheme can be based on the RoHC as described above. In particular, in the present system, an RoHC framework can operate in a unidirctional mode (U mode) of the RoHC. In addition, in the present system, it is possible to use an RoHC UDP header compression profile which is identified by a profile identifier of 0x0002.


Hereinafter, adaptation will be described.


In case of transmission through the unidirectional link, if a receiver has no information of context, decompressor cannot recover the received packet header until receiving full context. This may cause channel change delay and turn on delay. For this reason, context information and configuration parameters between compressor and decompressor can be always sent with packet flow.


The Adaptation function provides out-of-band transmission of the configuration parameters and context information. Out-of-band transmission can be done through the link layer signaling. Therefore, the adaptation function is used to reduce the channel change delay and decompression error due to loss of context information.


Hereinafter, extraction of context information will be described.


Context information may be extracted using various schemes according to adaptation mode. In the present invention, three examples will be described below. The scope of the present invention is not restricted to the examples of the adaptation mode to be described below. Here, the adaptation mode may be referred to as a context extraction mode.


Adaptation Mode 1 (not illustrated) may be a mode in which no additional operation is applied to a basic RoHC packet stream. In other words, the adaptation module may operate as a buffer in this mode. Therefore, in this mode, context information may not be included in link layer signaling


In Adaptation Mode 2 (tsib13010), the adaptation module can detect the IR packet from ROHC packet flow and extract the context information (static chain). After extracting the context information, each IR packet can be converted to an IR-DYN packet. The converted IR-DYN packet can be included and transmitted inside the ROHC packet flow in the same order as IR packet, replacing the original packet.


In Adaptation Mode 3 (tsib13020), the adaptation module can detect the IR and IR-DYN packet from ROHC packet flow and extract the context information. The static chain and dynamic chain can be extracted from IR packet and dynamic chain can be extracted from IR-DYN packet. After extracting the context information, each IR and IR-DYN packet can be converted to a compressed packet. The compressed packet format can be the same with the next packet of IR or IR-DYN packet. The converted compressed packet can be included and transmitted inside the ROHC packet flow in the same order as IR or IR-DYN packet, replacing the original packet.


Signaling (context) information can be encapsulated based on transmission structure. For example, context information can be encapsulated to the link layer signaling. In this case, the packet type value can be set to “100”.


In the above-described Adaptation Modes 2 and 3, a link layer packet for context information may have a packet type field value of 100. In addition, a link layer packet for compressed IP packets may have a packet type field value of 001. The values indicate that each of the signaling information and the compressed IP packets are included in the link layer packet as described above.


Hereinafter, a description will be given of a method of transmitting the extracted context information.


The extracted context information can be transmitted separately from ROHC packet flow, with signaling data through specific physical data path. The transmission of context depends on the configuration of the physical layer path. The context information can be sent with other link layer signaling through the signaling data pipe.


In other words, the link layer packet having the context information may be transmitted through a signaling PLP together with link layer packets having other link layer signaling information (Packet_Type=100). Compressed IP packets from which context information is extracted may be transmitted through a general PLP (Packet_Type=001). Here, depending on embodiments, the signaling PLP may refer to an L signaling path. In addition, depending on embodiments, the signaling PLP may not be separated from the general PLP, and may refer to a particular and general PLP through which the signaling information is transmitted.


At a receiving side, prior to reception of a packet stream, a receiver may need to acquire signaling information. When receiver decodes initial PLP to acquire the signaling information, the context signaling can be also received. After the signaling acquisition is done, the PLP to receive packet stream can be selected. In other words, the receiver may acquire the signaling information including the context information by selecting the initial PLP. Here, the initial PLP may be the above-described signaling PLP. Thereafter, the receiver may select a PLP for acquiring a packet stream. In this way, the context information may be acquired prior to reception of the packet stream.


After the PLP for acquiring the packet stream is selected, the adaptation module can detect IR-DYN packet form received packet flow. Then, the adaptation module parses the static chain from the context information in the signaling data. This is similar to receiving the IR packet. For the same context identifier, IR-DYN packet can be recovered to IR packet. Recovered ROHC packet flow can be sent to ROHC decompressor. Thereafter, decompression may be started.



FIG. 14 illustrates a link mapping table (LMT) and an RoHC-U description table according to an embodiment of the present invention.


Hereinafter, link layer signaling will be described.


Generally, link layer signaling is operates under IP level. At the receiver side, link layer signaling can be obtained earlier than IP level signaling such as Service List Table (SLT) and Service Layer Signaling (SLS). Therefore, link layer signaling can be obtained before session establishment.


For link layer signaling, there can be two kinds of signaling according input path: internal link layer signaling and external link layer signaling. The internal link layer signaling is generated in link layer at transmitter side. And the link layer takes the signaling from external module or protocol. This kind of signaling information is considered as external link layer signaling. If some signaling need to be obtained prior to IP level signaling, external signaling is transmitted in format of link layer packet.


The link layer signaling can be encapsulated into link layer packet as described above. The link layer packets can carry any format of link layer signaling, including binary and XML. The same signaling information may not be transmitted in different formats for the link layer signaling.


Internal link layer signaling may include signaling information for link mapping. The Link Mapping Table (LMT) provides a list of upper layer sessions carried in a PLP. The LMT also provides addition information for processing the link layer packets carrying the upper layer sessions in the link layer.


An example of the LMT (tsib14010) according to the present invention is illustrated.


signaling_type can be an 8-bit unsigned integer field that indicates the type of signaling carried by this table. The value of signaling_type field for Link Mapping Table (LMT) can be set to 0x01.


PLP_ID can be an 8-bit field that indicates the PLP corresponding to this table.


num_session can be an 8-bit unsigned integer field that provides the number of upper layer sessions carried in the PLP identified by the above PLP_ID field. When the value of signaling_type field is 0x01, this field can indicate the number of UDP/IP sessions in the PLP.


src_IP_add can be a 32-bit unsigned integer field that contains the source IP address of an upper layer session carried in the PLP identified by the PLP_ID field.


dst_IP_add can be a 32-bit unsigned integer field that contains the destination IP address of an upper layer session carried in the PLP identified by the PLP_ID field.


src_UDP_port can be a 16-bit unsigned integer field that represents the source UDP port number of an upper layer session carried in the PLP identified by the PLP_ID field.


dst_UDP_port can be a 16-bit unsigned integer field that represents the destination UDP port number of an upper layer session carried in the PLP identified by the PLP_ID field.


SID_flag can be a 1-bit Boolean field that indicates whether the link layer packet carrying the upper layer session identified by above 4 fields, Src_IP_add, Dst_IP_add, Src_UDP_Port and Dst_UDP_Port, has an SID field in its optional header. When the value of this field is set to 0, the link layer packet carrying the upper layer session may not have an SID field in its optional header. When the value of this field is set to 1, the link layer packet carrying the upper layer session can have an SID field in its optional header and the value the SID field can be same as the following SID field in this table.


compressed_flag can be a 1-bit Boolean field that indicates whether the header compression is applied the link layer packets carrying the upper layer session identified by above 4 fields, Src_IP_add, Dst_IP add, Src_UDP_Port and Dst_UDP_Port. When the value of this field is set to 0, the link layer packet carrying the upper layer session may have a value of 0x00 of Packet_Type field in its base header. When the value of this field is set to 1, the link layer packet carrying the upper layer session may have a value of 0x01 of Packet_Type field in its base header and the Context_ID field can be present.


SID can be an 8-bit unsigned integer field that indicates sub stream identifier for the link layer packets carrying the upper layer session identified by above 4 fields, Src_IP_add, Dst_IP_add, Src_UDP_Port and Dst_UDP_Port. This field can be present when the value of SID_flag is equal to 1.


context_id can be an 8-bit field that provides a reference for the context id (CID) provided in the ROHC-U description table. This field can be present when the value of compressed_flag is equal to 1.


An example of the RoHC-U description table (tsib14020) according to the present invention is illustrated. As described in the foregoing, the RoHC-U adaptation module may generate information related to header compression.


signaling_type can be an 8-bit field that indicates the type of signaling carried by this table. The value of signaling_type field for ROHC-U description table (RDT) can be set to “0x02”.


PLP_ID can be an 8-bit field that indicates the PLP corresponding to this table.


context_id can be an 8-bit field that indicates the context id (CID) of the compressed IP stream. In this system, 8-bit CID can be used for large CID.


context_profile can be an 8-bit field that indicates the range of protocols used to compress the stream. This field can be omitted.


adaptation_mode can be a 2-bit field that indicates the mode of adaptation module in this PLP. Adaptation modes have been described above.


context_config can be a 2-bit field that indicates the combination of the context information. If there is no context information in this table, this field may be set to “0x0”. If the static_chain( ) or dynamic_chain( ) byte is included in this table, this field may be set to “0x01” or “0x02” respectively. If both of the static_chain( ) and dynamic_chain( ) byte are included in this table, this field may be set to “0x03”.


context_length can be an 8-bit field that indicates the length of the static chain byte sequence. This field can be omitted.


static_chain_byte ( ) can be a field that conveys the static information used to initialize the ROHC-U decompressor. The size and structure of this field depend on the context profile.


dynamic_chain_byte ( ) can be a field that conveys the dynamic information used to initialize the ROHC-U decompressor. The size and structure of this field depend on the context profile.


The static_chain_byte can be defined as sub-header information of IR packet. The dynamic_chain_byte can be defined as sub-header information of IR packet and IR-DYN packet.



FIG. 15 illustrates a structure of a link layer on a transmitter side according to an embodiment of the present invention.


The present embodiment presumes that an IP packet is processed. From a functional point of view, the link layer on the transmitter side may broadly include a link layer signaling part in which signaling information is processed, an overhead reduction part, and/or an encapsulation part. In addition, the link layer on the transmitter side may include a scheduler for controlling and scheduling an overall operation of the link layer and/or input and output parts of the link layer.


First, signaling information of an upper layer and/or a system parameter tsib15010 may be delivered to the link layer. In addition, an IP stream including IP packets may be delivered to the link layer from an IP layer tsib15110.


As described above, the scheduler tsib15020 may determine and control operations of several modules included in the link layer. The delivered signaling information and/or system parameter tsib15010 may be filtered or used by the scheduler tsib15020. Information, which corresponds to a part of the delivered signaling information and/or system parameter tsib15010, necessary for a receiver may be delivered to the link layer signaling part. In addition, information, which corresponds to a part of the signaling information, necessary for an operation of the link layer may be delivered to an overhead reduction controller tsib15120 or an encapsulation controller tsib15180.


The link layer signaling part may collect information to be transmitted as a signal in a physical layer, and convert/configure the information in a form suitable for transmission. The link layer signaling part may include a signaling manager tsib15030, a signaling formatter tsib15040, and/or a buffer for channels tsib15050.


The signaling manager tsib15030 may receive signaling information delivered from the scheduler tsib15020 and/or signaling (and/or context) information delivered from the overhead reduction part. The signaling manager tsib15030 may determine a path for transmission of the signaling information for delivered data. The signaling information may be delivered through the path determined by the signaling manager tsib15030. As described in the foregoing, signaling information to be transmitted through a divided channel such as the FIC, the EAS, etc. may be delivered to the signaling formatter tsib15040, and other signaling information may be delivered to an encapsulation buffer tsib15070.


The signaling formatter tsib15040 may format related signaling information in a form suitable for each divided channel such that signaling information may be transmitted through a separately divided channel. As described in the foregoing, the physical layer may include separate physically/logically divided channels. The divided channels may be used to transmit FIC signaling information or EAS-related information. The FIC or EAS-related information may be sorted by the signaling manager tsib15030, and input to the signaling formatter tsib15040. The signaling formatter tsib15040 may format the information based on each separate channel. When the physical layer is designed to transmit particular signaling information through a separately divided channel other than the FIC and the EAS, a signaling formatter for the particular signaling information may be additionally provided. Through this scheme, the link layer may be compatible with various physical layers.


The buffer for channels tsib15050 may deliver the signaling information received from the signaling formatter tsib15040 to separate dedicated channels tsib15060. The number and content of the separate channels may vary depending on embodiments.


As described in the foregoing, the signaling manager tsib15030 may deliver signaling information, which is not delivered to a particular channel, to the encapsulation buffer tsib15070. The encapsulation buffer tsib15070 may function as a buffer that receives the signaling information which is not delivered to the particular channel.


An encapsulation block for signaling information tsib15080 may encapsulate the signaling information which is not delivered to the particular channel. A transmission buffer tsib15090 may function as a buffer that delivers the encapsulated signaling information to a DP for signaling information tsib15100. Here, the DP for signaling information tsib15100 may refer to the above-described PLS region.


The overhead reduction part may allow efficient transmission by removing overhead of packets delivered to the link layer. It is possible to configure overhead reduction parts corresponding to the number of IP streams input to the link layer.


An overhead reduction buffer tsib15130 may receive an IP packet delivered from an upper layer. The received IP packet may be input to the overhead reduction part through the overhead reduction buffer tsib15130.


An overhead reduction controller tsib15120 may determine whether to perform overhead reduction on a packet stream input to the overhead reduction buffer tsib15130. The overhead reduction controller tsib15120 may determine whether to perform overhead reduction for each packet stream. When overhead reduction is performed on a packet stream, packets may be delivered to a robust header compression (RoHC) compressor tsib15140 to perform overhead reduction. When overhead reduction is not performed on a packet stream, packets may be delivered to the encapsulation part to perform encapsulation without overhead reduction. Whether to perform overhead reduction of packets may be determined based on the signaling information tsib15010 delivered to the link layer. The signaling information may be delivered to the encapsulation controller tsib15180 by the scheduler tsib15020.


The RoHC compressor tsib15140 may perform overhead reduction on a packet stream. The RoHC compressor tsib15140 may perform an operation of compressing a header of a packet. Various schemes may be used for overhead reduction. Overhead reduction may be performed using a scheme proposed by the present invention. The present invention presumes an IP stream, and thus an expression “RoHC compressor” is used. However, the name may be changed depending on embodiments. The operation is not restricted to compression of the IP stream, and overhead reduction of all types of packets may be performed by the RoHC compressor tsib15140.


A packet stream configuration block tsib15150 may separate information to be transmitted to a signaling region and information to be transmitted to a packet stream from IP packets having compressed headers. The information to be transmitted to the packet stream may refer to information to be transmitted to a DP region. The information to be transmitted to the signaling region may be delivered to a signaling and/or context controller tsib15160. The information to be transmitted to the packet stream may be transmitted to the encapsulation part.


The signaling and/or context controller tsib15160 may collect signaling and/or context information and deliver the signaling and/or context information to the signaling manager in order to transmit the signaling and/or context information to the signaling region.


The encapsulation part may perform an operation of encapsulating packets in a form suitable for a delivery to the physical layer. It is possible to configure encapsulation parts corresponding to the number of IP streams.


An encapsulation buffer tsib15170 may receive a packet stream for encapsulation. Packets subjected to overhead reduction may be received when overhead reduction is performed, and an input IP packet may be received without change when overhead reduction is not performed.


An encapsulation controller tsib15180 may determine whether to encapsulate an input packet stream. When encapsulation is performed, the packet stream may be delivered to a segmentation/concatenation block tsib15190. When encapsulation is not performed, the packet stream may be delivered to a transmission buffer tsib15230. Whether to encapsulate packets may be determined based on the signaling information tsib15010 delivered to the link layer. The signaling information may be delivered to the encapsulation controller tsib15180 by the scheduler tsib15020.


In the segmentation/concatenation block tsib15190, the above-described segmentation or concatenation operation may be performed on packets. In other words, when an input IP packet is longer than a link layer packet corresponding to an output of the link layer, one IP packet may be segmented into several segments to configure a plurality of link layer packet payloads. On the other hand, when an input IP packet is shorter than a link layer packet corresponding to an output of the link layer, several IP packets may be concatenated to configure one link layer packet payload.


A packet configuration table tsib15200 may have configuration information of a segmented and/or concatenated link layer packet. A transmitter and a receiver may have the same information in the packet configuration table tsib15200. The transmitter and the receiver may refer to the information of the packet configuration table tsib15200. An index value of the information of the packet configuration table tsib15200 may be included in a header of the link layer packet.


A link layer header information block tsib15210 may collect header information generated in an encapsulation process. In addition, the link layer header information block tsib15210 may collect header information included in the packet configuration table tsib15200. The link layer header information block tsib15210 may configure header information according to a header structure of the link layer packet.


A header attachment block tsib15220 may add a header to a payload of a segmented and/or concatenated link layer packet. The transmission buffer tsib15230 may function as a buffer to deliver the link layer packet to a DP tsib15240 of the physical layer.


The respective blocks, modules, or parts may be configured as one module/protocol or a plurality of modules/protocols in the link layer.



FIG. 16 illustrates a structure of a link layer on a receiver side according to an embodiment of the present invention.


The present embodiment presumes that an IP packet is processed. From a functional point of view, the link layer on the receiver side may broadly include a link layer signaling part in which signaling information is processed, an overhead processing part, and/or a decapsulation part. In addition, the link layer on the receiver side may include a scheduler for controlling and scheduling overall operation of the link layer and/or input and output parts of the link layer.


First, information received through a physical layer may be delivered to the link layer. The link layer may process the information, restore an original state before being processed at a transmitter side, and then deliver the information to an upper layer. In the present embodiment, the upper layer may be an IP layer.


Information, which is separated in the physical layer and delivered through a particular channel tsib16030, may be delivered to a link layer signaling part. The link layer signaling part may determine signaling information received from the physical layer, and deliver the determined signaling information to each part of the link layer.


A buffer for channels tsib16040 may function as a buffer that receives signaling information transmitted through particular channels. As described in the foregoing, when physically/logically divided separate channels are present in the physical layer, it is possible to receive signaling information transmitted through the channels. When the information received from the separate channels is segmented, the segmented information may be stored until complete information is configured.


A signaling decoder/parser tsib16050 may verify a format of the signaling information received through the particular channel, and extract information to be used in the link layer. When the signaling information received through the particular channel is encoded, decoding may be performed. In addition, according to a given embodiment, it is possible to verify integrity, etc. of the signaling information.


A signaling manager tsib16060 may integrate signaling information received through several paths. Signaling information received through a DP for signaling tsib16070 to be described below may be integrated in the signaling manager tsib16060. The signaling manager tsib16060 may deliver signaling information necessary for each part in the link layer. For example, the signaling manager tsib16060 may deliver context information, etc. for recovery of a packet to the overhead processing part. In addition, the signaling manager tsib16060 may deliver signaling information for control to a scheduler tsib16020.


General signaling information, which is not received through a separate particular channel, may be received through the DP for signaling tsib16070. Here, the DP for signaling may refer to PLS, L, etc. Here, the DP may be referred to as a PLP. A reception buffer tsib16080 may function as a buffer that receives signaling information delivered from the DP for signaling. In a decapsulation block for signaling information tsib16090, the received signaling information may be decapsulated. The decapsulated signaling information may be delivered to the signaling manager tsib16060 through a decapsulation buffer tsib16100. As described in the foregoing, the signaling manager tsib16060 may collate signaling information, and deliver the collated signaling information to a necessary part in the link layer.


The scheduler tsib16020 may determine and control operations of several modules included in the link layer. The scheduler tsib16020 may control each part of the link layer using receiver information tsib16010 and/or information delivered from the signaling manager tsib16060. In addition, the scheduler tsib16020 may determine an operation mode, etc. of each part. Here, the receiver information tsib16010 may refer to information previously stored in the receiver. The scheduler tsib16020 may use information changed by a user such as channel switching, etc. to perform a control operation.


The decapsulation part may filter a packet received from a DP tsib16110 of the physical layer, and separate a packet according to a type of the packet. It is possible to configure decapsulation parts corresponding to the number of DPs that can be simultaneously decoded in the physical layer.


The decapsulation buffer tsib16100 may function as a buffer that receives a packet stream from the physical layer to perform decapsulation. A decapsulation controller tsib16130 may determine whether to decapsulate an input packet stream. When decapsulation is performed, the packet stream may be delivered to a link layer header parser tsib16140. When decapsulation is not performed, the packet stream may be delivered to an output buffer tsib16220. The signaling information received from the scheduler tsib16020 may be used to determine whether to perform decapsulation.


The link layer header parser tsib16140 may identify a header of the delivered link layer packet. It is possible to identify a configuration of an IP packet included in a payload of the link layer packet by identifying the header. For example, the IP packet may be segmented or concatenated.


A packet configuration table tsib16150 may include payload information of segmented and/or concatenated link layer packets. The transmitter and the receiver may have the same information in the packet configuration table tsib16150. The transmitter and the receiver may refer to the information of the packet configuration table tsib16150. It is possible to find a value necessary for reassembly based on index information included in the link layer packet.


A reassembly block tsib16160 may configure payloads of the segmented and/or concatenated link layer packets as packets of an original IP stream. Segments may be collected and reconfigured as one IP packet, or concatenated packets may be separated and reconfigured as a plurality of IP packet streams. Recombined IP packets may be delivered to the overhead processing part.


The overhead processing part may perform an operation of restoring a packet subjected to overhead reduction to an original packet as a reverse operation of overhead reduction performed in the transmitter. This operation may be referred to as overhead processing. It is possible to configure overhead processing parts corresponding to the number of DPs that can be simultaneously decoded in the physical layer.


A packet recovery buffer tsib16170 may function as a buffer that receives a decapsulated RoHC packet or IP packet to perform overhead processing.


An overhead controller tsib16180 may determine whether to recover and/or decompress the decapsulated packet. When recovery and/or decompression are performed, the packet may be delivered to a packet stream recovery block tsib16190. When recovery and/or decompression are not performed, the packet may be delivered to the output buffer tsib16220. Whether to perform recovery and/or decompression may be determined based on the signaling information delivered by the scheduler tsib16020.


The packet stream recovery block tsib16190 may perform an operation of integrating a packet stream separated from the transmitter with context information of the packet stream. This operation may be a process of restoring a packet stream such that an RoHC decompressor tsib16210 can perform processing. In this process, it is possible to receive signaling information and/or context information from a signaling and/or context controller tsib16200. The signaling and/or context controller tsib16200 may determine signaling information delivered from the transmitter, and deliver the signaling information to the packet stream recovery block tsib16190 such that the signaling information may be mapped to a stream corresponding to a context ID.


The RoHC decompressor tsib16210 may restore headers of packets of the packet stream. The packets of the packet stream may be restored to forms of original IP packets through restoration of the headers. In other words, the RoHC decompressor tsib16210 may perform overhead processing.


The output buffer tsib16220 may function as a buffer before an output stream is delivered to an IP layer tsib16230.


The link layers of the transmitter and the receiver proposed in the present invention may include the blocks or modules described above. In this way, the link layer may independently operate irrespective of an upper layer and a lower layer, overhead reduction may be efficiently performed, and a supportable function according to an upper/lower layer may be easily defined/added/deleted.



FIG. 17 illustrates a configuration of signaling transmission through a link layer according to an embodiment of the present invention (transmitting/receiving sides).


In the present invention, a plurality of service providers (broadcasters) may provide services within one frequency band. In addition, a service provider may provide a plurality of services, and one service may include one or more components. It can be considered that the user receives content using a service as a unit.


The present invention presumes that a transmission protocol based on a plurality of sessions is used to support an IP hybrid broadcast. Signaling information delivered through a signaling path may be determined based on a transmission configuration of each protocol. Various names may be applied to respective protocols according to a given embodiment.


In the illustrated data configuration tsib17010 on the transmitting side, service providers (broadcasters) may provide a plurality of services (Service #1, #2, . . . ). In general, a signal for a service may be transmitted through a general transmission session (signaling C). However, the signal may be transmitted through a particular session (dedicated session) according to a given embodiment (signaling B).


Service data and service signaling information may be encapsulated according to a transmission protocol. According to a given embodiment, an IP/UDP layer may be used. According to a given embodiment, a signal in the IP/UDP layer (signaling A) may be additionally provided. This signaling may be omitted.


Data processed using the IP/UDP may be input to the link layer. As described in the foregoing, overhead reduction and/or encapsulation may be performed in the link layer. Here, link layer signaling may be additionally provided. Link layer signaling may include a system parameter, etc. Link layer signaling has been described above.


The service data and the signaling information subjected to the above process may be processed through PLPs in a physical layer. Here, a PLP may be referred to as a DP. The example illustrated in the figure presumes a case in which a base DP/PLP is used. However, depending on embodiments, transmission may be performed using only a general DP/PLP without the base DP/PLP.


In the example illustrated in the figure, a particular channel (dedicated channel) such as an FIC, an EAC, etc. is used. A signal delivered through the FIC may be referred to as a fast information table (FIT), and a signal delivered through the EAC may be referred to as an emergency alert table (EAT). The FIT may be identical to the above-described SLT. The particular channels may not be used depending on embodiments. When the particular channel (dedicated channel) is not configured, the FIT and the EAT may be transmitted using a general link layer signaling transmission scheme, or transmitted using a PLP via the IP/UDP as other service data.


According to a given embodiment, system parameters may include a transmitter-related parameter, a service provider-related parameter, etc. Link layer signaling may include IP header compression-related context information and/or identification information of data to which the context is applied. Signaling of an upper layer may include an IP address, a UDP number, service/component information, emergency alert-related information, an IP/UDP address for service signaling, a session ID, etc. Detailed examples thereof have been described above.


In the illustrated data configuration tsib17020 on the receiving side, the receiver may decode only a PLP for a corresponding service using signaling information without having to decode all PLPs.


First, when the user selects or changes a service desired to be received, the receiver may be tuned to a corresponding frequency and may read receiver information related to a corresponding channel stored in a DB, etc. The information stored in the DB, etc. of the receiver may be configured by reading an SLT at the time of initial channel scan.


After receiving the SLT and the information about the corresponding channel, information previously stored in the DB is updated, and information about a transmission path of the service selected by the user and information about a path, through which component information is acquired or a signal necessary to acquire the information is transmitted, are acquired. When the information is not determined to be changed using version information of the SLT, decoding or parsing may be omitted.


The receiver may verify whether SLT information is included in a PLP by parsing physical signaling of the PLP in a corresponding broadcast stream (not illustrated), which may be indicated through a particular field of physical signaling. It is possible to access a position at which a service layer signal of a particular service is transmitted by accessing the SLT information. The service layer signal may be encapsulated into the IP/UDP and delivered through a transmission session. It is possible to acquire information about a component included in the service using this service layer signaling. A specific SLT-SLS configuration is as described above.


In other words, it is possible to acquire transmission path information, for receiving upper layer signaling information (service signaling information) necessary to receive the service, corresponding to one of several packet streams and PLPs currently transmitted on a channel using the SLT. The transmission path information may include an IP address, a UDP port number, a session ID, a PLP ID, etc. Here, depending on embodiments, a value previously designated by the IANA or a system may be used as an IP/UDP address. The information may be acquired using a scheme of accessing a DB or a shared memory, etc.


When the link layer signal and service data are transmitted through the same PLP, or only one PLP is operated, service data delivered through the PLP may be temporarily stored in a device such as a buffer, etc. while the link layer signal is decoded.


It is possible to acquire information about a path through which the service is actually transmitted using service signaling information of a service to be received. In addition, a received packet stream may be subjected to decapsulation and header recovery using information such as overhead reduction for a PLP to be received, etc.


In the illustrated example (tsib17020), the FIC and the EAC are used, and a concept of the base DP/PLP is presumed. As described in the foregoing, concepts of the FIC, the EAC, and the base DP/PLP may not be used.


While MISO or MIMO uses two antennas in the following for convenience of description, the present invention is applicable to systems using two or more antennas. The present invention proposes a physical profile (or system) optimized to minimize receiver complexity while attaining the performance required for a particular use case. Physical (PHY) profiles (base, handheld and advanced profiles) according to an embodiment of the present invention are subsets of all configurations that a corresponding receiver should implement. The PHY profiles share most of the functional blocks but differ slightly in specific blocks and/or parameters. For the system evolution, future profiles may also be multiplexed with existing profiles in a single radio frequency (RF) channel through a future extension frame (FEF). The base profile and the handheld profile according to the embodiment of the present invention refer to profiles to which MIMO is not applied, and the advanced profile refers to a profile to which MIMO is applied. The base profile may be used as a profile for both the terrestrial broadcast service and the mobile broadcast service. That is, the base profile may be used to define a concept of a profile which includes the mobile profile. In addition, the advanced profile may be divided into an advanced profile for a base profile with MIMO and an advanced profile for a handheld profile with MIMO. Moreover, the profiles may be changed according to intention of the designer.


The following terms and definitions may be applied to the present invention. The following terms and definitions may be changed according to design.


Auxiliary stream: sequence of cells carrying data of as yet undefined modulation and coding, which may be used for future extensions or as required by broadcasters or network operators


Base data pipe: data pipe that carries service signaling data


Baseband frame (or BBFRAME): set of Kbch bits which form the input to one FEC encoding process (BCH and LDPC encoding)


Cell: modulation value that is carried by one carrier of orthogonal frequency division multiplexing (OFDM) transmission


Coded block: LDPC-encoded block of PLS1 data or one of the LDPC-encoded blocks of PLS2 data


Data pipe: logical channel in the physical layer that carries service data or related metadata, which may carry one or a plurality of service(s) or service component(s).


Data pipe unit (DPU): a basic unit for allocating data cells to a DP in a frame.


Data symbol: OFDM symbol in a frame which is not a preamble symbol (the data symbol encompasses the frame signaling symbol and frame edge symbol)


DP_ID: this 8-bit field identifies uniquely a DP within the system identified by the SYSTEM_ID


Dummy cell: cell carrying a pseudo-random value used to fill the remaining capacity not used for PLS signaling, DPs or auxiliary streams


Emergency alert channel (EAC): part of a frame that carries EAS information data


Frame: physical layer time slot that starts with a preamble and ends with a frame edge symbol


Frame repetition unit: a set of frames belonging to the same or different physical layer profiles including an FEF, which is repeated eight times in a superframe


Fast information channel (FIC): a logical channel in a frame that carries mapping information between a service and the corresponding base DP


FECBLOCK: set of LDPC-encoded bits of DP data


FFT size: nominal FFT size used for a particular mode, equal to the active symbol period Ts expressed in cycles of an elementary period T


Frame signaling symbol: OFDM symbol with higher pilot density used at the start of a frame in certain combinations of FFT size, guard interval and scattered pilot pattern, which carries a part of the PLS data


Frame edge symbol: OFDM symbol with higher pilot density used at the end of a frame in certain combinations of FFT size, guard interval and scattered pilot pattern


Frame group: the set of all frames having the same PHY profile type in a superframe


Future extension frame: physical layer time slot within the superframe that may be used for future extension, which starts with a preamble


Futurecast UTB system: proposed physical layer broadcast system, the input of which is one or more MPEG2-TS, IP or general stream(s) and the output of which is an RF signal


Input stream: a stream of data for an ensemble of services delivered to the end users by the system


Normal data symbol: data symbol excluding the frame signaling symbol and the frame edge symbol


PHY profile: subset of all configurations that a corresponding receiver should implement


PLS: physical layer signaling data including PLS1 and PLS2


PLS1: a first set of PLS data carried in a frame signaling symbol (FSS) having a fixed size, coding and modulation, which carries basic information about a system as well as parameters needed to decode PLS2


NOTE: PLS1 data remains constant for the duration of a frame group


PLS2: a second set of PLS data transmitted in the FSS, which carries more detailed PLS data about the system and the DPs


PLS2 dynamic data: PLS2 data that dynamically changes frame-by-frame


PLS2 static data: PLS2 data that remains static for the duration of a frame group


Preamble signaling data: signaling data carried by the preamble symbol and used to identify the basic mode of the system


Preamble symbol: fixed-length pilot symbol that carries basic PLS data and is located at the beginning of a frame


The preamble symbol is mainly used for fast initial band scan to detect the system signal, timing thereof, frequency offset, and FFT size.


Reserved for future use: not defined by the present document but may be defined in future


Superframe: set of eight frame repetition units


Time interleaving block (TI block): set of cells within which time interleaving is carried out, corresponding to one use of a time interleaver memory


TI group: unit over which dynamic capacity allocation for a particular DP is carried out, made up of an integer, dynamically varying number of XFECBLOCKs


NOTE: The TI group may be mapped directly to one frame or may be mapped to a plurality of frames. The TI group may contain one or more TI blocks.


Type 1 DP: DP of a frame where all DPs are mapped to the frame in time division multiplexing (TDM) scheme


Type 2 DP: DP of a frame where all DPs are mapped to the frame in frequency division multiplexing (FDM) scheme


XFECBLOCK: set of Ncells cells carrying all the bits of one LDPC FECBLOCK



FIG. 18 illustrates a configuration of a broadcast signal transmission apparatus for future broadcast services according to an embodiment of the present invention.


The broadcast signal transmission apparatus for future broadcast services according to the present embodiment may include an input formatting block 1000, a bit interleaved coding & modulation (BICM) block 1010, a frame building block 1020, an OFDM generation block 1030 and a signaling generation block 1040. Description will be given of an operation of each block of the broadcast signal transmission apparatus.


In input data according to an embodiment of the present invention, IP stream/packets and MPEG2-TS may be main input formats, and other stream types are handled as general streams. In addition to these data inputs, management information is input to control scheduling and allocation of the corresponding bandwidth for each input stream. In addition, the present invention allows simultaneous input of one or a plurality of TS streams, IP stream(s) and/or a general stream(s).


The input formatting block 1000 may demultiplex each input stream into one or a plurality of data pipes, to each of which independent coding and modulation are applied. A DP is the basic unit for robustness control, which affects QoS. One or a plurality of services or service components may be carried by one DP. The DP is a logical channel in a physical layer for delivering service data or related metadata capable of carrying one or a plurality of services or service components.


In addition, a DPU is a basic unit for allocating data cells to a DP in one frame.


An input to the physical layer may include one or a plurality of data streams. Each of the data streams is delivered by one DP. The input formatting block 1000 may covert a data stream input through one or more physical paths (or DPs) into a baseband frame (BBF). In this case, the input formatting block 1000 may perform null packet deletion or header compression on input data (a TS or IP input stream) in order to enhance transmission efficiency. A receiver may have a priori information for a particular part of a header, and thus this known information may be deleted from a transmitter. A null packet deletion block 3030 may be used only for a TS input stream.


In the BICM block 1010, parity data is added for error correction and encoded bit streams are mapped to complex-value constellation symbols. The symbols are interleaved across a specific interleaving depth that is used for the corresponding DP. For the advanced profile, MIMO encoding is performed in the BICM block 1010 and an additional data path is added at the output for MIMO transmission.


The frame building block 1020 may map the data cells of the input DPs into the OFDM symbols within a frame, and perform frequency interleaving for frequency-domain diversity, especially to combat frequency-selective fading channels. The frame building block 1020 may include a delay compensation block, a cell mapper and a frequency interleaver.


The delay compensation block may adjust timing between DPs and corresponding PLS data to ensure that the DPs and the corresponding PLS data are co-timed at a transmitter side. The PLS data is delayed by the same amount as the data pipes by addressing the delays of data pipes caused by the input formatting block and BICM block. The delay of the BICM block is mainly due to the time interleaver. In-band signaling data carries information of the next TI group so that the information is carried one frame ahead of the DPs to be signaled. The delay compensation block delays in-band signaling data accordingly.


The cell mapper may map PLS, DPs, auxiliary streams, dummy cells, etc. to active carriers of the OFDM symbols in the frame. The basic function of the cell mapper 7010 is to map data cells produced by the TIs for each of the DPs, PLS cells, and EAC/FIC cells, if any, into arrays of active OFDM cells corresponding to each of the OFDM symbols within a frame. A basic function of the cell mapper is to map a data cell generated by time interleaving for each DP and PLS cell to an array of active OFDM cells (if present) corresponding to respective OFDM symbols in one frame. Service signaling data (such as program specific information (PSI)/SI) may be separately gathered and sent by a DP. The cell mapper operates according to dynamic information produced by a scheduler and the configuration of a frame structure. The frequency interleaver may randomly interleave data cells received from the cell mapper to provide frequency diversity. In addition, the frequency interleaver may operate on an OFDM symbol pair including two sequential OFDM symbols using a different interleaving-seed order to obtain maximum interleaving gain in a single frame.


The OFDM generation block 1030 modulates OFDM carriers by cells produced by the frame building block, inserts pilots, and produces a time domain signal for transmission. In addition, this block subsequently inserts guard intervals, and applies peak-to-average power ratio (PAPR) reduction processing to produce a final RF signal.


Specifically, after inserting a preamble at the beginning of each frame, the OFDM generation block 1030 may apply conventional OFDM modulation having a cyclic prefix as a guard interval. For antenna space diversity, a distributed MISO scheme is applied across transmitters. In addition, a PAPR scheme is performed in the time domain. For flexible network planning, the present invention provides a set of various FFT sizes, guard interval lengths and corresponding pilot patterns.


In addition, the present invention may multiplex signals of a plurality of broadcast transmission/reception systems in the time domain such that data of two or more different broadcast transmission/reception systems providing broadcast services may be simultaneously transmitted in the same RF signal bandwidth. In this case, the two or more different broadcast transmission/reception systems refer to systems providing different broadcast services. The different broadcast services may refer to a terrestrial broadcast service, mobile broadcast service, etc.


The signaling generation block 1040 may create physical layer signaling information used for an operation of each functional block. This signaling information is also transmitted so that services of interest are properly recovered at a receiver side. Signaling information according to an embodiment of the present invention may include PLS data. PLS provides the receiver with a means to access physical layer DPs. The PLS data includes PLS1 data and PLS2 data.


The PLS1 data is a first set of PLS data carried in an FSS symbol in a frame having a fixed size, coding and modulation, which carries basic information about the system in addition to the parameters needed to decode the PLS2 data. The PLS1 data provides basic transmission parameters including parameters required to enable reception and decoding of the PLS2 data. In addition, the PLS1 data remains constant for the duration of a frame group.


The PLS2 data is a second set of PLS data transmitted in an FSS symbol, which carries more detailed PLS data about the system and the DPs. The PLS2 contains parameters that provide sufficient information for the receiver to decode a desired DP. The PLS2 signaling further includes two types of parameters, PLS2 static data (PLS2-STAT data) and PLS2 dynamic data (PLS2-DYN data). The PLS2 static data is PLS2 data that remains static for the duration of a frame group and the PLS2 dynamic data is PLS2 data that dynamically changes frame by frame. Details of the PLS data will be described later.


The above-described blocks may be omitted or replaced by blocks having similar or identical functions.



FIG. 19 illustrates a BICM block according to an embodiment of the present invention.


The BICM block illustrated in FIG. 19 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 18.


As described above, the broadcast signal transmission apparatus for future broadcast services according to the embodiment of the present invention may provide a terrestrial broadcast service, mobile broadcast service, UHDTV service, etc.


Since QoS depends on characteristics of a service provided by the broadcast signal transmission apparatus for future broadcast services according to the embodiment of the present invention, data corresponding to respective services needs to be processed using different schemes. Accordingly, the BICM block according to the embodiment of the present invention may independently process respective DPs by independently applying SISO, MISO and MIMO schemes to data pipes respectively corresponding to data paths. Consequently, the broadcast signal transmission apparatus for future broadcast services according to the embodiment of the present invention may control QoS for each service or service component transmitted through each DP.


(a) shows a BICM block applied to a profile (or system) to which MIMO is not applied, and (b) shows a BICM block of a profile (or system) to which MIMO is applied.


The BICM block to which MIMO is not applied and the BICM block to which MIMO is applied may include a plurality of processing blocks for processing each DP.


Description will be given of each processing block of the BICM block to which MIMO is not applied and the BICM block to which MIMO is applied.


A processing block 5000 of the BICM block to which MIMO is not applied may include a data FEC encoder 5010, a bit interleaver 5020, a constellation mapper 5030, a signal space diversity (SSD) encoding block 5040 and a time interleaver 5050.


The data FEC encoder 5010 performs FEC encoding on an input BBF to generate FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC). The outer coding (BCH) is optional coding method. A detailed operation of the data FEC encoder 5010 will be described later.


The bit interleaver 5020 may interleave outputs of the data FEC encoder 5010 to achieve optimized performance with a combination of LDPC codes and a modulation scheme while providing an efficiently implementable structure. A detailed operation of the bit interleaver 5020 will be described later.


The constellation mapper 5030 may modulate each cell word from the bit interleaver 5020 in the base and the handheld profiles, or each cell word from the cell-word demultiplexer 5010-1 in the advanced profile using either QPSK, QAM-16, non-uniform QAM (NUQ-64, NUQ-256, or NUQ-1024) or non-uniform constellation (NUC-16, NUC-64, NUC-256, or NUC-1024) mapping to give a power-normalized constellation point, e1. This constellation mapping is applied only for DPs. It is observed that QAM-16 and NUQs are square shaped, while NUCs have arbitrary shapes. When each constellation is rotated by any multiple of 90 degrees, the rotated constellation exactly overlaps with its original one. This “rotation-sense” symmetric property makes the capacities and the average powers of the real and imaginary components equal to each other. Both NUQs and NUCs are defined specifically for each code rate and the particular one used is signaled by the parameter DP_MOD filed in the PLS2 data.


The time interleaver 5050 may operates at a DP level. Parameters of time interleaving (TI) may be set differently for each DP. A detailed operation of the time interleaver 5050 will be described later.


A processing block 5000-1 of the BICM block to which MIMO is applied may include the data FEC encoder, the bit interleaver, the constellation mapper, and the time interleaver.


However, the processing block 5000-1 is distinguished from the processing block 5000 of the BICM block to which MIMO is not applied in that the processing block 5000-1 further includes a cell-word demultiplexer 5010-1 and a MIMO encoding block 5020-1.


In addition, operations of the data FEC encoder, the bit interleaver, the constellation mapper, and the time interleaver in the processing block 5000-1 correspond to those of the data FEC encoder 5010, the bit interleaver 5020, the constellation mapper 5030, and the time interleaver 5050 described above, and thus description thereof is omitted.


The cell-word demultiplexer 5010-1 is used for a DP of the advanced profile to divide a single cell-word stream into dual cell-word streams for MIMO processing.


The MIMO encoding block 5020-1 may process an output of the cell-word demultiplexer 5010-1 using a MIMO encoding scheme. The MIMO encoding scheme is optimized for broadcast signal transmission. MIMO technology is a promising way to obtain a capacity increase but depends on channel characteristics. Especially for broadcasting, a strong LOS component of a channel or a difference in received signal power between two antennas caused by different signal propagation characteristics makes it difficult to obtain capacity gain from MIMO. The proposed MIMO encoding scheme overcomes this problem using rotation-based precoding and phase randomization of one of MIMO output signals.


MIMO encoding is intended for a 2×2 MIMO system requiring at least two antennas at both the transmitter and the receiver. A MIMO encoding mode of the present invention may be defined as full-rate spatial multiplexing (FR-SM). FR-SM encoding may provide capacity increase with relatively small complexity increase at the receiver side. In addition, the MIMO encoding scheme of the present invention has no restriction on an antenna polarity configuration.


MIMO processing is applied at the DP level. NUQ (e1,i and e2,i) corresponding to a pair of constellation mapper outputs is fed to an input of a MIMO encoder. Paired MIMO encoder output (g1,i and g2,i) is transmitted by the same carrier k and OFDM symbol 1 of respective TX antennas thereof.


The above-described blocks may be omitted or replaced by blocks having similar or identical functions.



FIG. 20 illustrates a BICM block according to another embodiment of the present invention.


The BICM block illustrated in FIG. 20 corresponds to another embodiment of the BICM block 1010 described with reference to FIG. 18.



FIG. 20 illustrates a BICM block for protection of physical layer signaling (PLS), an emergency alert channel (EAC) and a fast information channel (FIC). The EAC is a part of a frame that carries EAS information data, and the FIC is a logical channel in a frame that carries mapping information between a service and a corresponding base DP. Details of the EAC and FIC will be described later.


Referring to FIG. 20, the BICM block for protection of the PLS, the EAC and the FIC may include a PLS FEC encoder 6000, a bit interleaver 6010 and a constellation mapper 6020.


In addition, the PLS FEC encoder 6000 may include a scrambler, a BCH encoding/zero insertion block, an LDPC encoding block and an LDPC parity punturing block. Description will be given of each block of the BICM block.


The PLS FEC encoder 6000 may encode scrambled PLS 1/2 data, EAC and FIC sections.


The scrambler may scramble PLS1 data and PLS2 data before BCH encoding and shortened and punctured LDPC encoding.


The BCH encoding/zero insertion block may perform outer encoding on the scrambled PLS 1/2 data using a shortened BCH code for PLS protection, and insert zero bits after BCH encoding. For PLS1 data only, output bits of zero insertion may be permitted before LDPC encoding.


The LDPC encoding block may encode an output of the BCH encoding/zero insertion block using an LDPC code. To generate a complete coded block, Cldpc and parity bits Pldpc are encoded systematically from each zero-inserted PLS information block Ildpc and appended thereto.






C
ldpc
=[I
ldpc
P
ldpc
]=[i
0
,i
1
, . . . ,i
K

ldpc

-1
,p
0
,p
1
, . . . ,p
N

ldpc

-K

ldpc

-1]  [Equation 1]


The LDPC parity punturing block may perform puncturing on the PLS1 data and the PLS2 data.


When shortening is applied to PLS1 data protection, some LDPC parity bits are punctured after LDPC encoding. In addition, for PLS2 data protection, LDPC parity bits of PLS2 are punctured after LDPC encoding. These punctured bits are not transmitted.


The bit interleaver 6010 may interleave each of shortened and punctured PLS1 data and PLS2 data.


The constellation mapper 6020 may map the bit-interleaved PLS1 data and PLS2 data to constellations.


The above-described blocks may be omitted or replaced by blocks having similar or identical functions.



FIG. 21 illustrates a bit interleaving process of PLS according to an embodiment of the present invention.


Each shortened and punctured PLS1 and PLS2 coded block is interleaved bit-by-bit as described in FIG. 22. Each block of additional parity bits is interleaved with the same block interleaving structure but separately.


In the case of BPSK, there are two branches for bit interleaving to duplicate FEC coded bits in the real and imaginary parts. Each coded block is written to the upper branch first. The bits are mapped to the lower branch by applying modulo NFEC addition with cyclic shifting value floor(NFEC/2), where NFEC is the length of each LDPC coded block after shortening and puncturing.


In other modulation cases, such as QSPK, QAM-16 and NUQ-64, FEC coded bits are written serially into the interleaver column-wise, where the number of columns is the same as the modulation order.


In the read operation, the bits for one constellation symbol are read out sequentially row-wise and fed into the bit demultiplexer block. These operations are continued until the end of the column.


Each bit interleaved group is demultiplexed bit-by-bit in a group before constellation mapping. Depending on modulation order, there are two mapping rules. In the case of BPSK and QPSK, the reliability of bits in a symbol is equal. Therefore, the bit group read out from the bit interleaving block is mapped to a QAM symbol without any operation.


In the cases of QAM-16 and NUQ-64 mapped to a QAM symbol, the rule of operation is described in FIG. 23(a). As shown in FIG. 23(a), i is bit group index corresponding to column index in bit interleaving.



FIG. 21 shows the bit demultiplexing rule for QAM-16. This operation continues until all bit groups are read from the bit interleaving block.



FIG. 22 illustrates a configuration of a broadcast signal reception apparatus for future broadcast services according to an embodiment of the present invention.


The broadcast signal reception apparatus for future broadcast services according to the embodiment of the present invention may correspond to the broadcast signal transmission apparatus for future broadcast services described with reference to FIG. 18.


The broadcast signal reception apparatus for future broadcast services according to the embodiment of the present invention may include a synchronization & demodulation module 9000, a frame parsing module 9010, a demapping & decoding module 9020, an output processor 9030 and a signaling decoding module 9040. A description will be given of operation of each module of the broadcast signal reception apparatus.


The synchronization & demodulation module 9000 may receive input signals through m Rx antennas, perform signal detection and synchronization with respect to a system corresponding to the broadcast signal reception apparatus, and carry out demodulation corresponding to a reverse procedure of a procedure performed by the broadcast signal transmission apparatus.


The frame parsing module 9010 may parse input signal frames and extract data through which a service selected by a user is transmitted. If the broadcast signal transmission apparatus performs interleaving, the frame parsing module 9010 may carry out deinterleaving corresponding to a reverse procedure of interleaving. In this case, positions of a signal and data that need to be extracted may be obtained by decoding data output from the signaling decoding module 9040 to restore scheduling information generated by the broadcast signal transmission apparatus.


The demapping & decoding module 9020 may convert input signals into bit domain data and then deinterleave the same as necessary. The demapping & decoding module 9020 may perform demapping of mapping applied for transmission efficiency and correct an error generated on a transmission channel through decoding. In this case, the demapping & decoding module 9020 may obtain transmission parameters necessary for demapping and decoding by decoding data output from the signaling decoding module 9040.


The output processor 9030 may perform reverse procedures of various compression/signal processing procedures which are applied by the broadcast signal transmission apparatus to improve transmission efficiency. In this case, the output processor 9030 may acquire necessary control information from data output from the signaling decoding module 9040. An output of the output processor 9030 corresponds to a signal input to the broadcast signal transmission apparatus and may be MPEG-TSs, IP streams (v4 or v6) and generic streams.


The signaling decoding module 9040 may obtain PLS information from a signal demodulated by the synchronization & demodulation module 9000. As described above, the frame parsing module 9010, the demapping & decoding module 9020 and the output processor 9030 may execute functions thereof using data output from the signaling decoding module 9040.


A frame according to an embodiment of the present invention is further divided into a number of OFDM symbols and a preamble. As shown in (d), the frame includes a preamble, one or more frame signaling symbols (FSSs), normal data symbols and a frame edge symbol (FES).


The preamble is a special symbol that enables fast futurecast UTB system signal detection and provides a set of basic transmission parameters for efficient transmission and reception of a signal. Details of the preamble will be described later.


A main purpose of the FSS is to carry PLS data. For fast synchronization and channel estimation, and hence fast decoding of PLS data, the FSS has a dense pilot pattern than a normal data symbol. The FES has exactly the same pilots as the FSS, which enables frequency-only interpolation within the FES and temporal interpolation, without extrapolation, for symbols immediately preceding the FES.



FIG. 23 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.



FIG. 23 illustrates the signaling hierarchy structure, which is split into three main parts corresponding to preamble signaling data 11000, PLS1 data 11010 and PLS2 data 11020. A purpose of a preamble, which is carried by a preamble symbol in every frame, is to indicate a transmission type and basic transmission parameters of the frame. PLS1 enables the receiver to access and decode the PLS2 data, which contains the parameters to access a DP of interest. PLS2 is carried in every frame and split into two main parts corresponding to PLS2-STAT data and PLS2-DYN data. Static and dynamic portions of PLS2 data are followed by padding, if necessary.


Preamble signaling data according to an embodiment of the present invention carries 21 bits of information that are needed to enable the receiver to access PLS data and trace DPs within the frame structure. Details of the preamble signaling data are as follows.


FFT_SIZE: This 2-bit field indicates an FFT size of a current frame within a frame group as described in the following Table 1.












TABLE 1







Value
FFT size









00
 8K FFT



01
16K FFT



10
32K FFT



11
Reserved










GI_FRACTION: This 3-bit field indicates a guard interval fraction value in a current superframe as described in the following Table 2.












TABLE 2







Value
GI_FRACTION









000
1/5 



001
1/10



010
1/20



011
1/40



100
1/80



101
 1/160



110 to 111
Reserved










EAC_FLAG: This 1-bit field indicates whether the EAC is provided in a current frame. If this field is set to ‘1’, an emergency alert service (EAS) is provided in the current frame. If this field set to ‘0’, the EAS is not carried in the current frame. This field may be switched dynamically within a superframe.


PILOT_MODE: This 1-bit field indicates whether a pilot mode is a mobile mode or a fixed mode for a current frame in a current frame group. If this field is set to ‘0’, the mobile pilot mode is used. If the field is set to ‘1’, the fixed pilot mode is used.


PAPR_FLAG: This 1-bit field indicates whether PAPR reduction is used for a current frame in a current frame group. If this field is set to a value of ‘1’, tone reservation is used for PAPR reduction. If this field is set to a value of ‘00’, PAPR reduction is not used.


RESERVED: This 7-bit field is reserved for future use.



FIG. 24 illustrates PLS1 data according to an embodiment of the present invention.


PLS1 data provides basic transmission parameters including parameters required to enable reception and decoding of PLS2. As mentioned above, the PLS1 data remain unchanged for the entire duration of one frame group. A detailed definition of the signaling fields of the PLS1 data is as follows.


PREAMBLE_DATA: This 20-bit field is a copy of preamble signaling data excluding EAC_FLAG.


NUM_FRAME_FRU: This 2-bit field indicates the number of the frames per FRU.


PAYLOAD_TYPE: This 3-bit field indicates a format of payload data carried in a frame group. PAYLOAD_TYPE is signaled as shown in Table 3.












TABLE 3







Value
Payload type









1XX
TS is transmitted.



X1X
IP stream is transmitted.



XX1
GS is transmitted.










NUM_FSS: This 2-bit field indicates the number of FSSs in a current frame.


SYSTEM_VERSION: This 8-bit field indicates a version of a transmitted signal format. SYSTEM_VERSION is divided into two 4-bit fields: a major version and a minor version.


Major version: The MSB corresponding to four bits of the SYSTEM_VERSION field indicate major version information. A change in the major version field indicates a non-backward-compatible change. A default value is ‘0000’. For a version described in this standard, a value is set to ‘0000’.


Minor version: The LSB corresponding to four bits of SYSTEM_VERSION field indicate minor version information. A change in the minor version field is backwards compatible.


CELL_ID: This is a 16-bit field which uniquely identifies a geographic cell in an ATSC network. An ATSC cell coverage area may include one or more frequencies depending on the number of frequencies used per futurecast UTB system. If a value of CELL_ID is not known or unspecified, this field is set to ‘0’.


NETWORK_ID: This is a 16-bit field which uniquely identifies a current ATSC network.


SYSTEM_ID: This 16-bit field uniquely identifies the futurecast UTB system within the ATSC network. The futurecast UTB system is a terrestrial broadcast system whose input is one or more input streams (TS, IP, GS) and whose output is an RF signal. The futurecast UTB system carries one or more PHY profiles and FEF, if any. The same futurecast UTB system may carry different input streams and use different RFs in different geographical areas, allowing local service insertion. The frame structure and scheduling are controlled in one place and are identical for all transmissions within the futurecast UTB system. One or more futurecast UTB systems may have the same SYSTEM_ID meaning that they all have the same physical layer structure and configuration.


The following loop includes FRU_PHY_PROFILE, FRU_FRAME_LENGTH, FRU_GI_FRACTION, and RESERVED which are used to indicate an FRU configuration and a length of each frame type. A loop size is fixed so that four PHY profiles (including an FEF) are signaled within the FRU. If NUM_FRAME_FRU is less than 4, unused fields are filled with zeros.


FRU_PHY_PROFILE: This 3-bit field indicates a PHY profile type of an (i+1)h (i is a loop index) frame of an associated FRU. This field uses the same signaling format as shown in Table 8.


FRU_FRAME_LENGTH: This 2-bit field indicates a length of an (i+1)th frame of an associated FRU. Using FRU_FRAME_LENGTH together with FRU_GI_FRACTION, an exact value of a frame duration may be obtained.


FRU_GI_FRACTION: This 3-bit field indicates a guard interval fraction value of an (i+1)th frame of an associated FRU. FRU_GI_FRACTION is signaled according to Table 7.


RESERVED: This 4-bit field is reserved for future use.


The following fields provide parameters for decoding the PLS2 data.


PLS2_FEC_TYPE: This 2-bit field indicates an FEC type used by PLS2 protection. The FEC type is signaled according to Table 4. Details of LDPC codes will be described later.












TABLE 4







Content
PLS2 FEC type









00
4K-1/4 and 7K-3/10 LDPC codes



01 to 11
Reserved










PLS2_MOD: This 3-bit field indicates a modulation type used by PLS2. The modulation type is signaled according to Table 5.












TABLE 5







Value
PLS2_MODE









000
BPSK



001
QPSK



010
QAM-16



011
NUQ-64



100 to 111
Reserved










PLS2_SIZE_CELL: This 15-bit field indicates Ctotal_partial_block, a size (specified as the number of QAM cells) of the collection of full coded blocks for PLS2 that is carried in a current frame group. This value is constant during the entire duration of the current frame group.


PLS2_STAT_SIZE_BIT: This 14-bit field indicates a size, in bits, of PLS2-STAT for a current frame group. This value is constant during the entire duration of the current frame group.


PLS2_DYN_SIZE_BIT: This 14-bit field indicates a size, in bits, of PLS2-DYN for a current frame group. This value is constant during the entire duration of the current frame group.


PLS2_REP_FLAG: This 1-bit flag indicates whether a PLS2 repetition mode is used in a current frame group. When this field is set to a value of ‘1’, the PLS2 repetition mode is activated. When this field is set to a value of ‘0’, the PLS2 repetition mode is deactivated.


PLS2_REP_SIZE_CELL: This 15-bit field indicates Ctotal_partial_block, a size (specified as the number of QAM cells) of the collection of partial coded blocks for PLS2 carried in every frame of a current frame group, when PLS2 repetition is used. If repetition is not used, a value of this field is equal to 0. This value is constant during the entire duration of the current frame group.


PLS2_NEXT_FEC_TYPE: This 2-bit field indicates an FEC type used for PLS2 that is carried in every frame of a next frame group. The FEC type is signaled according to Table 10.


PLS2_NEXT_MOD: This 3-bit field indicates a modulation type used for PLS2 that is carried in every frame of a next frame group. The modulation type is signaled according to Table 11.


PLS2_NEXT_REP_FLAG: This 1-bit flag indicates whether the PLS2 repetition mode is used in a next frame group. When this field is set to a value of ‘1’, the PLS2 repetition mode is activated. When this field is set to a value of ‘0’, the PLS2 repetition mode is deactivated.


PLS2_NEXT_REP_SIZE_CELL: This 15-bit field indicates Ctotal_full_block, a size (specified as the number of QAM cells) of the collection of full coded blocks for PLS2 that is carried in every frame of a next frame group, when PLS2 repetition is used. If repetition is not used in the next frame group, a value of this field is equal to 0. This value is constant during the entire duration of a current frame group.


PLS2_NEXT_REP_STAT_SIZE_BIT: This 14-bit field indicates a size, in bits, of PLS2-STAT for a next frame group. This value is constant in a current frame group.


PLS2_NEXT_REP_DYN_SIZE_BIT: This 14-bit field indicates the size, in bits, of the PLS2-DYN for a next frame group. This value is constant in a current frame group.


PLS2_AP_MODE: This 2-bit field indicates whether additional parity is provided for PLS2 in a current frame group. This value is constant during the entire duration of the current frame group. Table 6 below provides values of this field. When this field is set to a value of ‘00’, additional parity is not used for the PLS2 in the current frame group.












TABLE 6







Value
PLS2-AP mode









00
AP is not provided



01
AP1 mode



10 to 11
Reserved










PLS2_AP_SIZE_CELL: This 15-bit field indicates a size (specified as the number of QAM cells) of additional parity bits of PLS2. This value is constant during the entire duration of a current frame group.


PLS2_NEXT_AP MODE: This 2-bit field indicates whether additional parity is provided for PLS2 signaling in every frame of a next frame group. This value is constant during the entire duration of a current frame group. Table 12 defines values of this field.


PLS2_NEXT_AP SIZE_CELL: This 15-bit field indicates a size (specified as the number of QAM cells) of additional parity bits of PLS2 in every frame of a next frame group. This value is constant during the entire duration of a current frame group.


RESERVED: This 32-bit field is reserved for future use.


CRC_32: A 32-bit error detection code, which is applied to all PLS1 signaling.



FIG. 25 illustrates PLS2 data according to an embodiment of the present invention.



FIG. 25 illustrates PLS2-STAT data of the PLS2 data. The PLS2-STAT data is the same within a frame group, while PLS2-DYN data provides information that is specific for a current frame.


Details of fields of the PLS2-STAT data are described below.


FIC_FLAG: This 1-bit field indicates whether the FIC is used in a current frame group. If this field is set to ‘1’, the FIC is provided in the current frame. If this field set to ‘0’, the FIC is not carried in the current frame. This value is constant during the entire duration of a current frame group.


AUX_FLAG: This 1-bit field indicates whether an auxiliary stream is used in a current frame group. If this field is set to ‘1’, the auxiliary stream is provided in a current frame. If this field set to ‘0’, the auxiliary stream is not carried in the current frame. This value is constant during the entire duration of current frame group.


NUM_DP: This 6-bit field indicates the number of DPs carried within a current frame. A value of this field ranges from 1 to 64, and the number of DPs is NUM_DP+1.


DP_ID: This 6-bit field identifies uniquely a DP within a PHY profile.


DP_TYPE: This 3-bit field indicates a type of a DP. This is signaled according to the following Table 7.












TABLE 7







Value
DP Type









000
DP Type 1



001
DP Type 2



010 to 111
Reserved










DP_GROUP_ID: This 8-bit field identifies a DP group with which a current DP is associated. This may be used by the receiver to access DPs of service components associated with a particular service having the same DP_GROUP_ID.


BASE_DP_ID: This 6-bit field indicates a DP carrying service signaling data (such as PSI/SI) used in a management layer. The DP indicated by BASE_DP_ID may be either a normal DP carrying the service signaling data along with service data or a dedicated DP carrying only the service signaling data.


DP_FEC_TYPE: This 2-bit field indicates an FEC type used by an associated DP. The FEC type is signaled according to the following Table 8.












TABLE 8







Value
FEC_TYPE









00
16K LDPC



01
64K LDPC



10 to 11
Reserved










DP_COD: This 4-bit field indicates a code rate used by an associated DP. The code rate is signaled according to the following Table 9.












TABLE 9







Value
Code rate









0000
5/15



0001
6/15



0010
7/15



0011
8/15



0100
9/15



0101
10/15 



0110
11/15 



0111
12/15 



1000
13/15 



1001 to 1111
Reserved










DP_MOD: This 4-bit field indicates modulation used by an associated DP. The modulation is signaled according to the following Table 10.












TABLE 10







Value
Modulation









0000
QPSK



0001
QAM-16



0010
NUQ-64



0011
NUQ-256



0100
NUQ-1024



0101
NUC-16



0110
NUC-64



0111
NUC-256



1000
NUC-1024



1001 to 1111
Reserved










DP_SSD_FLAG: This 1-bit field indicates whether an SSD mode is used in an associated DP. If this field is set to a value of ‘1’, SSD is used. If this field is set to a value of ‘0’, SSD is not used.


The following field appears only if PHY_PROFILE is equal to ‘010’, which indicates the advanced profile:


DP_MIMO: This 3-bit field indicates which type of MIMO encoding process is applied to an associated DP. A type of MIMO encoding process is signaled according to the following Table 11.












TABLE 11







Value
MIMO encoding









000
FR-SM



001
FRFD-SM



010 to 111
Reserved










DP_TI_TYPE: This 1-bit field indicates a type of time interleaving. A value of ‘0’ indicates that one TI group corresponds to one frame and contains one or more TI blocks. A value of ‘1’ indicates that one TI group is carried in more than one frame and contains only one TI block.


DP_TI_LENGTH: The use of this 2-bit field (allowed values are only 1, 2, 4, and 8) is determined by values set within the DP_TI_TYPE field as follows.


If DP_TI_TYPE is set to a value of ‘1’, this field indicates PI, the number of frames to which each TI group is mapped, and one TI block is present per TI group (NTI=1). Allowed values of PI with the 2-bit field are defined in Table 12 below.


If DP_TI_TYPE is set to a value of ‘0’, this field indicates the number of TI blocks NTI per TI group, and one TI group is present per frame (PI=1). Allowed values of P with the 2-bit field are defined in the following Table 12.











TABLE 12





2-bit field
PI
NTI







00
1
1


01
2
2


10
4
3


11
8
4









DP_FRAME_INTERVAL: This 2-bit field indicates a frame interval (IJUMP) within a frame group for an associated DP and allowed values are 1, 2, 4, and 8 (the corresponding 2-bit field is ‘00’, ‘01’, ‘10’, or ‘11’, respectively). For DPs that do not appear every frame of the frame group, a value of this field is equal to an interval between successive frames. For example, if a DP appears on frames 1, 5, 9, 13, etc., this field is set to a value of ‘4’. For DPs that appear in every frame, this field is set to a value of ‘1’.


DP_TI_BYPASS: This 1-bit field determines availability of the time interleaver 5050. If time interleaving is not used for a DP, a value of this field is set to ‘1’. If time interleaving is used, the value is set to ‘0’.


DP_FIRST_FRAME_IDX: This 5-bit field indicates an index of a first frame of a superframe in which a current DP occurs. A value of DP_FIRST_FRAME_IDX ranges from 0 to 31.


DP_NUM_BLOCK_MAX: This 10-bit field indicates a maximum value of DP_NUM_BLOCKS for this DP. A value of this field has the same range as DP_NUM_BLOCKS.


DP_PAYLOAD_TYPE: This 2-bit field indicates a type of payload data carried by a given DP. DP_PAYLOAD_TYPE is signaled according to the following Table 13.










TABLE 13





Value
Payload type







00
TS


01
IP


10
GS


11
Reserved









DP_INBAND_MODE: This 2-bit field indicates whether a current DP carries in-band signaling information. An in-band signaling type is signaled according to the following Table 14.










TABLE 14





Value
In-band mode







00
In-band signaling is not carried.


01
INBAND-PLS is carried


10
INBAND-ISSY is carried


11
INBAND-PLS and INBAND-ISSY are carried









DP_PROTOCOL_TYPE: This 2-bit field indicates a protocol type of a payload carried by a given DP. The protocol type is signaled according to Table 15 below when input payload types are selected.












TABLE 15






If
If
If



DP_PAYLOAD_TYPE
DP_PAYLOAD_TYPE
DP_PAYLOAD_TYPE


Value
is TS
is IP
is GS







00
MPEG2-TS
IPv4
(Note)


01
Reserved
IPv6
Reserved


10
Reserved
Reserved
Reserved


11
Reserved
Reserved
Reserved









DP_CRC_MODE: This 2-bit field indicates whether CRC encoding is used in an input formatting block. A CRC mode is signaled according to the following Table 16.










TABLE 16





Value
CRC mode







00
Not used


01
CRC-8


10
CRC-16


11
CRC-32









DNP_MODE: This 2-bit field indicates a null-packet deletion mode used by an associated DP when DP_PAYLOAD_TYPE is set to TS (‘00’). DNP_MODE is signaled according to Table 17 below. If DP_PAYLOAD_TYPE is not TS (‘00’), DNP_MODE is set to a value of ‘00’.










TABLE 17





Value
Null-packet deletion mode







00
Not used


01
DNP-NORMAL


10
DNP-OFFSET


11
Reserved









ISSY_MODE: This 2-bit field indicates an ISSY mode used by an associated DP when DP_PAYLOAD_TYPE is set to TS (‘00’). ISSY_MODE is signaled according to Table 18 below. If DP_PAYLOAD_TYPE is not TS (‘00’), ISSY_MODE is set to the value of ‘00’.










TABLE 18





Value
ISSY mode







00
Not used


01
ISSY-UP


10
ISSY-BBF


11
Reserved









HC_MODE_TS: This 2-bit field indicates a TS header compression mode used by an associated DP when DP_PAYLOAD_TYPE is set to TS (‘00’). HC_MODE_TS is signaled according to the following Table 19.










TABLE 19





Value
Header compression mode







00
HC_MODE_TS 1


01
HC_MODE_TS 2


10
HC_MODE_TS 3


11
HC_MODE_TS 4









HC_MODE_IP: This 2-bit field indicates an IP header compression mode when DP_PAYLOAD_TYPE is set to IP (‘01’). HC_MODE_IP is signaled according to the following Table 20.










TABLE 20





Value
Header compression mode







00
No compression


01
HC_MODE_IP 1


10 to 11
Reserved









PID: This 13-bit field indicates the PID number for TS header compression when DP_PAYLOAD_TYPE is set to TS (‘00’) and HC_MODE_TS is set to ‘01’ or ‘10’.


RESERVED: This 8-bit field is reserved for future use.


The following fields appear only if FIC_FLAG is equal to ‘1’.


FIC_VERSION: This 8-bit field indicates the version number of the FIC.


FIC_LENGTH_BYTE: This 13-bit field indicates the length, in bytes, of the FIC.


RESERVED: This 8-bit field is reserved for future use.


The following fields appear only if AUX_FLAG is equal to ‘1’.


NUM_AUX: This 4-bit field indicates the number of auxiliary streams. Zero means no auxiliary stream is used.


AUX_CONFIG_RFU: This 8-bit field is reserved for future use.


AUX_STREAM_TYPE: This 4-bit is reserved for future use for indicating a type of a current auxiliary stream.


AUX_PRIVATE_CONFIG: This 28-bit field is reserved for future use for signaling auxiliary streams.



FIG. 26 illustrates PLS2 data according to another embodiment of the present invention.



FIG. 26 illustrates PLS2-DYN data of the PLS2 data. Values of the PLS2-DYN data may change during the duration of one frame group while sizes of fields remain constant.


Details of fields of the PLS2-DYN data are as below.


FRAME_INDEX: This 5-bit field indicates a frame index of a current frame within a superframe. An index of a first frame of the superframe is set to ‘0’.


PLS_CHANGE_COUNTER: This 4-bit field indicates the number of superframes before a configuration changes. A next superframe with changes in the configuration is indicated by a value signaled within this field. If this field is set to a value of ‘0000’, it means that no scheduled change is foreseen. For example, a value of ‘1’ indicates that there is a change in the next superframe.


FIC_CHANGE_COUNTER: This 4-bit field indicates the number of superframes before a configuration (i.e., content of the FIC) changes. A next superframe with changes in the configuration is indicated by a value signaled within this field. If this field is set to a value of ‘0000’, it means that no scheduled change is foreseen. For example, a value of ‘0001’ indicates that there is a change in the next superframe.


RESERVED: This 16-bit field is reserved for future use.


The following fields appear in a loop over NUM_DP, which describe parameters associated with a DP carried in a current frame.


DP_ID: This 6-bit field uniquely indicates a DP within a PHY profile.


DP_START: This 15-bit (or 13-bit) field indicates a start position of the first of the DPs using a DPU addressing scheme. The DP_START field has differing length according to the PHY profile and FFT size as shown in the following Table 21.












TABLE 21









DP_START field size












PHY profile
64K
16K







Base
13 bits
15 bits



Handheld

13 bits



Advanced
13 bits
15 its 










DP_NUM_BLOCK: This 10-bit field indicates the number of FEC blocks in a current TI group for a current DP. A value of DP_NUM_BLOCK ranges from 0 to 1023.


RESERVED: This 8-bit field is reserved for future use.


The following fields indicate FIC parameters associated with the EAC.


EAC_FLAG: This 1-bit field indicates the presence of the EAC in a current frame. This bit is the same value as EAC_FLAG in a preamble.


EAS_WAKE_UP_VERSION_NUM: This 8-bit field indicates a version number of a wake-up indication.


If the EAC_FLAG field is equal to ‘1’, the following 12 bits are allocated to EAC_LENGTH_BYTE.


If the EAC_FLAG field is equal to ‘0’, the following 12 bits are allocated to EAC_COUNTER.


EAC_LENGTH_BYTE: This 12-bit field indicates a length, in bytes, of the EAC.


EAC_COUNTER: This 12-bit field indicates the number of frames before a frame where the EAC arrives.


The following fields appear only if the AUX_FLAG field is equal to ‘1’.


AUX_PRIVATE_DYN: This 48-bit field is reserved for future use for signaling auxiliary streams. A meaning of this field depends on a value of AUX_STREAM_TYPE in a configurable PLS2-STAT.


CRC_32: A 32-bit error detection code, which is applied to the entire PLS2.



FIG. 27 illustrates a logical structure of a frame according to an embodiment of the present invention.


As above mentioned, the PLS, EAC, FIC, DPs, auxiliary streams and dummy cells are mapped to the active carriers of OFDM symbols in a frame. PLS1 and PLS2 are first mapped to one or more FSSs. Thereafter, EAC cells, if any, are mapped to an immediately following PLS field, followed next by FIC cells, if any. The DPs are mapped next after the PLS or after the EAC or the FIC, if any. Type 1 DPs are mapped first and Type 2 DPs are mapped next. Details of types of the DPs will be described later. In some cases, DPs may carry some special data for EAS or service signaling data. The auxiliary streams or streams, if any, follow the DPs, which in turn are followed by dummy cells. When the PLS, EAC, FIC, DPs, auxiliary streams and dummy data cells are mapped all together in the above mentioned order, i.e. the PLS, EAC, FIC, DPs, auxiliary streams and dummy data cells, cell capacity in the frame is exactly filled.



FIG. 28 illustrates PLS mapping according to an embodiment of the present invention.


PLS cells are mapped to active carriers of FSS(s). Depending on the number of cells occupied by PLS, one or more symbols are designated as FSS(s), and the number of FSS(s) NFSS is signaled by NUM_FSS in PLS1. The FSS is a special symbol for carrying PLS cells. Since robustness and latency are critical issues in the PLS, the FSS(s) have higher pilot density, allowing fast synchronization and frequency-only interpolation within the FSS.


PLS cells are mapped to active carriers of the FSS(s) in a top-down manner as shown in the figure. PLS1 cells are mapped first from a first cell of a first FSS in increasing order of cell index. PLS2 cells follow immediately after a last cell of PLS1 and mapping continues downward until a last cell index of the first FSS. If the total number of required PLS cells exceeds the number of active carriers of one FSS, mapping proceeds to a next FSS and continues in exactly the same manner as the first FSS.


After PLS mapping is completed, DPs are carried next. If an EAC, an FIC or both are present in a current frame, the EAC and the FIC are placed between the PLS and “normal” DPs.


Hereinafter, description will be given of encoding an FEC structure according to an embodiment of the present invention. As above mentioned, the data FEC encoder may perform FEC encoding on an input BBF to generate an FECBLOCK procedure using outer coding (BCH), and inner coding (LDPC). The illustrated FEC structure corresponds to the FECBLOCK. In addition, the FECBLOCK and the FEC structure have same value corresponding to a length of an LDPC codeword.


As described above, BCH encoding is applied to each BBF (Kbch bits), and then LDPC encoding is applied to BCH-encoded BBF (Kldpc bits=Nbch bits).


A value of Nldpc is either 64,800 bits (long FECBLOCK) or 16,200 bits (short FECBLOCK).


Table 22 and Table 23 below show FEC encoding parameters for the long FECBLOCK and the short FECBLOCK, respectively.














TABLE 22









BCH







error correction


LDPC rate
Nldpc
Kldpc
Kbch
capability
Nbch − Kbch







5/15
64800
21600
21408
12
192


6/15

25920
25728


7/15

30240
30048


8/15

34560
34368


9/15

38880
38688


10/15 

43200
43008


11/15 

47520
47328


12/15 

51840
51648


13/15 

56160
55968





















TABLE 23









BCH







error correction


LDPC rate
Nldpc
Kldpc
Kbch
capability
Nbch − Kbch




















5/15
16200
5400
5232
12
168


6/15

6480
6312


7/15

7560
7392


8/15

8640
8472


9/15

9720
9552


10/15 

10800
10632


11/15 

11880
11712


12/15 

12960
12792


13/15 

14040
13872









Detailed operations of BCH encoding and LDPC encoding are as below.


A 12-error correcting BCH code is used for outer encoding of the BBF. A BCH generator polynomial for the short FECBLOCK and the long FECBLOCK are obtained by multiplying all polynomials together.


LDPC code is used to encode an output of outer BCH encoding. To generate a completed Bldpc (FECBLOCK), Pldpc (parity bits) is encoded systematically from each Ildpc (BCH—encoded BBF), and appended to Ildpc. The completed Bldpc (FECBLOCK) is expressed by the following Equation.






B
ldpc
=[I
ldpc
P
ldpc
]=[i
0
,i
1
, . . . ,i
K

ldpc

-1
,p
0
,p
1
, . . . ,p
N

ldpc

-K

ldpc

-1]  [Equation 2]


Parameters for the long FECBLOCK and the short FECBLOCK are given in the above Tables 22 and 23, respectively.


A detailed procedure to calculate Nldpc−Kldpc parity bits for the long FECBLOCK, is as follows.


1) Initialize the parity bits






p
0
=p
1
=p
2
= . . . =p
N

ldpc

-K

ldpc

-1=0  [Equation 3]


2) Accumulate a first information bit—i0, at a parity bit address specified in a first row of addresses of a parity check matrix. Details of the addresses of the parity check matrix will be described later. For example, for the rate of 13/15,






p
983
=p
983
⊕i
0
p
2815
=p
2815
⊕i
0






p
4837
=p
4837
⊕i
0
p
4989
=p
4989
⊕i
0






p
6138
=p
6138
⊕i
0
p
6458
=p
6458
⊕i
0






p
6921
=p
6921
⊕i
0
p
6974
=p
6974
⊕i
0






p
7572
=p
7572
⊕i
0
p
8260
=p
8260
⊕i
0






p
8496
=p
8496
⊕i
0  [Equation 4]


3) For the next 359 information bits, is, s=1, 2, . . . , 359, accumulate is at parity bit addresses using following Equation.





{x+(s mod 360)×Qldpc} mod (Nldpc−Kldpc)  [Equation 5]


Here, x denotes an address of a parity bit accumulator corresponding to a first bit i0, and Qldpc is a code rate dependent constant specified in the addresses of the parity check matrix. Continuing with the example, Qldpc=24 for the rate of 13/15, so for an information bit i1, the following operations are performed.






p
1007
=p
1007
⊕i
1
p
2839
=p
2839
⊕i
1






p
4861
=p
4861
⊕i
1
p
5013
=p
5013
⊕i
1






p
6162
=p
6162
⊕i
1
p
6482
=p
6482
⊕i
1






p
6945
=p
6945
⊕i
1
p
6998
=p
6998
⊕i
1






p
7596
=p
7596
⊕i
1
p
8284
=p
8284
⊕i
1






p
8520
=p
8520
⊕i
1  [Equation 6]


4) For a 361th information bit i360, an address of the parity bit accumulator is given in a second row of the addresses of the parity check matrix. In a similar manner, addresses of the parity bit accumulator for the following 359 information bits is, s=361, 362, . . . , 719 are obtained using Equation 6, where x denotes an address of the parity bit accumulator corresponding to the information bit i360, i.e., an entry in the second row of the addresses of the parity check matrix.


5) In a similar manner, for every group of 360 new information bits, a new row from the addresses of the parity check matrix is used to find the address of the parity bit accumulator.


After all of the information bits are exhausted, a final parity bit is obtained as below.


6) Sequentially perform the following operations starting with i=1.






p
i
=p
i
⊕p
i-1
,i=1,2, . . . ,Nldpc−Kldpc−1  [Equation 7]


Here, final content of pi (i=0, 1, . . . , Nldpc−Kldpc−1) is equal to a parity bit pi.












TABLE 24







Code rate
Qldpc



















5/15
120



6/15
108



7/15
96



8/15
84



9/15
72



10/15 
60



11/15 
48



12/15 
36



13/15 
24










This LDPC encoding procedure for the short FECBLOCK is in accordance with t LDPC encoding procedure for the long FECBLOCK, except that Table 24 is replaced with Table 25, and the addresses of the parity check matrix for the long FECBLOCK are replaced with the addresses of the parity check matrix for the short FECBLOCK.












TABLE 25







Code rate
Qldpc



















5/15
30



6/15
27



7/15
24



8/15
21



9/15
18



10/15 
15



11/15 
12



12/15 
9



13/15 
6











FIG. 29 illustrates time interleaving according to an embodiment of the present invention.


(a) to (c) show examples of a TI mode.


A time interleaver operates at the DP level. Parameters of time interleaving (TI) may be set differently for each DP.


The following parameters, which appear in part of the PLS2-STAT data, configure the TI.


DP_TI_TYPE (allowed values: 0 or 1): This parameter represents the TI mode. The value of ‘0’ indicates a mode with multiple TI blocks (more than one TI block) per TI group. In this case, one TI group is directly mapped to one frame (no inter-frame interleaving). The value of ‘1’ indicates a mode with only one TI block per TI group. In this case, the TI block may be spread over more than one frame (inter-frame interleaving).


DP_TI_LENGTH: If DP_TI_TYPE=‘0’, this parameter is the number of TI blocks NTI per TI group. For DP_TI_TYPE=‘1’, this parameter is the number of frames P spread from one TI group.


DP_NUM_BLOCK_MAX (allowed values: 0 to 1023): This parameter represents the maximum number of XFECBLOCKs per TI group.


DP_FRAME_INTERVAL (allowed values: 1, 2, 4, and 8): This parameter represents the number of the frames IJUMP between two successive frames carrying the same DP of a given PHY profile.


DP_TI_BYPASS (allowed values: 0 or 1): If time interleaving is not used for a DP, this parameter is set to ‘1’. This parameter is set to ‘0’ if time interleaving is used.


Additionally, the parameter DP_NUM_BLOCK from the PLS2-DYN data is used to represent the number of XFECBLOCKs carried by one TI group of the DP.


When time interleaving is not used for a DP, the following TI group, time interleaving operation, and TI mode are not considered. However, the delay compensation block for the dynamic configuration information from the scheduler may still be required. In each DP, the XFECBLOCKs received from SSD/MIMO encoding are grouped into TI groups. That is, each TI group is a set of an integer number of XFECBLOCKs and contains a dynamically variable number of XFECBLOCKs. The number of XFECBLOCKs in the TI group of index n is denoted by NxBLOCK_Group(n) and is signaled as DP_NUM_BLOCK in the PLS2-DYN data. Note that NxBLOCK_Group(n) may vary from a minimum value of 0 to a maximum value of NxBLOCK_Group_MAX (corresponding to DP_NUM_BLOCK_MAX), the largest value of which is 1023.


Each TI group is either mapped directly to one frame or spread over PI frames. Each TI group is also divided into more than one TI block (NTI), where each TI block corresponds to one usage of a time interleaver memory. The TI blocks within the TI group may contain slightly different numbers of XFECBLOCKs. If the TI group is divided into multiple TI blocks, the TI group is directly mapped to only one frame. There are three options for time interleaving (except an extra option of skipping time interleaving) as shown in the following Table 26.










TABLE 26





Modes
Descriptions







Option 1
Each TI group contains one TI block and is mapped directly to



one frame as shown in (a). This option is signaled in PLS2-



STAT by DP_TI_TYPE = ‘0’ and DP_TI_LENGTH =



‘1’ (NTI = 1).


Option 2
Each TI group contains one TI block and is mapped to more



than one frame. (b) shows an example, where one TI



group is mapped to two frames, i.e., DP_TI_LENGTH =



‘2’ (PI = 2) and DP_FRAME_INTERVAL (IJUMP = 2).



This provides greater time diversity for low data-rate services.



This option is signaled in PLS2-STAT by



DP_TI_TYPE = ‘1’.


Option 3
Each TI group is divided into multiple TI blocks and is



mapped directly to one frame as shown in (c). Each TI block



may use a full TI memory so as to provide a maximum bit-



rate for a DP. This option is signaled in PLS2-STAT by



DP_TI_TYPE = ‘0’ and DP_TI_LENGTH =



NTI, while PI = 1.









Typically, the time interleaver may also function as a buffer for DP data prior to a process of frame building. This is achieved by means of two memory banks for each DP. A first TI block is written to a first bank. A second TI block is written to a second bank while the first bank is being read from and so on.


The TI is a twisted row-column block interleaver. For an sth TI block of an nthTI group, the number of rows Nr of a TI memory is equal to the number of cells Ncells, i.e., Nr=Ncells while the number of columns Nc is equal to the number NxBLOCK_TI(n,s).



FIG. 30 illustrates a basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.



FIG. 30(a) shows a write operation in the time interleaver and FIG. 30(b) shows a read operation in the time interleaver. A first XFECBLOCK is written column-wise into a first column of a TI memory, and a second XFECBLOCK is written into a next column, and so on as shown in (a). Then, in an interleaving array, cells are read diagonal-wise. During diagonal-wise reading from a first row (rightwards along a row beginning with a left-most column) to a last row, Nr cells are read out as shown in (b). In detail, assuming zn,s,i(i=0, . . . , NrNc) as a TI memory cell position to be read sequentially, a reading process in such an interleaving array is performed by calculating a row index Rn,s,i, a column index Cn,s,i, and an associated twisting parameter Tn,s,i as in the following Equation.










GENERATE


(


R

n
,
s
,
i


,

C

n
,
s
,
i



)


=





{







R

n
,
s
,
i


=

mod


(

i
,

N
r


)



,






T

n
,
s
,
i


=

mod


(



S
shift

×

R

n
,
s
,
i



,

N
c


)



,






C

n
,
s
,
i


=

mod


(



T

n
,
s
,
i


+



i

N
r





,

N
c


)








}





[

Equation





8

]







Here, Sshift is a common shift value for a diagonal-wise reading process regardless of NxBLOCK_TI(n,s), and the shift value is determined by NxBLOCK_TI_MAX given in PLS2-STAT as in the following Equation.









for






{









N


xBLOCK

_

TI



_

MAX




=







N


xBLOCK

_

TI



_

MAX



+
1








if






N


xBLOCK

_

TI



_

MAX




mod





2

=
0










N


xBLOCK

_

TI



_

MAX




=







N


xBLOCK

_

TI



_

MAX



,








if






N


xBLOCK

_

TI



_

MAX




mod





2

=
1




,










S
shift

=



N


xBLOCK

_

TI



_

MAX




-
1

2








[

Equation





9

]







As a result, cell positions to be read are calculated by coordinates zn,s,i=NrCn,s,i+Rn,s,i.



FIG. 31 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.


More specifically, FIG. 31 illustrates an interleaving array in a TI memory for each TI group, including virtual XFECBLOCKs when NxBLOCK_TI(0,0)=3, NxBLOCK_TI(1,0)=6, and NxBLOCK_TI(2,0)=5.


A variable number NxBLOCK_TI(n,s)=Nr may be less than or equal to NxBLOCK_TI_MAX′. Thus, in order to achieve single-memory deinterleaving at a receiver side regardless of NxBLOCK_TI(n,s), the interleaving array for use in the twisted row-column block interleaver is set to a size of Nr×Nc=Ncells×NxBLOCK_TI_MAX′ by inserting the virtual XFECBLOCKs into the TI memory and a reading process is accomplished as in the following Equation.














[Equation 10]









p = 0;



for i = 0;i < NcellsNxBLOCKTIMAX′;i = i + 1



{GENERATE (Rn,s,i,Cn,s,i);



Vi = NrCn,s,j + Rn,s,j



 if Vi < NcellsNxBLOCKTI(n,s)



 {



  Zn,s,p = Vi; p = p + 1;



  }



}










The number of TI groups is set to 3. An option of the time interleaver is signaled in the PLS2-STAT data by DP_TI_TYPE=‘0’, DP_FRAME_INTERVAL=‘1’, and DP_TI_LENGTH=‘1’, i.e., NTI=1, IJUMP=1, and PI=1. The number of XFECBLOCKs, each of which has Ncells=30 cells, per TI group is signaled in the PLS2-DYN data by NxBLOCK_TI(0,0)=3, NxBLOCK_TI(1,0)=6, and NxBLOCK_TI(2,0)=5, respectively. A maximum number of XFECBLOCKs is signaled in the PLS2-STAT data by NxBLOCK_Group_MAX, which leads to └NxBLOCK_Group_MAX|NTI┘=NxBLOCK_TI_MAX=6.


The purpose of the Frequency Interleaver, which operates on data corresponding to a single OFDM symbol, is to provide frequency diversity by randomly interleaving data cells received from the frame builder. In order to get maximum interleaving gain in a single frame, a different interleaving-sequence is used for every OFDM symbol pair comprised of two sequential OFDM symbols.


Therefore, the frequency interleaver according to the present embodiment may include an interleaving address generator for generating an interleaving address for applying corresponding data to a symbol pair.



FIG. 32 illustrates an interleaving address generator including a main pseudo-random binary sequence (PRBS) generator and a sub-PRBS generator according to each FFT mode according to an embodiment of the present invention.


(a) shows the block diagrams of the interleaving-address generator for 8K FFT mode, (b) shows the block diagrams of the interleaving-address generator for 16K FFT mode and (c) shows the block diagrams of the interleaving-address generator for 32K FFT mode.


The interleaving process for the OFDM symbol pair is described as follows, exploiting a single interleaving-sequence. First, available data cells (the output cells from the Cell Mapper) to be interleaved in one OFDM symbol Om,l is defined as Om,l=[xm,l,0, . . . , xm,l,p, . . . , xm,l,Ndata-1] for l=0, . . . , Nsym−1, where xm,l,p is the pth cell of the lth OFDM symbol in the mth frame and Ndata is the number of data cells: Ndata=CFSS for the frame signaling symbol(s), Ndata=Cdata for the normal data, and Ndata=CFES for the frame edge symbol. In addition, the interleaved data cells are defined as Pm,l=[vm,l,0, . . . , vm,l,Ndata-1] for l=0, . . . , Nsym−1.


For the OFDM symbol pair, the interleaved OFDM symbol pair is given by vm,l,Hl(p)=xm,l,p, p=0, . . . , Ndata−1, for the first OFDM symbol of each pair vm,l,p=xm,l,Hl(p), p=0, . . . , Ndata−1, for the second OFDM symbol of each pair, where Hl(p) is the interleaving


address generated by a PRBS generator.



FIG. 33 illustrates a main PRBS used for all FFT modes according to an embodiment of the present invention.


(a) illustrates the main PRBS, and (b) illustrates a parameter Nmax for each FFF mode.



FIG. 34 illustrates a sub-PRBS used for FFT modes and an interleaving address for frequency interleaving according to an embodiment of the present invention.


(a) illustrates a sub-PRBS generator, and (b) illustrates an interleaving address for frequency interleaving. A cyclic shift value according to an embodiment of the present invention may be referred to as a symbol offset.



FIG. 35 illustrates a write operation of a time interleaver according to an embodiment of the present invention.



FIG. 35 illustrates a write operation for two TI groups.


A left block in the figure illustrates a TI memory address array, and right blocks in the figure illustrate a write operation when two virtual FEC blocks and one virtual FEC block are inserted into heads of two contiguous TI groups, respectively.


Hereinafter, description will be given of a configuration of a time interleaver and a time interleaving method using both a convolutional interleaver (CI) and a block interleaver (BI) or selectively using either the CI or the BI according to a physical layer pipe (PLP) mode. A PLP according to an embodiment of the present invention is a physical path corresponding to the same concept as that of the above-described DP, and a name of the PLP may be changed by a designer.


A PLP mode according to an embodiment of the present invention may include a single PLP mode or a multi-PLP mode according to the number of PLPs processed by a broadcast signal transmitter or a broadcast signal transmission apparatus. The single PLP mode corresponds to a case in which one PLP is processed by the broadcast signal transmission apparatus. The single PLP mode may be referred to as a single PLP.


The multi-PLP mode corresponds to a case in which one or more PLPs are processed by the broadcast signal transmission apparatus. The multi-PLP mode may be referred to as multiple PLPs.


In the present invention, time interleaving in which different time interleaving schemes are applied according to PLP modes may be referred to as hybrid time interleaving. Hybrid time interleaving according to an embodiment of the present invention is applied for each PLP (or at each PLP level) in the multi-PLP mode.



FIG. 36 illustrates an interleaving type applied according to the number of PLPs in a table.


In a time interleaving according to an embodiment of the present invention, an interleaving type may be determined based on a value of PLP_NUM. PLP_NUM is a signaling field indicating a PLP mode. When PLP_NUM has a value of 1, the PLP mode corresponds to a single PLP. The single PLP according to the present embodiment may be applied only to a CI.


When PLP_NUM has a value greater than 1, the PLP mode corresponds to multiple PLPs. The multiple PLPs according to the present embodiment may be applied to the CI and a BI. In this case, the CI may perform inter-frame interleaving, and the BI may perform intra-frame interleaving.



FIG. 37 is a block diagram including a first example of a structure of a hybrid time interleaver described above.


The hybrid time interleaver according to the first example may include a BI and a CI. The time interleaver of the present invention may be positioned between a BICM chain block and a frame builder.


The BICM chain block illustrated in FIGS. 37 and 38 may include the blocks in the processing block 5000 of the BICM block illustrated in FIG. 19 except for the time interleaver 5050. The frame builder illustrated in FIGS. 37 and 38 may perform the same function as that of the frame building block 1020 of FIG. 18.


As described in the foregoing, it is possible to determine whether to apply the BI according to the first example of the structure of the hybrid time interleaver depending on values of PLP_NUM. That is, when PLP_NUM=1, the BI is not applied (BI is turned OFF) and only the CI is applied. When PLP_NUM>1, both the BI and the CI may be applied (BI is turned ON). A structure and an operation of the CI applied when PLP_NUM>1 may be the same as or similar to a structure and an operation of the CI applied when PLP_NUM=1.



FIG. 38 is a block diagram including a second example of the structure of the hybrid time interleaver described above.


An operation of each block included in the second example of the structure of the hybrid time interleaver is the same as the above description in FIG. 20. It is possible to determine whether to apply a BI according to the second example of the structure of the hybrid time interleaver depending on values of PLP_NUM. Each block of the hybrid time interleaver according to the second example may perform operations according to embodiments of the present invention. In this instance, an applied structure and operation of a CI may be different between a case of PLP_NUM=1 and a case of PLP_NUM>1.



FIG. 39 is a block diagram including a first example of a structure of a hybrid time deinterleaver.


The hybrid time deinterleaver according to the first example may perform an operation corresponding to a reverse operation of the hybrid time interleaver according to the first example described above. Therefore, the hybrid time deinterleaver according to the first example of FIG. 39 may include a convolutional deinterleaver (CDI) and a block deinterleaver (BDI).


A structure and an operation of the CDI applied when PLP_NUM>1 may be the same as or similar to a structure and an operation of the CDI applied when PLP_NUM=1.


It is possible to determine whether to apply the BDI according to the first example of the structure of the hybrid time deinterleaver depending on values of PLP_NUM. That is, when PLP_NUM=1, the BDI is not applied (BDI is turned OFF) and only the CDI is applied.


The CDI of the hybrid time deinterleaver may perform inter-frame deinterleaving, and the BDEI may perform intra-frame deinterleaving. Details of inter-frame deinterleaving and intra-frame deinterleaving are the same as the above description.


A BICM decoding block illustrated in FIGS. 39 and 40 may perform a reverse operation of the BICM chain block of FIGS. 37 and 38.



FIG. 40 is a block diagram including a second example of the structure of the hybrid time deinterleaver.


The hybrid time deinterleaver according to the second example may perform an operation corresponding to a reverse operation of the hybrid time interleaver according to the second example described above. An operation of each block included in the second example of the structure of the hybrid time deinterleaver may be the same as the above description in FIG. 39.


It is possible to determine whether to apply a BDI according to the second example of the structure of the hybrid time deinterleaver depending on values of PLP_NUM. Each block of the hybrid time deinterleaver according to the second example may perform operations according to embodiments of the present invention. In this instance, an applied structure and operation of a CDI may be different between a case of PLP_NUM=1 and a case of PLP_NUM>1.



FIG. 41 is a diagram illustrating a part of an ApplicationList element according to an embodiment of the present invention.



FIG. 42 is a diagram illustrating another part of the ApplicationList element according to an embodiment of the present invention.


The two drawings are originally shown in one drawing but are divided into two parts due to spatial restriction.


As described above, the broadcast service may include 0 or more app-based enhancements. For example, the linear service may include app-based enhancements having one application that is executed in a background and manages insertion of a target advertisement. The linear service may further include app-based enhancements including a set of applications for providing interactive viewing experience related to an audio/video program.


Here, each of the app-based enhancements may be separately signaled. Accordingly, manufacturers of various applications do not necessarily cooperate with each other about signaling thereof.


A set of applications included in one app-based enhancement may be signaled by an ApplicationSignaling Table (AST). The AST may be one of XML documents and may have ApplicationList element as a root element. One AST may include signaling information on applications included in one app-based enhancement. In some embodiments, one AST may be extended to signal a plurality of app-based enhancements.


The service signaling information on one service may include AST of each of app-based enhancements included in a corresponding service. That is, when one service includes a plurality of app-based enhancements, service signaling information of the service may include a plurality of ASTs.


An embodiment of the illustrated AST will be described. In some embodiments, each element/attribute of the AST may be added/omitted/changed.


The AST may include a root element as the ApplicationList element. The ApplicationList element may include a list of Application elements. That is, the ApplicationList element may include at least one Application element.


Each Application element may include appName element, applicationDescriptior element, applicationSpecificDescriptor element, applicationUsageDescriptor element, applicationBoundary element, applicationTransport element, applicationLocation element, atsc:Capabilities element, atsc:liveEventSource element, atsc:ContentItems element, @applicationIdentifier attribute, @atsc:serviceId attribute, and/or @atsc:protocolVersion attribute.


The appName element may indicate a name of an application indicated by the Application element. The element may be omitted. The application name may be represented by various languages. The appName element may further include @lang attribute. The @lang attribute may indicate a language representing an application name.


The applicationDescriptior element may include information on a corresponding application. The applicationDescriptior element may include information items to be commonly included in all applications. The applicationDescriptior element may include a icon element, @type attribute, @controlCode attribute, @visibility attribute, @serviceBound attribute, @priority attribute, @version attribute, @mhpVersion attribute, @storageCapabilities attribute, and/or @trickModeTolerance attribute.


The icon element may represent an icon to be used to represent a corresponding application. The element may be omitted. The icon element may further include @mimType attribute indicating an MIME type of an application image (icon) and/or @width/@height/@depth attribute indicating area/height/depth of the application image. The icon element may further include @url attribute having HTTP URL information for download of an application image.


The @type attribute may indicate a type of a corresponding application. For example, the attribute may indicate that a corresponding application is an application according to ATSC or DVB.


The @controlCode attribute may include information for control of a state of a corresponding application. For example, the attribute may have information of autolaunch, kill, etc. The information may be used to control a state of a corresponding application.


The @visibility attribute may indicate whether a corresponding application is visible to a user and/or another application. Here, whether a corresponding application is visible to a user and/or another application may refer to whether the corresponding application is visible to a user interface as a wide meaning. The attribute may indicate whether the application is audible and sensory as well as whether the application is visible. In some embodiments, whether the corresponding application is audible to a user and so on through a speaker may be indicated separately by @audibility attribute. The attribute may be omitted.


The @serviceBound attribute may indicate whether a corresponding application is service-bounded. When the attribute has a true value, the corresponding application may be service-bounded and when the application has a false value, the application may not be service-bounded. The attribute may have a true value as a default value. The attribute may be omitted. When the attribute is omitted, this may mean that a corresponding application is service-bounded.


The @priority attribute may indicate relative priority compared with other applications. The @version attribute may indicate a version of a corresponding application. The @mhpVersion attribute may indicate a platform or version required for a corresponding application. The attribute may be omitted.


The @storageCapabilities attribute may indicate the amount of a storage required to cache a corresponding application. The attribute may be omitted. In some embodiments, the attribute may be used to indicate whether the corresponding application is cached.


The @trickModeTolerance attribute may indicate whether a corresponding application is compatible with a specific trick mode. Whether a corresponding application is compatible with a specific trick mode may refer to whether the application is capable of tolerating certain trick modes when the certain trick modes are executed. The trick mode may include pause, FF, slow mode, rewind, and so on. The attribute may be omitted. With regard to a broadcast service having the application enhancement, when a user has trick play with respect to the broadcast service, signaling may be performed so as to normally perform enhancement on trick-played basic program.


The applicationSpecificDescriptor element may have information required only for a specific type of application, differently from the aforementioned applicationDescriptior element. That is, information of the element may be dependent upon an application type. The element is not required depending on an application and, accordingly, the element may be omitted.


The applicationUsageDescriptor element may indicate a function of a corresponding application. For example, the element may indicate that a corresponding application is used in teletext. The element may not be required depending on an application type. The element may be omitted.


The applicationBoundary element may indicate URL information for definition of expansion of an application boundary of a corresponding application. The element may be omitted.


The applicationTransport element may indicate a protocol used to transmit a corresponding application. For example, the element may indicate that a corresponding application is transmitted through ROUTE, MMT, or HTTP. In some embodiments, the element may indicate a protocol used to transmit a corresponding AST. When the aforementioned method of transmitting service data according to the present invention is used, an allowable value of the element may be ROUTE, MMT, HTTP, or the like.


The applicationLocation element may indicate URL for providing a location for acquisition of a corresponding application. In some embodiments, the element may indicate a URL for acquisition of a corresponding application.


The atsc:Capabilities element may indicate capability information for significantly processing corresponding application/app-based enhancements. Here, the significant processing may refer to capability of a receiver side for significant rendering/decoding/reproducing, etc. In some embodiments, the capability information may be indicated by a preset capability code.


The atsc:liveEventSource element may provide information for receiving the aforementioned event in a live situation. For example, in the case of a broadcast program that is lively provided, an event may also be changed and transmitted in real time in order to provide enhancement depending on information of a broadcast program that is changed in real time. Differently from pre-produced content, the aforementioned operation may be required in a live situation. The element may provide information such as URL for transmission of an event in real time in this situation. The element may include @url attribute, @shortPollingPeriod attribute, and/or @targetDevice attribute.


The @url attribute may indicate URL for receiving an event in a live situation. The @shortPollingPeriod attribute may indicate a polling period when an event is acquired via short polling of a broadband. The @targetDevice attribute may indicate a target device of a corresponding live event. For example, PrimaryDevice (PD) or Companion Device (CD) may be a target device. The @shortPollingPeriod attribute and/or the @targetDevice attribute may be omitted.


The atsc:ContentItems element may include information on each content item to be used for a corresponding application. The atsc:ContentItems element may be present by as much as the number of content items. The atsc:ContentItems element may further include location element, @ContentLinkage attribute, @updatesAvailable attribute, @TFAvailable attribute, @contentSecurityCondition attribute, @ availableInBroadcast attribute, @availableOnInet attribute, @playBackLengthInSecondes attribute, @playBackDelay attribute, @expiration attribute, @size attribute, @name attribute, and/or timeSloInfo element.


The location element may indicate location information for acquisition of a corresponding content item. In some embodiments, the information may be URL format. The location element may be omitted or a plurality of location elements may be present.


The @ContentLinkage attribute may indicate an application that uses a corresponding content item. Signaling may be performed on a specific application based on information (EventStream element, emsg box, etc.) on an attribute value and an event to be described below. The attribute may provide, for example, an application identifier for a specific application or indicate a specific LCT session for transmitting the application data.


The @updatesAvailable attribute may indicate whether update of a corresponding content item is available. The attribute may have a true or false value. The @TFAvailable attribute may indicate whether a text fragment is present in a signaling channel for a corresponding content item.


The @contentSecurityCondition attribute may indicate a security state of a corresponding content item. The @availableInBroadcast attribute may indicate whether a corresponding content item is acquired through a broadcast network. The @availableOnInet attribute may indicate whether corresponding content item is acquired through the Internet.


The @playBackLengthInSecondes attribute may indicate a length of a corresponding content item during playback in a second unit. The attribute may be omitted. The @playBackDelay attribute may indicate playback delay of a corresponding content item. The attribute may be omitted. The @expiration attribute may indicate an expiration period of a corresponding content item. The attribute may be omitted. The @size attribute may indicate a size of a corresponding content item. The attribute may be omitted. The @name attribute may indicate a name of a corresponding content item. The attribute may be omitted.


The timeSlotInfo element may include time slot related information of a corresponding content item. The timeSlotInfo element may further include @time_slot_start attribute, @time_slot_length attribute, @acquisition_time attribute, @repeat_period attribute, and/or @slot_count attribute.


The @time_slot_start attribute may indicate a start time of a time slot. The time may be represent by GPS seconds from 00:00:00 UTC of Jan. 6, 1980. When the field has a value of 0, the field may indicate that a time slot is initiated from the unknown past.


The @time_slot_length attribute may indicate a length of a time slot in a minute unit.


The @acquisition_time attribute may indicate a minimum time interval length by which transmission of at least one content item is ensured. The time interval may be represented in a minute unit. Here, the time interval may be assumed to be initiated from an arbitrary time in a time slot and may include end of a time slot. If a single large content item is being transmitted repeatedly during the time slot, this will be the time it takes to transmit a single instance of the content item. If a number of small content items are being transmitted in a carousel, this will be the carousel cycle time.


The @repeat_period attribute may represent a repetition period of a time slot in a minute unit.


The @slot_count attribute may indicate a number of times of a time slot. The attribute may indicate a number of times from a time slot at a time indicated by the @time_slot_start attribute. A value of zero for slot_count shall indicate the repetition shall be assumed to continue indefinitely.


The Application element may directly include @ContentLinkage attribute and/or timeSloInfo element. That is, the @ContentLinkage attribute and/or the timeSlotInfo element may be included in both the Application element and the atsc:ContentItems element.


Among attributes of the Application element, the @applicationIdentifier attribute may indicate an identifier of a corresponding application. The value may be a globally unique value.


The @atsc:serviceId attribute may indicate a service identifier of a service related to a corresponding application.


The @atsc:protocolVersion attribute may indicate a protocol version of a corresponding application. In some embodiments, the corresponding field may be divided into two fields indicating a major protocol version and a minor protocol version. Alternatively, the field may simultaneously provide both the major/minor protocol versions.


The ApplicationList element may include @ASTVersionNumber attribute, @timeSpanStart attribute, and/or @timeSpanLength attribute as well as a plurality of Application elements.


The @ASTVersionNumber attribute may indicate a version number of an entire corresponding AST. In some embodiments, a corresponding field may be divided into two fields indicating the major protocol version and the minor protocol version. Alternatively, the field may simultaneously provide both the major/minor protocol versions.


The @timeSpanStart attribute may indicate start of a time interval covered by a corresponding AST instance. The AST may be divided into a plurality of instances and transmitted and each AST instance may include signaling information of each time interval.


The @timeSpanLength attribute may indicate a length of a time interval covered by a corresponding AST instance. The time interval covered by the corresponding AST instance along with a value of the @timeSpanStart attribute may be calculated.


Each of the fields of the AST according to the aforementioned embodiments may be omitted or changed. In some embodiments, additional fields may be added to the AST. Fields of the AST may be replaced with fields having the same/similar meaning.


The aforementioned AST may be transmitted through a broadcast network or a broadband.


When the AST is transmitted through a broadcast network, an AST for application enhancements may be transmitted through a service signaling channel of a broadcast service related to corresponding application enhancement. Here, the service signaling channel of a service may refer to a path for transmitting the aforementioned SLS. For example, in the case of an ROUTE, an LCT transfer session specified with tsi=0 may transmit an AST through a dedicated signaling channel. In the case of an MMT, MMTP packet flow specified with packet_id=00 may transmit the AST through a dedicated signaling channel.


When the AST is transmitted through a broadband, the AST may be acquired via query. The query may be generated using base URL information in the aforementioned SLT. The base URL may be URL information for acquisition of the AST. Here, the SLT may be SLT including bootstrap information on a broadcast service related to the corresponding AST. In the case of a scenario using a watermark, the base URL may be acquired through the watermark or acquired through an Auto ContentRecognition (ACR) procedure using the watermark.



FIG. 43 is a diagram illustrating an event message table (EMT) according to an embodiment of the present invention.


As described above, actions to be performed by applications may be initiated by notifications transmitted through a broadcast network/broadband. The notifications may be referred to as “event”. According to the context, an operation, an action, or an operated state of applications started by these notifications may also be referred to as an event. In addition, actions to be performed by applications may also be referred to as an event.


The events may be transmitted through a broadcast network or a broadband. In this case, each event and actions by an event needs to be synchronized with a basic broadcast service/broadcast program. The present invention proposes a transmitting method and synchronization method of an event.


The case in which an event is transmitted through a broadcast network will be described below.


When the event is transmitted through a broadcast network, the event may be transmitted as a DASH event. In this case, the event may be transmitted in the form of EventStream element or emsg box. When an event is transmitted to the EventStream element, the event may be transmitted in the form of EventStream element indicated by a period element of MPD. When an event is transmitted in the form of emsg box, the event may be transmitted to an emsg box indicated in Representation segments.


Two event transfer mechanisms may be used together. For example, one event stream may include some events transmitted to the EventStream element and/or other events transmitted through the emsg box.


Events transmitted through the EvenstStream element may correspond to events to be transmitted to a receiver side during a time interval corresponding to a period. That is, the MPD may be service signaling information of a service and may provide signaling information in a time interval unit of a service referred to as a period. Signaling information on the period may include an MPD Period element and the period element may include an EventStream element. The EventStream element may provide signaling (event) required for an operation for applications during a corresponding period of a corresponding service.


The EventStream element may be a list of Event elements. Each EventStream element may have schemeIdUri attribute and/or value attribute. The two attributes may indicate a type of events in the EventStream. In some embodiments, the two attributes may identify events. Here, the schemeIdUri attribute and/or the value attribute may use a pre-defined value. Alternatively, a service provider may additionally define and use a value of the schemeIdUri attribute and/or the value attribute. An “owner” of the schemeIdUri attribute needs to uniquely define the schemeIdUri attribute and needs to define corresponding value attribute and event semantics. The value information may be dependent upon an application and may be used to identify a specific event stream in one service.


The EventStream element may further include timescale attribute. The attribute may indicate an event presentation time and reference time scale for duration.


Event sub elements of the EventStream element may each include presentationTime attribute, duration attribute, and/or id attribute. The presentationTime attribute may indicate start time of each event, the duration attribute may indicate duration time of each event, and the id attribute may indicate an identifier of each event. In the context, the event may refer to an action of an application initiated by an event (notification) and a phenomenon (pop up window, etc.) that occurs in response to the action.


The Event sub element may not have data for a corresponding event. However, in some embodiments, the Event element may have additional data element and attribute. The data element/attribute may provide data required for execution of an action initiated in response to an event.


In some embodiments, a plurality of EventStream elements with different types may be present in one period.


When an event is transmitted in the form of emsg box, the event may be transmitted in the emsg box indicated in Representation segments, as described above. In this case, the InbandEventStream element of Representation of MPD may signal whether an event is present in the emsg box in segments.


The InbandEvent element may include schemeIdUri and/or value. The two fields may indicate a type of an event in the emsg box. In some embodiments, the two fields may be used to identify an event.


The InbandEvent element may further include a timescale field. The field may indicate a reference time scale related to an event.


The InbandEvent element may further include presentation_time_delta information, event_duration information, and/or id information. The presentation_time_delta information may indicate start time of a corresponding event. Here, the start time may be represented as a relative value at the start time of the corresponding Representation. The event_duration information may indicate duration time of a corresponding event. The id information may identify a corresponding event instance.


The InbandEvent element may further optionally include message_data information. The message_data information may provide data required to execute an action initiated by a corresponding event.


The case in which an event is transmitted through a broadband will be described below.


With regard to transmission of an event through a broadcast network, batch delivery as a batch via MPD and incremental delivery using an emsg box have been described above. Similarly, with regard to transmission of an event through a broadband, batch delivery and incremental delivery may be proposed.


When an event is transmitted via batch delivery through a broadband, events may be transmitted through an event stream table (EST). In some embodiments, the EST may also be referred to as an event message table (EMT). The EST may be an XML document and may include an EventStreamTable element as a root element.


The EventStreamTable element may be a list of the EventStream element. Each of the EventStream elements may be the same as the EventStream element in event transmission through the aforementioned broadcast network. The list of the EventStream element may include all event streams for one service.


The illustrated EMT may be EMT (EST) according to another embodiment of the present invention. The EMT may include @mpdId attribute, @periodId attribute, and EventStream element.


The @mpdId attribute may be an identifier of MPD related to events described by the corresponding EMT. The MPD may be used as a time reference of corresponding events.


The @periodId attribute may be an identifier of a period of MPD related to events of a corresponding EMT. The period may be used as a time reference of corresponding events.


The fields in the EventStream element are the same as the aforementioned fields. Here, data of the Event element may have a value appropriate for a type thereof depending on a value of the @schemeIdURi and/or the @value. The @presentationTime attribute may represent a start time of an event as a relative value to a start time of a period and the period may be identified by the @mpdId and the @periodId attribute.


The EST may be acquired in response to a query as described above. The query may be generated based on base URL information in the SLT. This is the same as the above description.


When events are transmitted via incremental delivery through a broadband, the events may be separately transmitted through a live event server. Polling may be periodically performed on the live event server and when an event to be transmitted in the period is present, an event server may transmit the event to a receiver. Information such as URL of the live event server and a polling period may be transmitted to a receiver by the aforementioned AST and EST or other signaling objects.


In this case, the transmitted event may have the same format as format of emsg box in the case of transmission of an event using the aforementioned emsg box. In some embodiments, signaling information corresponding to the aforementioned InbandEvent element may be transmitted together during transmission of a live event.


The schemeIdUri information and the value information may correspond to targetURI and eventName arguments with regard to API for addition and deletion of a Stream Event listener for an event stream. Events of each of the aforementioned embodiments may further include optional data attribute. The data attribute may provide data used to execute an action initiated by the corresponding event. The data attribute may correspond to data attribute of a StreamEvent interface returned to a listener registered when an event occurs.


In the case of transmission of an NRT content item, an NRT transmitting method of ATSC may be used. In this case, the AST may be used instead of NRT-IT and a content item to be transmitted by the AST may be identified. When an application is not listened by the AST, broadband delivery of an NRT content item may also be initiated.


In the case of an on-demand content item, the item may be transmitted through a broadband. Broadband delivery of the on-demand content item may be initiated.


Synchronization of an application will be described below.


Synchronization of an application may be required in various aspects. For example, actions of an application need to be synchronized with scheduled audio/video services. In addition, an application may be initiated and stopped depending on the scheduled audio/video services. With regard to playback of recorded content, NRT content, and so on as well as a basic broadcast service, an application and actions of the application need to be synchronized. In addition, the application may also be initiated and stopped depending on the recorded content, the NRT content, and so on for enhancement of an effective user experience.


It may be necessary to synchronize an application in a companion device (CD) with audio/video content that is played back in a PD in order to effectively and provide application enhancement provided by the CD.


The user experience will be described below.


In some embodiments, a user may control operations of an application for effective application enhancement. This is because, when control is not possible, enhancement may impede watching instead. According to an exemplary embodiment, user acceptance may be used. The user may collectively accept all services and any specific services. In addition, the user may accept applications of each service or services case by case.


In the case of user acceptance case by case, application notification needs to be pre-displayed prior to activation of the application. Through the notification, the user acceptance for activation of the application may be obtained. The application may be blocked until acceptance is achieved.


Format and location of notification for acceptance may be determined by a device manufacturer. An actual user interface for acceptance may also be determined by the device manufacturer. In these cases, specific format and so on may be proposed by a specific entity in an industrial aspect.


The notification for acceptance may be time out or dismissed by a user. Thereby, even if a user does not immediately determine to accept activation of an application, interference in watching of a user may be continuously prevented by the notification. However, even if notification is time out or dismissed, the user may activate or block an application via setting and so on. The user may terminate the activated application. In this case, even if signaling for activation of the application is received, the application may be continuously blocked.


Action synchronization and action parameters will be described below.


Download of an application, activation of an application, termination of an application, and/or a specific action of an application need to be synchronized with a basic broadcast program and so on.


In the case of actions of an application, action parameters may be required to perform the action. Information of the parameters may be performed. The action parameter may include an application identifier parameter for identifying an application related to an action, a time parameter indicating a time at which an action is to be performed, and/or a synchronization level parameter of a synchronization level of an action. Here, the time parameter may indicate a start time of an action as a relative value to a time base and a media time line. Here, the synchronization level parameter may indicate a synchronization level of program level sync, sync less than 2 seconds, lip sync, frame sync, and so on.


In the case of an action related to download of an application, the action may further include an action parameter of a target device and/or an action parameter of a jitter interval. The action parameter of a target device may include information on whether a downloaded application is for PD or CD. The action parameter of the jitter interval may include jitter interval related information for fetching of an application.


In the case of an action of initiation of an application, the action may further include an action parameter of a target device and/or an action parameter of a jitter interval. The action parameter of the target device may include information on whether an initiated application is for a PD or a CD.


As described above, the action parameter may also include an action parameter for providing data required to execute the application. The action parameter may include data required to execute the corresponding action.



FIG. 44 is a diagram illustrating AST transmitted in broadcast according to an embodiment of the present invention.


When the AST is transmitted through a broadcast network, the AST for application enhancement may be transmitted through a service signaling channel of a broadcast service related to corresponding application enhancement. Here, the service signaling channel of a service may refer to a path for transmitting the aforementioned SLS.


A broadcast signal (broadcast stream) with a specific frequency may include service data and/or signaling data for a service. For example, the broadcast signal may be identified by a specific frequency.


The broadcast signal may include a first ROUTE session (sIP#A/dIP#A/dPort#A). The service data for a service may be transmitted through the first ROUTE session.


The service data may include a video component and/or an audio component for a service. The video component may include at least one video segment including video data. The audio component may include at least one audio segment including audio data. The video component may be transmitted through a specific transport session of the first ROUTE session. The audio component may be transmitted through another transport session of the first ROUTE session.


The signaling data may include low level signaling data and/or service layer signaling data. For example, the low level signaling data may include FIT and/or SLT. The low level signaling data may be transmitted in an IP/UDP packet. The service layer signaling data may be referred to as SLS. The service layer signaling data may include USBD, MPD, S-TSID, and/or AST. The USBD, the MPD, the S-TSID, and/or the AST may be transmitted through a specific transport session. For example, the SLS may be transmitted through a specific LCT transport session included in a first ROUTE session (sIP#A/dIP#A/dPort#A). In detail, the SLS may be transmitted through a first transport session(tsi-sls) specified with tsi=0.


The first ROUTE session (sIP#A/dIP#A/dPort#A) may be identified by a combination of a source IP Address (sIP#A), a destinationIP Address (dIP#A), and a destination port number (dPort#A). The first ROUTE session may be transmitted through at least one PLP. For example, the first ROUTE session may be transmitted through a first PLP (PLP #A). The first ROUTE session may include a first transport session (tsi-sls), a second transport session (tsi-app), and/or a third transport session (not shown).


The first transport session (tsi-sls) may include at least one service layer signaling information item. For example, the service layer signaling information may include at least one of the aforementioned USBD, MPD, S-TSID, and/or AST.


The second transport session (tsi-app) may include at least one application item. For example, an application may refer to a set of documents (HTML, CSS, JavaScript, etc.) constituting an enhancement/interactive service.


The third transport session may include a video component. For example, the video component may include at least one video segment. A transport object identifier for the video segment may have a specific value.


Hereinafter, SLT (or FIT) will be described.


The SLT may permit a receiver to write a basic service list and to bootstrap discovery of the SLS of each service. The SLT may be transmitted through UDP/IP. The SLT may include basic information related to a service and bootstrapping information for acquisition of service layer signaling information.


For example, the SLT may include Broadcast_Stream_id attribute and first service element (Service#A).


The Broadcast_Stream_id attribute may be an identifier of entire broadcast stream. A value of the Broadcast_Stream_id field may be unique in a regional level.


The first service element (Service #A) may include at least one of serviceId attribute and/or signaling_broadcast element.


The serviceId attribute may be an integer number for uniquely identifying a corresponding service in a range of a corresponding broadcast region.


The signaling_broadcast element may include information for signaling information for a service transmitted in broadcast. The signaling_broadcast element may permit a receiver to bootstrap discovery of the SLS of each service.


The signaling_broadcast element may include at least one of a source IP Address related to the SLS of each service, a destination IP Address, a destination port number, a PLPID, and a transport session identifier (TSI).


For example, the source IP Address, the destination IP Address, and/or the destination port number may indicate the first ROUTE session (sIP#A/dIP#A/dPort#A). The PLPID may indicate a first PLP (PLP #A). The transport session identifier (TSI) may indicate a first transport session (tsi-sls).


Hereinafter, the SLS will be described.


The SLS may be transmitted through a broadcast network. The SLS may be transmitted through a specific LCT transport session included in the first ROUTE session (sIP#A/dIP#A/dPort#A). In detail, the SLS may be transmitted through the first transport session (tsi-sls) specified with tsi=0. The SLS may include at least one of USBD, MPD, S-TSID, and/or AST.


The USBD may describe service layer attributes. The USBD may include reference information (or Uniform Resource Identifier, URI) that refers to the MPD and/or the S-TSID. A detailed description of a USBD C620210 may include the entire aforementioned description of the USBD.


The MPD may include resource identifiers for separate media components of a linear/streaming service. For example, the MPD may include DASH MPD of all components transmitted through a mobile broadcast network, a general broadcast network, and/or the Internet. The DASH MPD may include formalized description of DASH Media Presentation. The DASH MPD may include resource identifiers for separate media components of a linear/streaming service. The DASH MPD may include context of identified resources in media presentation. For example, the resource identifier may be information for identifying representation related to a component for a service. For example, the resource identifier may be the form of segment URL.


The S-TSID may be a type of a service layer signaling (SLS) XML fragment for providing all session description information items for at least one transport session for transmitting at least one content components of a service.


The S-TSID may include a first ROUTE session element (RS) for providing information on a ROUTE session for a service and/or a component included in the service. The first ROUTE session element (RS) may include transport path information for the first ROUTE session. The first ROUTE session element (RS) may include information on a transport session (or a layered coding transport session) in the ROUTE session. For example, the first ROUTE session element (RS) may include a second transport session element (LS) including information on a second transport session. The second transport session element (LS) may include transport path information for the second transport session.


In detail, the second transport session element (LS) may include tsi attribute for identifying a transport session for transmitting a content component for a service and a SrcFlow element for describing source flow included in the ROUTE session. The SrcFlow element may include nrt attribute indicating whether a corresponding SrcFlow element transmits non-real time service data. The SrcFlow element may include rt attribute indicating whether the corresponding SrcFlow element transmits streaming media data. That is, the nrt attribute may perform the same function as the rt attribute and may be replaced with each other. For example, when the tsi attribute is “tsi-app”, the corresponding transport session element may include information for the second transport session. When the nrt attribute is “true”, the corresponding SrcFlow element may transmit non-real time service data.


The AST may include signaling information for an application. A detailed description of the AST may include the entire aforementioned description.


The AST may include ContentLinkage attribute. The ContentLinkage attribute may indicate an application that is supposed to use the corresponding content item. Signaling may be performed on a specific application by the attribute value and information (EventStream element, emsg box, etc.) on events to be described later.


For example, the ContentLinkage attribute may provide an application identifier for identifying an application (App) transmitted through the second transport session. The ContentLinkage attribute may provide a transport session identifier for identifying the second transport session (or LCT session).


The broadcast receiving apparatus according to an embodiment of the present invention may acquire a service based on signaling data. In detail, the broadcast receiving apparatus may acquire low level signaling data and acquire service layer signaling data based on the low level signaling data.


The broadcast receiving apparatus may acquire attribute of a service using service layer signaling data (USBD). The broadcast receiving apparatus may refer to and/or acquire MPD and/or S-TSID using the USBD.


The broadcast receiving apparatus may acquire information on at least one component (or representation) for a service using the service layer signaling data (USBD and/or MPD). For example, the broadcast receiving apparatus may acquire information on the video component.


The broadcast receiving apparatus may acquire transmission path information of at least one component using service layer signaling data (S-TSID). The broadcast receiving apparatus may acquire transmission path information of other components for at least one component using the service layer signaling data (S-TSID). For example, other components for at least one component may include an application.


The broadcast receiving apparatus may acquire service data for a service based on service layer signaling data (transmission path information). For example, the broadcast receiving apparatus may receive an application (App) through the second transport session (tsi-app) in non-real time.


The broadcast receiving apparatus may acquire information for identifying an application (App) based on the service layer signaling data (AST).


The broadcast receiving apparatus may execute an application at a predetermined timing while playback of the video component.



FIG. 45 is a diagram illustrating AST transmitted through a broadband according to an embodiment of the present invention.


When the AST is transmitted through a broadband, the AST may be acquired through a query. The query may be generated using base URL information in the aforementioned SLT. The base URL may be URL information for acquisition of the AST. Here, the SLT may include bootstrap information on a broadcast service related to the corresponding AST.


A broadcast signal (broadcast stream) with a specific frequency may include service data and/or signaling data for a service. The broadcast signal may include a first ROUTE session (sIP#A/dIP#A/dPort#A). The first ROUTE session may be transmitted through a first PLP (PLP#A). The first ROUTE session may include a first transport session (not shown), a second transport session (tsi-app), and/or a third transport session (not shown). The first transport session may include at least one service layer signaling information item. The second transport session (tsi-app) may include at least one application. The third transport session may include a video component. A detailed description of the third ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP(PLP #A), the first transport session, the second transport session(tsi-app), and/or the third transport session according to an embodiment of the present invention may include the entire aforementioned description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP #A), the first transport session, the second transport session(tsi-app), and/or the third transport session.


Hereinafter, the SLT (or FIT) will be described.


A detailed description of the SLT according to an embodiment of the present invention may include the entire aforementioned description of the SLT.


For example, the SLT may include Broadcast_Stream_id attribute and a first service element (Service#A).


The first service element (Service #A) may include at least one of serviceId attribute and/or signaling_broadbandelement.


The serviceId attribute may be an integer number for uniquely identifying a corresponding service in a range of a corresponding broadcast region.


The signaling_broadband element may include path information (or URL) for access to Internet signaling information (e.g., SLS) for a service. The signaling_broadband element may permit a receiver to bootstrap discovery of an SLS for each service. In this case, the SLS may be transmitted through a broadband.


The signaling_broadband element may include broadbandServerURL_AST for path information (or URL) for access to the AST for a service. In this case, the AST may be transmitted through a broadband.


Hereinafter, the SLS will be described.


The SLS may include at least one of USBD, MPD, S-TSID, and/or AST. A detailed description of the SLS may include the entire description of the SLS. However, there is a difference therebetween in that the SLS is transmitted through a broadband.


The broadcast receiving apparatus according to an embodiment of the present invention may receive a broadcast signal including at least one of service data and signaling data (e.g., low level signaling data or SLT) for a service through a broadcast network.


The broadcast receiving apparatus according to an embodiment of the present invention may acquire a service based on the signaling data. In detail, the broadcast receiving apparatus may acquire low level signaling data and acquire service layer signaling data based on the low level signaling data. The service level signaling data may be transmitted through a broadband.


The broadcast receiving apparatus may acquire attribute of a service using service layer signaling data (USBD). The broadcast receiving apparatus may refer to and/or acquire MPD and/or S-TSID using the USBD.


The broadcast receiving apparatus may acquire information on at least one component (or representation) for a service using service layer signaling data (USBD and/or MPD). For example, the broadcast receiving apparatus may acquire information on a video component.


The broadcast receiving apparatus may acquire transmission path information of at least one component using the service layer signaling data (S-TSID). The broadcast receiving apparatus may acquire transmission path information of other components for at least one component using service layer signaling data (S-TSID). For example, other components for at least one component may include an application.


The broadcast receiving apparatus may acquire service data for a service based on the service layer signaling data (transmission path information). For example, the broadcast receiving apparatus may receive an application (App) through the second transport session (tsi-app) in non-real time.


The broadcast receiving apparatus may acquire information for identifying an application (App) based on the service layer signaling data (AST).


The broadcast receiving apparatus may execute an application (App) at a predetermined timing while playback of the video component.



FIG. 46 is a diagram illustrating an event transmitted in the form of EventStream element in broadcast according to an embodiment of the present invention.


The event may be transmitted in the form of EventStream element indicated in a Period element of MPD. A description of the EventStream element transmitted through a broadcast network may include the entire aforementioned description of the EventStream element.


A broadcast signal (broadcast stream) with a specific frequency may include service data and/or signaling data for a service. The broadcast signal may include a first ROUTE session (sIP#A/dIP#A/dPort#A). The first ROUTE session may be transmitted through the first PLP (PLP#A). The first ROUTE session may include the first transport session (tsi-sls), the second transport session (tsi-app), and/or a third transport session (not shown). The first transport session (tsi-sls) may include at least one service layer signaling information item. For example, the service layer signaling information may include at least one of the aforementioned USBD, MPD, S-TSID, and/or AST. The second transport session (tsi-app) may include at least one application. The third transport session may include a video component. A description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP(PLP #A), the first transport session, the second transport session (tsi-app), and/or the third transport session according to an embodiment of the present invention may include the entire description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP(PLP #A), the first transport session, the second transport session(tsi-app), and/or the third transport session.


Hereinafter, the SLT will be described.


The SLT may permit a receiver to write a basic service list and to bootstrap discovery of the SLS of each service. For example, the SLT may include path information for the first ROUTE session (sIP#A/dIP#A/dPort#A). The SLT may include path information for the first transport session (tsi-sls). A description of the SLT according to an exemplary embodiment of the present invention may include the entire aforementioned description of the SLT.


Hereinafter, the SLS will be described.


The SLS may include at least one of USBD, MPD, S-TSID, and/or AST. A description of the SLS may include the entire aforementioned description of the SLS. Hereinafter, the MPD will be described in more detail.


The MPD may provide signaling information in a time interval unit of a service referred to as a period as service signaling information on a service. The signaling information on the period may be included in the MPD Period element and the Period element may include EventStream element. The EventStream element may provide signaling (event) required for operation of applications during a corresponding period of a corresponding service.


The EventStream element may include schemeIdUri attribute, value attribute, timescale attribute, and/or at least one Event sub element. Each Event sub element may include presentationTime attribute, duration attribute, and/or id attribute. A detailed description of the EventStream element may include the entire aforementioned description of the EventStream element.


For example, a value of the schemeIdUri attribute may be “urn:uuid:XYZY”. A value of the value attribute may be “call”. A value of the timescale attribute may be “1000”.


With regard to the first event, a value of the presentationTime attribute may be “0”, a value of the duration attribute may be “10000”, a value of the id attribute may be “0”, and/or a value of the data element/attribute may be “+1 800 10101010”. With regard to the second event, a value of the presentationTime attribute may be “20000”, a value of the duration attribute may be “10000”, a value of the id attribute may be “1”, and/or a value of the data element/l attribute may be “+1 800 10101011”. With regard to the third event, a value of the presentationTime attribute may be “40000”, a value of the duration attribute may be “10000”, a value of the id attribute may be “2”, and/or a value of the data element/attribute may be “+1 800 10101012”. With regard to the fourth event, a value of the presentationTime attribute may be “60000”, a value of the duration attribute may be “10000”, a value of the id attribute may be “3”, and/or a value of the data element/attribute may be “+1 800 10101013”.


The broadcast receiving apparatus according to an embodiment of the present invention may receive a broadcast signal including at least one of service data and signaling data (e.g., low level signaling data or service layer signaling data) for a service through a broadcast network.


The broadcast receiving apparatus according to an embodiment of the present invention may acquire a service based on signaling data. In detail, the broadcast receiving apparatus may acquire low level signaling data and acquire service layer signaling data based on the low level signaling data.


The broadcast receiving apparatus may acquire attribute of a service using service layer signaling data (USBD). The broadcast receiving apparatus may refer to and/or acquire the MPD and/or the S-TSID using the USBD.


The broadcast receiving apparatus may acquire information on at least one component (or representation) for a service using service layer signaling data (USBD and/or MPD). For example, the broadcast receiving apparatus may acquire information on the video component.


The broadcast receiving apparatus may acquire transmission path information of at least one component using service layer signaling data (S-TSID). The broadcast receiving apparatus may acquire transmission path information of other components for at least one component using the service layer signaling data (S-TSID). For example, other components for at least one component may include an application.


The broadcast receiving apparatus may acquire service data for a service based on the service layer signaling data (transmission path information). For example, the broadcast receiving apparatus may receive an application (App) in non-real time through the second transport session (tsi-app).


The broadcast receiving apparatus may acquire information for identifying an application (App) based on the service layer signaling data (AST).


The broadcast receiving apparatus may execute the application (App) based on an event. For example, the event may be transmitted in the form of EventStream element indicated in the Period element of the MPD. The broadcast receiving apparatus may execute an application (App) at a predetermined timing while playback of the video component.



FIG. 47 is a diagram illustrating an event transmitted in the form of emsg box in broadcast according to an embodiment of the present invention.


The event may be transmitted in the form of emsg box indicated in segments (or Representation segments) of Representation. A description of the emsg box transmitted through a broadcast network may include the entire aforementioned description of the emsg box.


The broadcast signal (broadcast stream) with a specific frequency may include service data and/or signaling data for a service. The broadcast signal may include a first ROUTE session (sIP#A/dIP#A/dPort#A). The first ROUTE session may be transmitted through a first PLP (PLP#A). The first ROUTE session may include the first transport session (tsi-sls), the second transport session (tsi-app), and/or the third transport session (tsi-v). The first transport session (tsi-sls) may include at least one service layer signaling information item. For example, the service layer signaling information may include at least one of the aforementioned USBD, MPD, S-TSID, and/or AST. The second transport session (tsi-app) may include at least one application. The third transport session may include a video component. The video component may include at least one video segment including video data. At least one video segment may include emsg box.


A description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP #A), the first transport session, the second transport session (tsi-app), and/or the third transport session (tsi-v) according to an embodiment of the present invention may include the entire description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP #A), the first transport session, the second transport session(tsi-app), and/or the third transport session (tsi-v).


Hereinafter, emsg box included in a segment will be described.


The emsg box may provide signaling information for generic events related to media presentation time. The emsg box may include at least one of a schemeIdUri field, a value field, a timescale field, a presentationTimeDelta field, an eventDuration field, an id field, and/or a messageData field. A description of the emsg box may include the entire aforementioned description of the emsg box.


Hereinafter, the SLT will be described.


The SLT may permit a receiver to write a basic service list and to bootstrap discovery of the SLS of each service. For example, the SLT may include path information for a first ROUTE session (sIP#A/dIP#A/dPort#A). The SLT may include path information for a first transport session (tsi-sls). A description of the SLT according to an exemplary embodiment of the present invention may include the entire aforementioned description of the SLT.


Hereinafter, the SLS will be described.


The SLS may include at least one of USBD, MPD, S-TSID, and/or AST. A description of the SLS may include the entire aforementioned description of the SLS. Hereinafter, the S-TSID and/or the MPD will be described.


The S-TSID may include a first ROUTE session element (RS) for providing information on a ROUTE session for a service and/or a component included in the service. The first ROUTE session element (RS) may include transmission path information for a first ROUTE session. The first ROUTE session element (RS) may include information on a transport session (or layered coding transport session) in the ROUTE session. For example, the first ROUTE session element (RS) may include a second transport session element (LS) including information on the second transport session. The second transport session element (LS) may include transmission path information for the second transport session. The first ROUTE session element (RS) may include the third transport session element (LS) including information on the third transport session. The third transport session element (LS) may include transmission path information for the third transport session.


In detail, the second transport session element (LS) and/or the third transport session element (LS) may each include tsi attribute for identifying a transport session for transmitting a content component for a service and a SrcFlow element described for source flow included in the ROUTE session.


The SrcFlow element may include nrt attribute indicating whether the corresponding SrcFlow element transmits non-real time service data. The SrcFlowelement may include rt attribute indicating whether the corresponding SrcFlow element transmits streaming media data. That is, the nrt attribute performs the same function as the rt attribute and may be replaced with each other.


The SrcFlow element may further include appID attribute including additional information mapped to a service (or application service) transmitted through a transport session. The appID attribute may be referred to as ContentInfo element. The ContentInfo element may include additional information mapped to a service (or an application service) transmitted through the transport session. For example, the ContentInfo element may include representation identifier (Representation ID) of DASH content and/or adaptation set parameters of DASH media representation in order to select an LCT transport session for rendering. The representation identifier may be related to a component for a service and may be referred to as id attribute. Accordingly, the appID attribute in the SrcFlow element may be matched with id attribute in the Representation element of the MPD.


With regard to the second transport session element (LS), when tsi attribute is “tsi-app”, the corresponding transport session element may include information for the second transport session. When the nrt attribute is “true”, the corresponding SrcFlow element may transmit non-real time service data. That is, an application (App) may be transmitted through the second transport session (tsi-app) in non-real time.


With regard to the third transport session element (LS), when the tsi attribute is “tsi-v”, the corresponding transport session element may include information for the third transport session. When the nrt attribute is “false”, the corresponding SrcFlow element may transmit real time service data. When the appID attribute is “rep_v1”, a representation identifier of the video component may be “rep_v1”. That is, at least one video segment of a video component identified by “rep_v1” may be transmitted through the third transport session (tsi-v) in real time.


The MPD may include resource identifiers for separate media components of a linear/streaming service. The MPD may include a Period element. The Period element may include AdaptationSet element including information on a video component. The AdaptationSet element may include at least one Representation element. The Representation element may include information on representation related to a component.


The Representation element may include id attribute for identifying representation. For example, a value of the id attribute may be “rep_v1”. That is, the id attribute may indicate a video component transmitted through the third transport session (tsi-v).


The Representation attribute may further include InbandEventStream element that clearly describes presence of an in-band event stream in related representation. TheInbandEventStream element of the Representation element of the MPD may signal whether an event is present in the emsg box in segments.


The InbandEventStream element may include schemeIdURI attribute and/or value attribute. The two attributes may indicate a type of an event in the emsg box. In some embodiments, the two attributes may be used to identify an event. The schemeIdURI attribute and/or value attribute included in the InbandEventStreamelement may be matched with schemeIdURI attribute and/or value attribute in the emsg box. For example, a value of the schemeIdURI attribute may be “event_URI #1” and a value of the value attribute may be “abc”.


The broadcast receiving apparatus according to an embodiment of the present invention may receive a broadcast signal including at least one of service data and signaling data (e.g., low level signaling data or service layer signaling data) for a service through a broadcast network.


The broadcast receiving apparatus according to an embodiment of the present invention may acquire a service based on the signaling data. In detail, the broadcast receiving apparatus may acquire low level signaling data and acquire service layer signaling data based on the low level signaling data.


The broadcast receiving apparatus may acquire attribute of a service using service layer signaling data (USBD). The broadcast receiving apparatus may refer to and/or acquire MPD and/or S-TSID using the USBD.


The broadcast receiving apparatus may acquire information on at least one component (or representation) for a service using the service layer signaling data (USBD and/or MPD). For example, the broadcast receiving apparatus may acquire information on a video component. In this case, a Representation element of the MPD may include the InbandEventStream element that clearly describes presence of the emsg box (or in-band event stream) in the video component.


The broadcast receiving apparatus may acquire transmission path information of at least one component using service layer signaling data (S-TSID). The broadcast receiving apparatus may acquire transmission path information of other components for at least one component using the service layer signaling data (S-TSID). For example, other components for at least one component may include an application.


The broadcast receiving apparatus may acquire service data for a service based on the service layer signaling data (transmission path information). For example, the broadcast receiving apparatus may receive an application (App) through a second transport session (tsi-app) in non-real time. The broadcast receiving apparatus may receive at least one video segment of a video component identified with “rep_v1” in real time through the third transport session (tsi-v). At least one video segment may include the emsg box.


The broadcast receiving apparatus may acquire information for identifying an application (App) based on the service layer signaling data (AST).


The broadcast receiving apparatus may execute an application (App) based on the event. For example, the event may be included in a segment in the form of emsg box. The broadcast receiving apparatus may execute an application (App) at a predetermined timing while playback of a video component.



FIG. 48 is a diagram showing an event transmitted in the form of EventStream element through a broadband according to an embodiment of the present invention.


The event may be transmitted in the form of EventStream element included in an event stream table (EST) transmitted through a broadband. When the EST is transmitted through the broadband, the EST may be acquired through a query. The query may be generated using URL information in the ALT. The URL information may be URL information for acquisition of the EST. A description of the EventStream element transmitted through a broadband may include the entire aforementioned description of the EventStream element.


A broadcast signal (broadcast stream) with a specific frequency may include service data and/or signaling data for a service. The broadcast signal may include a first ROUTE session (sIP#A/dIP#A/dPort#A). The first ROUTE session may be transmitted through the first PLP (PLP#A). The first ROUTE session may include the first transport session (tsi-sls), the second transport session (tsi-app), and/or the third transport session (not shown). The first transport session (tsi-sls) may include at least one service layer signaling information item. For example, the service layer signaling information may include at least one of the aforementioned USBD, MPD (not shown), S-TSID, and/or AST. The second transport session (tsi-app) may include at least one application. The third transport session may include a video component. In some embodiments, the MPD may be omitted. A description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP#A), the first transport session, the second transport session (tsi-app), and/or the third transport session according to an exemplary embodiment of the present invention may include the entire description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP #A), the first transport session, the second transport session (tsi-app), and/or the third transport session.


Hereinafter, the SLT will be described.


The SLT may include path information for the first ROUTE session (sIP#A/dIP#A/dPort#A). The SLT may include path information for the first transport session (tsi-sls). A description of the SLT according to an exemplary embodiment of the present invention may include the entire aforementioned description of the SLT.


Hereinafter, the SLS will be described.


The SLS may include at least one of USBD, MPD, S-TSID, and/or AST. A description of the SLS may include the entire aforementioned description of the SLS. Hereinafter, the AST will be described in more detail.


The AST may include ContentLinkage attribute. The ContentLinkage attribute may use an application that is supposed to use a corresponding content item. Signaling may be performed on a specific application based on the attribute value and information items (EventStream element, emsg box, etc.) of an event to be described below.


For example, the ContentLinkage attribute may provide an application identifier for identifying an application (App) transmitted through a second transport session. The ContentLinkage attribute may provide a transport session identifier for identifying the second transport session (or LCT session).


The AST may further include BroadbandStaticEventURL attribute. The BroadbandStaticEventURL attribute may include path information (or URL) for access to the EST for a service. In this case, the EST may be transmitted through a broadband. The EST may include the EventStream element. The EventStream element may provide required signaling (event) of execution of applications.


The EventStream element may include schemeIdUri attribute, value attribute, timescale attribute, and/or at least one Event sub element. Each Event sub element may include presentationTime attribute, duration attribute, and/or id attribute. A description of the EventStream element may include the entire aforementioned description of the EventStream element.


For example, a value of the schemeIdUri attribute may be “urn:uuid:XYZY”. A value of the value attribute may be “call”. A value of the timescale attribute may be “1000”.


With regard to the first event, a value of the presentationTime attribute may be “0”, a value of the duration attribute may be “10000”, a value of the id attribute may be “0”, and/or a value of the data element/attribute may be “+1 800 10101010”. With regard to the second event, a value of the presentationTime attribute may be “20000”, a value of the duration attribute may be “10000”, a value of the id attribute may be “1”, and/or a value of the data element/attribute may be “+1 800 10101011”. With regard to the third event, a value of the presentationTime attribute may be “40000”, a value of the duration attribute may be “10000”, a value of the id attribute may be “2”, and a value of the data element/attribute may be “+1 800 10101012”. With regard to the fourth event, a value of the presentationTime attribute may be “60000”, a value of the duration attribute may be “10000”, a value of the id attribute may be “3”, and a value of the data element/attribute may be “+1 800 10101013”.


The broadcast receiving apparatus according to an embodiment of the present invention may receive a broadcast signal including at least one of service data and signaling data (e.g., low level signaling data or service layer signaling data) for a service through a broadcast network.


The broadcast receiving apparatus according to an embodiment of the present invention may acquire a service based on signaling data. In detail, the broadcast receiving apparatus may acquire low level signaling data and acquire service layer signaling data based on the low level signaling data.


The broadcast receiving apparatus may acquire attribute of a service using the service layer signaling data (USBD). The broadcast receiving apparatus may refer to and/or acquire the MPD and/or the S-TSID using the USBD.


The broadcast receiving apparatus may acquire information on at least one component (or representation) for a service using service layer signaling data (USBD and/or MPD). For example, the broadcast receiving apparatus may acquire information on a video component.


The broadcast receiving apparatus may acquire transmission path information of at least one component using service layer signaling data (S-TSID). The broadcast receiving apparatus may acquire transmission path information of other components for at least one component using service layer signaling data (S-TSID). For example, other components for at least one component may include an application.


The broadcast receiving apparatus may acquire service data for a service based on the service layer signaling data (transmission path information). For example, the broadcast receiving apparatus may receive an application (App) through the second transport session (tsi-app) in non-real time.


The broadcast receiving apparatus may acquire information for identifying an application (App) based on the service layer signaling data (AST). The broadcast receiving apparatus may acquire EST through a broadband base on the service layer signaling data (AST).


The broadcast receiving apparatus may execute an application (App) based on an event. For example, the event may be transmitted in the form of EventStream element included in an event stream table (EST) transmitted in a broadband.


The broadcast receiving apparatus may execute an application (App) at a predetermined timing while playback of a video component.



FIG. 49 is a diagram showing an event transmitted in the form of emsg box in a broadband according to an embodiment of the present invention.


The event may be transmitted in the form of emsg box transmitted in a broadband. In this case, the event may be transmitted through a live event server. Polling may be periodically performed on the live event server and when there is an event to be transmitted within the period, the event server may transmit the event to a receiver. A detailed description of the emsg box transmitted through a broadband may include the entire aforementioned description of the emsg box.


A broadcast signal (broadcast stream) with a specific frequency may include service data and/or signaling data for a service. The broadcast signal may include a first ROUTE session (sIP#A/dIP#A/dPort#A). The first ROUTE session may be transmitted through a first PLP (PLP#A). The first ROUTE session may include a first transport session (tsi-sls), a second transport session (tsi-app), and/or a third transport session (not shown). The first transport session (tsi-sls) may include at least one service layer signaling information item. For example, the service layer signaling information may include at least one of the aforementioned USBD, MPD (not shown), S-TSID, and/or AST. The second transport session (tsi-app) may include at least one application. The third transport session may include a video component. In some embodiments, the MPD may be omitted. A description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP#A), the first transport session, the second transport session (tsi-app), and/or the third transport session according to an exemplary embodiment of the present invention may include the entire aforementioned description of the first ROUTE session (sIP#A/dIP#A/dPort#A), the first PLP (PLP #A), the first transport session, the second transport session(tsi-app), and/or the third transport session.


Hereinafter, the SLT will be described.


The SLT may include path information for the first ROUTE session (sIP#A/dIP#A/dPort#A). The SLT may include path information for the first transport session (tsi-sls). A description of the SLT according to an exemplary embodiment of the present invention may include the entire aforementioned description of the SLT.


Hereinafter, the SLS will be described.


The SLS may include at least one of USBD, MPD, S-TSID, and/or AST. A description of the SLS may include the entire aforementioned description of the SLS. Hereinafter, the AST will be described in more detail.


The AST may include ContentLinkage attribute. The ContentLinkage attribute may indicate an application using a corresponding content item. Signaling may be performed on a specific application based on a value of the attribute and information (EventStream element, emsg box, etc.) on events to be described below.


For example, the ContentLinkage attribute may provide an application identifier for identifying an application (App) transmitted through a second transport session. The ContentLinkage attribute may provide a transport session identifier for identifying the second transport session (or LCT session).


The AST may further include BroadbandDynamicEventURL attribute. The BroadbandDynamicEventURL attribute may include path information (or URL) for access to emsg box for a service. In this case, the emsg box may be transmitted through a broadband. The emsg box may provide signaling (event) required for execution of applications.


The emsg box may provide signaling information for generic events related to media presentation time. The emsg box may include at least one of a schemeIdUri field, a value field, a timescale field, a presentationTimeDelta field, an eventDuration field, an id field, and/or a messageData field. A description of the emsg box may include the entire aforementioned description of the emsg box.


For example, a value of the schemeIdUri field may be “urn:uuid:XYZY”.


The broadcast receiving apparatus according to an embodiment of the present invention may receive a broadcast signal including at least one of service data and signaling data (e.g., low level signaling data or service layer signaling data) for a service through a broadcast network.


The broadcast receiving apparatus according to an embodiment of the present invention may acquire a service based on the signaling data. In detail, the broadcast receiving apparatus may acquire low level signaling data and acquire service layer signaling data based on the low level signaling data.


The broadcast receiving apparatus may acquire attribute of a service using service layer signaling data (USBD). The broadcast receiving apparatus may refer to and/or acquire MPD and/or S-TSID using the USBD.


The broadcast receiving apparatus may acquire information on at least one component (or representation) for a service using the service layer signaling data (USBD and/or MPD). For example, the broadcast receiving apparatus may acquire information on a video component.


The broadcast receiving apparatus may acquire transmission path information of at least one component using service layer signaling data (S-TSID). The broadcast receiving apparatus may acquire transmission path information of other components for at least one component using the service layer signaling data (S-TSID). For example, other components for at least one component may include an application.


The broadcast receiving apparatus may acquire service data for a service based on the service layer signaling data (transmission path information). For example, the broadcast receiving apparatus may receive an application (App) through the second transport session (tsi-app) in non-real time.


The broadcast receiving apparatus may acquire information for identifying an application (App) based on the service layer signaling data (AST). The broadcast receiving apparatus may acquire emsg box through a broadband based on the service layer signaling data (AST).


The broadcast receiving apparatus may execute an application (App) based on the event. For example, the event may be transmitted in the form of emsg box transmitted in a broadband.


The broadcast receiving apparatus may execute an application (App) at a predetermined timing while playback of a video component.



FIG. 50 is a diagram illustrating API and an event listener according to an embodiment of the present invention.


Referring to FIG. (a), a listener is shown.


An event processor may be a code that is executed in response to event occurrence. For example, the event processor may be a java script code to be executed in response to event occurrence. The event processor may include an event listener (an event listener or a listener). Differently from an event handler for processing only one event with respect to one element, the event listener may process at least one event with respect to one element.


The listener may include a general signature of a document object mode (DOM) event listener. Here, the DOM may refer to a model (system) for supporting the event handler to be connected to all element nodes.


The listener according to an embodiment of the present invention may include a StreamEvent type of object. For example, the listener may be configured in the form of listener (StreamEvent event).


A StreamEvent type of object transmitted to the listener may be obtained by extending a general DOM Event type of object.


The StreamEvent type of object may include name attribute, data attribute, text attribute, status attribute, and/or time attribute.


The name attribute may indicate a name of an event. The name attribute may be reading dedicated attribute and may be of a String type.


The data attribute may indicate data of an event encoded in hexadecimal. For example, data attribute may have a value of “0A10B81033”. The data attribute may be reading dedicated attribute and may be of a String type.


The text attribute may indicate text data of an event. For example, when the data attribute includes a text, the text attribute may have values of ASCII code. The text attribute may be a child element of an Event element for activation of an event and may include data identified by data identifier (dataID) that is clearly described in a trigger or in the Event element of the EMT. The text attribute may be reading dedicated attribute and may be of a String type.


The status attribute may indicate a state of an event. When an event is activated in response to a trigger, the status attribute may indicate “trigger”. When some types of errors occur, the status attribute may indicate “error”. The status attribute may be reading dedicated attribute and may be of a DOMString type.


The time attribute may indicate a time at which an event occurs. The time attribute may be reading dedicated attribute and may be of an integer type.


Referring to FIG. (b), API for addition and/or deletion of an event listener (or a listener) is shown.


An event processing method according to an embodiment of the present invention may include a method of connecting an object of an event listener and a method of the object. In this method, the event listener may be connected to a method of an object and, then, when an event occurs, the method of the object is executed.


In order to support the event processing method, addStreamEventListener API and/or removeStreamEventListener API according to an embodiment of the present invention may be used.


The addStreamEventListener API may add a listener (e.g., an event listener or a stream event listener) for an event. The addStreamEventListener API may add a listener for an event determined by an event identifier (e.g., eventID) in a range of a currently executed html application, to the AST. When a corresponding event is activated by a trigger, the listener is called. A TriggerEvent type (or StreamEvent type) object may be transmitted. Listeners may be added only when a video/broadcast object is presented and/or stopped.


The addStreamEventListener API may include at least one of targetURL parameter, eventName parameter, and/or Listener parameter. For example, the addStreamEventListener API may have the same format as addStreamEventListener (targetURL, eventName, and listener).


The targetURL parameter may indicate URL of a StreamEvent object for describing an event. The targetURL parameter may be mapped to schemeIdURI attribute of a DASH EventStream element.


The eventName parameter may indicate a name of an event as a subscription target. The eventName may be mapped to value attribute of the DASH EventStream element.


The Listener parameter may indicate a listener for an event. The Listener parameter may be a call-back function. When an event occurs, the listener parameter may be called as a parameter along with the transmitted StreamEvent object.


The targetURL parameter and the eventName parameter may be an event identifier for identifying an event. For example, the addStreamEventListener API may include an event identifier (eventId) parameter and a listener parameter. For example, the addStreamEventListener API may be of an addTriggerEventListener (String eventide and EventListener listener) type. The event identifier may be an identifier of an event present in an event element in the EMT. The event identifier may be an identifier (e.g., id field of emsg box) of events that are dynamically updated by a trigger.


The removeStreamEventListener API may remove a listener for an event. The removeStreamEventListener API may remove a listener for an event determined by an event identifier (e.g., eventID).


The removeStreamEventListener API may include at least one of targetURL parameter, eventName parameter, and/or Listener parameter. For example, the removeStreamEventListener API may have the same format as removeStreamEventListener (targetURL, eventName, and listener).


The targetURL parameter may indicate URL of a StreamEvent object. The targetURL parameter may be mapped to schemeIdURI attribute of the DASH EventStream element.


The eventName parameter may indicate a name of an event that is a removal target of subscription. The eventName may be mapped to value attribute of the DASH EventStream element.


The Listener parameter may indicate a listener for an event. The Listener parameter may be a call-back function. When an event occurs, the Listener parameter may be called as a parameter along with the transmitted StreamEvent object.


The targetURL parameter and the eventName parameter may be an event identifier for identifying an event. For example, the removeStreamEventListener API may include an event identifier (eventId) parameter and a listener parameter. For example, the removeStreamEventListener API may be of format of removeTriggerEventListener (StringeventId and EventListener listener). The event identifier may be an identifier (e.g., EventID attribute or id attribute) of an event present in an event element in the EMT. The event identifier may be an identifier (e.g., id field of emsg box) that is dynamically updated by a trigger.


The broadcast receiving apparatus according to an exemplary embodiment of the present invention may add a listener for an event based on the addStreamEventListener API. The broadcast receiving apparatus may add the listener for the event based on the removeStreamEventListener API. The addStreamEventListener API and/or the removeStreamEventListener API may support synchronization of html application actions for broadcast programming.



FIG. 51 is a view illustrating a configuration of a complex video component according to an embodiment of the present invention.


The embodiment of FIG. 51 is obtained by editing the specific expression in the embodiment of FIG. 30 and is applicable like the embodiment of FIG. 31. Especially, the definitions and roles of continuous components, elementary components, composite components and complex components are the same. The adaptive component of FIG. 30 is expressed as a PickOne component as described above. The definition and role of the PickOne component in the embodiment of FIG. 51 are identical to those of the adaptive component in the embodiment of FIG. 30. Accordingly, a composite component represents that a plurality of continuous components are combined and one content is played. Additionally, a PickOne component represents a component that is one selected from a plurality of selectable media components and played. However, in the embodiment of FIG. 51, a presentable component is defined unlike the embodiment of FIG. 30. The presentable component represents a continuous component that is substantially played in the broadcast reception device 100. Additionally, the presentable component may be an elementary component. Additionally, the presentable component may be a complex component. In a specific embodiment, a media component itself may be a presentable component and may be included in a complex component as a sub-media component of a complex component. For example, a service may include a basic 2D video component and a complex 3D component. At this point, a 2D video component is a presentable component that is playable as a 2D image without a 3D video component. Additionally, as one view of a 3D image, the 2D video component may be played as a 3D image together with another 3D video component.


Additionally, in another specific embodiment, a presentable audio component may be a PickOne component including a main component, music, dialog, and sound effect. At this point, a main component and a music component may be a PickOne component including a plurality of elementary components encoded with different bitrates. Additionally, a media component representing dialog and sound effect may be an elementary component.



FIG. 52 is a view illustrating a configuration of a complex video component according to an embodiment of the present invention.


A presentable component may be a composite component. Like the embodiment of FIG. 52, scalable video encoding may include a plurality of media components as a composite component. The scalable video encoding may include a base layer component that is an elementary component, a first enhancement layer component, and a second enhancement layer component. At this point, the base layer component is a presentable component that is playable without the first enhancement layer component and the second enhancement layer component. Additionally, the base layer component may be played as a high quality image together with at least one of the first enhancement layer component and the second enhancement layer component. At this point, the first enhancement layer component and the second enhancement layer component are components unplayable without the base layer component and are supposed to be played together with the base layer component. Therefore, the first enhancement layer component and the second enhancement layer component cannot be called a presentable component. At this point, the broadcast reception device 100 may combine the base layer component with the first enhancement layer component and the second enhancement layer component to play an image on the basis of the capabilities of the broadcast reception device 100. In more detail, when the capabilities of the broadcast reception device 100 are low, the broadcast reception device 100 may play a relatively low quality image by using the base layer component. Or, when the capabilities of the broadcast reception device 100 are relatively high, the broadcast reception device 100 may combine the base layer component with the first enhancement layer component and the second enhancement layer component to play a relatively high quality image. Or, when the capabilities of the broadcast reception device 100 are very high, the broadcast reception device 100 may combine the base layer component with the first enhancement layer component and the second enhancement layer component to play a very high quality image.



FIG. 53 is a view illustrating a complex video component according to another embodiment of the present invention.


A presentable component may be a PickOne component. According to the embodiment of FIG. 36, a PickOne component may include 2D encoding and 3D encoding in side-by-side format. At this point, the 3D encoding is divided into a left view and a right view. The left view and the right view are encoded each to be half the view width and disposed side-by-side to generate a picture. The broadcast reception device 100 may select one of the 2D encoding and the 3D encoding according to the capabilities of the broadcast reception device 100 and may then play the selected one. In more detail, when the broadcast reception device 100 does not support a 3D image, it may select and play the 2D encoding. Additionally, when the broadcast reception device 100 supports a 3D image, it may select and play the 3D encoding.


In such a way, each service may be described through a presentable component therein. Additionally, when the presentable component is a complex component, it may be described through components including the complex component. In a specific embodiment, each presentable audio component may represent the voice of a specific scene and each presentable video component may represent the picture of a specific scene captured at a specific angle. In the case of a simple combination, the presentable component may be an elementary component. As described above, each presentable component may be a complex component. This will be described with reference to FIG. 37.



FIG. 54 is a view illustrating a complex video component according to another embodiment of the present invention.


A presentable component may be a composite component and a component that a composite component includes may be a PickOne component. In the embodiment of FIG. 37, a presentable video component includes a 3D image left view video component and a 3D image right view video component. The left view video component and the right view video component are PickOne components. Accordingly, the left view video component and the right view video component include a plurality of elementary components encoded with different bitrates.


When the type and role of a media component are defined as in the embodiment of FIG. 63, the relationship and structure of a media component that a service includes may be described efficiently and simply. Accordingly, by using this, a broadcast transmission device may signal services efficiently and simply and also by using this, the broadcast reception device 100 may obtain service signaling information efficiently and simply.


Various broadcast service models are described with reference to FIGS. 55 to 58.



FIG. 55 is a view illustrating a media component configuration of an audio service according to an embodiment of the present invention.


The audio service may include one or more audio components. Additionally, the audio service may include a closed caption component. Additionally, the audio component may include adjunct data service. At this point, an adjunct service may be a Non-Real-Time (NRT) service. Additionally, according to a specific embodiment of the present invention, an audio service may be transmitted through continuous stream according to a predetermined schedule. According to a specific embodiment of the present invention, audio service may be referred to as radio service.



FIG. 56 is a view illustrating a configuration of a broadcast service including both audio and video according to an embodiment of the present invention.


The broadcast service including both audio and video may include one or more main video components. At this point, the broadcast service including both audio and video may include an adjunct video component. At this point, the broadcast service including both audio and video may include an audio component. Moreover, the broadcast service including both audio and video may include a closed caption component. Furthermore, the broadcast service including both audio and video may include an adjunct service data component. According to a specific embodiment of the present invention, a service including both audio and video may be referred to as TV service.



FIG. 57 is a view illustrating a configuration of a user request content service according to an embodiment of the present invention.


A Contents On Demand (CoD) service may include an application providing a user interface. Additionally, the CoD service may include a content item provided in response to a user request. Additionally, the CoD service may include a catalog of a content item. At this point, the catalog may be embedded in an application.



FIG. 58 is a view illustrating a configuration of a stand-alone data service according to an embodiment of the present invention.


A stand-alone data service may include one or more content items configuring a service. In a specific embodiment, a stand-alone NRT data service may be referred to as an App service.


A plurality of broadcast services may share a media component. In more detail, each of media components that the above-described audio service, broadcast service including both audio and video, and stand-alone data service include may relate to one or more other components. At this point, one or more other components may include a service encoded by another method representing the same base content.


Additionally, a broadcast service may include as a property at least one of a service identifier, a service form, a description of a service, a service name, a channel number, a graphic icon, a list of components in a service, a property for broadcast service protection, a property on targeting/personalization, a contents advisory rating, a language of a service, a list of adjunct NRT data services relating to service, and a property on broadcast service user report. At this point, a service name may be displayed in a plurality of languages. Additionally, a graphic icon may be used to represent a service. Additionally, a service language may represent a primary language used in service. Additionally, the service form may include at least one of a scheduled audio service transmitted according to a planned schedule, a service including scheduled audio and video transmitted according to a planned schedule, a user request service transmitted in response to a user request, and a scripted NRT data service. Additionally, the channel number may include a major channel number and a minor channel number in detail. Additionally, the channel number may be displayed as a virtual channel number. Moreover, a plurality of broadcast services may use the same graphic icon. Additionally, the service identifier may have a unique value in a broadcast area where a broadcast service is broadcasted. Additionally, the service identifier may include identifiers of two categories, for example, a local identifier and a regional identifier. The local identifier may be used for services broadcasted only in one broadcast area. Accordingly, a plurality of broadcast services broadcasted in a plurality of different broadcast areas may have the same regional identifier. The local identifier may be used for broadcast service identification when the same broadcast is available in a plurality of broadcast areas.


In order to signal the properties of such a broadcast service, the above-described broadcast signaling table may be used.


Each continuous component may have a plurality of properties. At this point, the plurality of languages may be divided into a plurality of types. In a specific embodiment, a plurality of properties that a continuous component has may include a basic continuous component property, an elementary component property, a complex component property, and a presentable component property.


The basic continuous component property is applied to all continuous components. The basic continuous component property may include at least one of a unique content identifier, a content structure, and a content type. At this point, the content structure may represent one of a basic component and a PickOne component. Additionally, the content type may represent one of audio, video, and a closed caption.


The elementary component property is applied to an elementary component. The elementary component property may include the basic feature of component encoding. For example, the elementary component property may include a video resolution. Additionally, the elementary component property may include the number of audio channels.


The complex component property is applied to a complex component. The complex component property may include at least one of media components that a complex component includes and the role of the media components. In more detail, the role of the media components may represent that an audio component is a dialog track. Additionally, the role of media components may represent that a video component is the left view of a 3D image.


Each service may include one or more media components. Additionally, each media component may include at least one as a property among a component identifier for identifying a media component, the type of a component, description for a component, a targeting/personalization property, a service protection property, a target device, contents advisory rating, and related component information. At this point, a value of a component identifier may be unique between components of a broadcast service. The target device may represent one among a primary device and a companion device. Additionally, the service signaling table may include media component information signaling a property of such a media component. In more detail, the service signaling table may include media component information as component level information. This will be described with reference to FIG. 59.



FIG. 59 is a view illustrating media component information according to an embodiment of the present invention.


The media component information may include information representing the type of a media component, information on whether information on a target device is included, target device information representing a target device, text information describing a media component, a component encoding parameter according to the type of a media component, and information on a complex component in the case of a complex component that a media content includes.


The media component information may include a descriptor_tag field, a descriptor_length field, a component_type field, a target_device_flag field, a target_device field, a text_length field, a text_char field, a component_data_type field, a component_data field, and a complex_component_data field.


The descriptor_tag field represents that media component information is included. According to a specific embodiment of the present invention, the descriptor_tag field may be an 8-bit field.


The descriptor_length field represents the length after the descriptor_length field. According to a specific embodiment of the present invention, the descriptor_length field may be an 8-bit field.


The component_type field represents the type of a media component. According to a specific embodiment of the present invention, a value of the component_type field may represent one among the above-described elementary component, composite component, and adaptive component. In more detail, when a value of the component_type field is 0x00, a corresponding media component represents an elementary component. When a value of the component_type field is 0x01, a corresponding media component represents a composite component. When a value of the component_type field is 0x02, a corresponding media component represents an adaptive component. According to a specific embodiment of the present invention, the component_type field may be a 4-bit field.


The target_device_flag field represents whether the targte_device field is included. According to a specific embodiment of the present invention, the target_device_flag may be a 1-bit field.


The target_device field represents a target device where a corresponding component is executed. According to a specific embodiment of the present invention, a value that the target_device field has may represent whether a corresponding component is executed only in a primary device, only in a companion device, or in both primary device and a companion device. In more detail, when a value of the target_device field is 0x01, it represents that a corresponding component is executed only in a primary device. When a value of the target_device field is 0x02, it represents that a corresponding component is executed only in a companion device. When a value of the target_device field is 0x03, it represents that a corresponding component is executed in both a primary device and a companion device. According to a specific embodiment of the present invention, the target_device field may be a 3-bit field.


The text_length field represents the length of the text_char field. According to a specific embodiment of the present invention, the text_length field may be an 8-bit field.


The text_char field is a text for describing a media component.


The component_data_type field represents an encoding type of a corresponding component. In more detail, the component_data_type field may have the same value as that in the embodiment of FIG. 60. In more detail, when a value of the component_type field is 35, it may represent that a media component is an H.264/AVC component. In more detail, when a value of the component_data_type field is 36, it may represent that a media component is an SVC enhancement layer stream component. In more detail, when a value of the component_data_type field is 37, it may represent that a media component is an HE AAC v2 audio stream component. In more detail, when a value of the component_data_type field is 38, it may represent that a media component is transmitted through a FLUTE file transmission session. In more detail, when a value of the component_data_type field is 39, it may represent that a media component is an STKM stream component. In more detail, when a value of the component_data_type field is 40, it may represent that a media component is an LTKM stream component. In more detail, when a value of the component_data_type field is 41, it may represent that a media component is an OMA-RME DIMS stream component. In more detail, when a value of the component_data_type field is 42, it may represent that a media component is an NTP time base stream component. In more detail, when a value of the component_data_type field is 70, it may represent that a media component is an HEVC video stream component. In more detail, when a value of the component_data_type field is 71, it may represent that a media component is transmitted through an ISO BMFF. According to a specific embodiment of the present invention, the component_type field may be an 8-bit field.


The component_data field represents an encoding parameter of a component. A parameter that an encoding parameter includes may vary according to an encoding type of a component. In more detail, a parameter that an encoding parameter includes may vary according to a value of the component_type field.


When the type of a media component is a complex type, for example, a composite component or an adaptive component, the complex_component_data field represents information on a complex component. This will be described in more detail with reference to FIGS. 61 and 62. Additionally, component information is described through a bit stream format, but component information may be in another format such as an XML file format.



FIG. 61 is a view illustrating complex component information according to an embodiment of the present invention.


The complex component information may include at least one of information representing a set form of component, information on whether information on a target device is included, target device information representing a target device, the number of sub media components that a corresponding complex component includes, information on the type of a media that a sub media component includes and a role of a sub media component when a corresponding complex component is a composite component.


In more detail, as shown in FIG. 61, the complex component information may include at least one of an aggretation_type field, a num_sub_component field, a sub_component_id field, a general_mdeida_type field, and a sub_component_role field.


The aggretation_type field represents the type of a set that a corresponding component belongs. In more detail, a value of the aggretation_type field represents either a composite component or an adaptive component. According to a specific embodiment of the present invention, the aggretation_type field may be a 3-bit field.


The target_device_flag field represents whether the targte_device field is included. According to a specific embodiment of the present invention, the target_device_flag may be a 1-bit field.


The target_device field represents a target device where a corresponding component is executed. According to a specific embodiment of the present invention, a value that the target_device field has may represent whether a corresponding component is executed only in a primary device, only in a companion device, or in both primary device and a companion device. In more detail, when a value of the target_device field is 0x01, it represents that a corresponding component is executed only in a primary device. When a value of the target_device field is 0x02, it represents that a corresponding component is executed only in a companion device. When a value of the target_device field is 0x03, it represents that a corresponding component is executed in both a primary device and a companion device. According to a specific embodiment of the present invention, the target_device field may be a 3-bit field.


The num_sub_component field represents the number of sub media components that a corresponding complex component includes. According to a specific embodiment of the present invention, the num_sub_component field may be an 8-bit field.


The sub_component_id field represents a sub media component identifier for identifying a sub media component. According to a specific embodiment of the present invention, the sub_component_id field may be an 8-bit field.


When a corresponding complex component is a composite component, the general_media_type field represents the type of a media that a sub media component includes. In more detail, a value of the general_media_type field may represent one among video, audio, text, application, and message. In more detail, when a value of the general_media_type field is 0x00, it represents that a media that a sub media component includes video. When a value of the general_media_type field is 0x01, it represents that a media that a sub media component includes audio. When a value of the general_media_type field is 0x02, it represents that a media that a sub media component includes text. When a value of the general_media_type field is 0x03, it represents that a media that a sub media component includes application. When a value of the general_media_type field is 0x04, it represents that a media that a sub media component includes message. According to a specific embodiment of the present invention, the general_media_type field may be a 4-bit field.


The sub_component_role field represents the role of each sub media component. In more detail, a value of the sub_component_role field may represent that a sub media component is an enhancement layer for scalable video encoding. According to another specific embodiment of the present invention, a value of the sub_component_role field may represent that a sub media component is one among the right image, left image, and depth information of a 3D image. According to another specific embodiment of the present invention, a value of the sub_component_role field may represent that a sub media component is a video at a specific position of a screen divided into a plurality of areas. According to the type of a media that a sub media component includes, information that the sub_compoent_role field represents may vary. According to a specific embodiment of the present invention, the sub_component_role field may be an 8-bit field.


Such complex component information may be included in a complex component descriptor as shown in the embodiment of FIG. 62. Additionally, complex component information is described through a bit stream format, but the complex component information may be in another format such as an XML file format.


As described above, media components may have a predetermined relationship to each other. For example, one closed caption component may relate to one or more audio components. Additionally, in order to signal a relationship between such media components, the service signaling table may include related component list information. In more detail, the service signaling table may include related component list information as component level information. The related component list information will be described in more detail with reference to FIG. 63.



FIG. 63 is a view illustrating related component list information according to an embodiment of the present invention.


The related component list information may include at least one of a component identifier for identifying a component, information representing the type of a media component, information representing the encoding format of a media component, and information representing the type of media that a media component includes.


In more detail, as shown in the embodiment of FIG. 64, the related component list information may include at least one of a descriptor_tag field, a descriptor_length field, a num_associated_component field, a component_id field, a component_type field, a component_data_type field, and a general_media_typee field.


The descriptor_tag field represents that related component list information is included. According to a specific embodiment of the present invention, the descriptor_tag field may be an 8-bit field.


The descriptor_length field represents the length after the descriptor_length field. According to a specific embodiment of the present invention, the descriptor_length field may be an 8-bit field.


The num_associated_component field represents the number of media components relating to a corresponding media component. According to a specific embodiment of the present invention, the num_associated_component field may be an 8-bit field.


The component_id field represents an identifier for identifying a related media component. According to a specific embodiment of the present invention, the component_id field may be an 8-bit field.


The component_type field represents the type of a media component. According to a specific embodiment of the present invention, a value of the component_type field may represent one among the above-described elementary component, composite component, and adaptive component. In more detail, when a value of the component_type field is 0x00, a related media component represents an elementary component. When a value of the component_type field is 0x01, a related media component represents a composite component. When a value of the component_type field is 0x02, a related media component represents an adaptive component. According to a specific embodiment of the present invention, the component_type field may be a 4-bit field.


The component_data_type field represents an encoding type of a corresponding component. In more detail, the component_data_type field may have the same values as those in FIG. 60. According to a specific embodiment of the present invention, the component_type field may be an 8-bit field.


The general_media_type field represents the type of a media that a related media component includes. In more detail, a value of the general_media_type field may represent one among video, audio, text, application, and message. In more detail, when a value of the general_media_type field is 0x00, it represents that a media that a related media component includes video. When a value of the general_media_type field is 0x01, it represents that a media that a related media component includes audio. When a value of the general_media_type field is 0x02, it represents that a media that a related media component includes text. When a value of the general_media_type field is 0x03, it represents that a media that a related media component includes application. When a value of the general_media_type field is 0x04, it represents that a media that a related media component includes message. According to a specific embodiment of the present invention, the general_media_type field may be an 8-bit field.


An audio component may include at least one as a property among a component identifier for identifying a media component, the type of a component, description for a component, a targeting/personalization property, a service protection property, a target device, and related component information. At this point, a value of a component identifier may be unique between components of a broadcast service. The target device may represent one among a primary device, a companion device, and both a primary device and a companion device.


When the audio component is an elementary component, it may include a property for encoding format including codec, the number of channels, a bitrate, and a compression parameter. Additionally, when the audio component is an elementary component, it may include language information of audio as a property. The mode of the audio component may be included as a property. At this point, the mode of the audio component may be one among complete main audio, dialog, effect sound, and audio for the visually impaired, audio for the hearing-impaired, commentary, and voice over.


When the audio component is a complex component, it may include at least one as a property among information representing the type of aggregation, a list of included media components, and the role of an included component in the case of a composite component. The form of a set may be one of a composite component and an adaptive component, that is, a PickOne component.


When the audio component is a top level component, it may include at least one as a property among contents advisory rating and information on a related closed caption component.


When an audio component is a presentable component, it may have as a property at least one of targeting/personalization, Content advisory rating, content/service protection, a target screen, and a related closed caption component. At this point, the target screen property may represent at least one of a primary screen, a companion screen, and a screen partially inserted into the primary screen, for example, Picture In Picture (PIP).


The closed caption component may include at least one as a property among a component identifier, the type of a component, a targeting/personalization property, a service protection property, a target device, and an audio component identifier relating to a closed caption component. At this point, a value of a component identifier may be unique between components of a broadcast service. The target device may represent one among a primary device, a companion device, and both a primary device and a companion device.


When the closed caption component is an elementary component, the closed caption component may include its language kind and form, as a property. In more detail, the form of a closed caption component may be one among a general closed caption or an Easy-reader closed caption.


When the closed caption component is an adaptive component, it may include a media component therein, as a property.


When the closed caption component is a top level component, it may include contents advisory rating as a property.


When a closed caption component is a presentable component, it may have as a property at least one of targeting/personalization, Content advisory rating, content/service protection, and a target screen. At this point, the target screen property may represent at least one of a primary screen, a companion screen, and a screen partially inserted into the primary screen, for example, Picture In Picture (PIP).


The video component may include at least one as a property among a component identifier for identifying a media component, the type of a component, a targeting/personalization property, a service protection property, the role of a video component, a target screen, and an NRT data service relating to a video component. At this point, a value of a component identifier may be unique between components of a broadcast service. The role of a video component may be one among an alternative camera view, an alternative video component, a sign language screen, and a follow subject video. The target device may represent one among a primary device, a companion device, both a primary device and a companion device, and a Picture In Picture (PIP) screen. When the NRT data service relating to a video component is not included, all additional NRT data services are connected to a video component.


When the video component is an elementary component, it may include at least one as a property among codec, an encoding format including a compression parameter or the like, a resolution including horizontal and vertical pixel values, an aspect ratio, a scanning method representing whether it is interlace or progressive, a frame rate, and a still picture mode. Additionally, the video component may include an encoding parameter as a property. At this point, the type of a specific encoding parameter may vary depending on codec of a video component.


When the video component is a complex component, it may include an aggregation form and a media component list that the complex component includes, as a property.


When the video component is a composite component among complex components, it may include the role of each media component that the composite component includes, as a property. At this point, the role of a media component may represent an enhancement layer for scalable video encoding. According to another specific embodiment of the present invention, the role of a media component may represent one among the right image, left image, and depth information of a 3D image. According to another specific embodiment of the present invention, the role of a media component may represent a video at a specific position of a screen divided into a plurality of areas. According to another specific embodiment of the present invention, the role of a media component may be Follow-Subject metadata that is a screen displayed according to a specific subject. Such Follow-Subject metadata may include at least one of a subjects' name, a subject's position, and a subject's size. When a Follow-Subject function is supported by metadata in frame unit of stream, the Follow-Subject metadata may represent an area of a main video component where a subject is focused.


When the video component is a top level component among complex components, it may include at least one as a property among contents advisory rating and a related audio component.


When a video component is a presentable component, it may have as a property at least one of targeting/personalization, Content advisory rating, content/service protection, a target screen, and a related audio presentable component, and related closed caption presentable component. At this point, the target screen property may represent at least one of a primary screen, a companion screen, and a screen partially inserted into the primary screen, for example, Picture In Picture (PIP).


The NRT data service may be a stand-alone service not depending on another service. Additionally, the NRT data service may be an adjunct NRT data service depending on another service. At this point, the adjunct NRT data service may be part of radio service. Moreover, the adjunct NRT data service may be part of TV service. The NRT data service may have a common property for all services, for example, a service identifier. Furthermore, the NRT data service and the NRT service may have a common property.


The data service may include at least one of a service language, a consumption model, an essential capability list, a non-essential capability list, a target device, and a content item available in a data service as properties.


A consumption model may represent at least one of Push, Portal, Push Scripted, Portal Scripted, Triggered, and Segment Delivery.


In Push, NRT data service provides service on the basis of a request. The broadcast reception device 100 provides to a user an option for automatically updating an NRT data service relating to service. In more detail, the broadcast reception device 100 receives from a user an input for auto update of an NRT data service relating to service. When an input for auto update of an NRT data service relating to service is received from a user, the broadcast reception device 100 caches a content relating to service and the latest version of an auto update file in order for user. When an input for push service is received from a user, the broadcast reception device 100 displays a pre-loaded content.


Portal provides an experience as if a user accessed NRT data service through a web browser. At this point, files used for NRT data service need to support text/graphic rendering.


Push Scripted is similar to Push. However, there is a difference in that Push Scripted provides a Declarative Object providing a user interface of a specific broadcaster for service.


Portal Scripted is similar to Portal. However, there is a difference in that Portal Scripted provides a Declarative Object providing a user interface of a specific broadcaster for service.


Triggered is a consumption model used in bi-directional adjunct NRT data service. In an example of typical Triggered, in order to improve user experience, a Declarative Object in which adjunct NRT data service for A/V virtual channel is synchronized is delivered.


Segment delivery provides the delivery of a segment and an application for supporting the insertion of a targeted content of a program. A segment divides a program into a plurality of time spans. A targeting segment provides a content based on the characteristics of a user and the characteristics of the broadcast reception device 100 as a specific segment. In more detail, the broadcast reception device 100 may play a content based on the characteristics of a user and the characteristics of the broadcast reception device 100 as a specific segment. In more detail, a segment delivery consumption model is not displayed to a user (for example, behind scene) and is used to insert a targeting content into the middle of a radio program or a TV program. For example, the broadcast reception device 100 displays a targeting advertisement based on the characteristics of a user during the middle of a radio program or a TV program. Such NRT data service is not provided by a user's selection. Such NRT data service may be opened by an inserted targeting application, a collection of segments targeted for insertion, and an application and may deliver at least one of consumed other files as a content item. At this pint, it is selected that which segment and what time the inserted targeting application is inserted. Additionally, the targeting application may notify such insertion to the broadcast reception device 100. Additionally, the targeting application may perform a report function. Additionally, other files opened and consumed by an application may be encrypted to be interpreted by only a corresponding application.


The broadcast reception device 100 may perform the following operations in order for segment delivery. The broadcast reception device 100 may download and cache an application in advance in order not to download the application repeatedly each time a user selects radio service or TV service including adjunct NRT data service. Additionally, the broadcast reception device 100 may pre-download a targeted segment and may cache an expiration date. Through this, the broadcast reception device 100 may provide a targeted segment to a user immediately. Additionally, the broadcast reception device 100 may execute an application. Additionally, when an application notifies that a specific segment is inserted, the broadcast reception device 100 may insert the specific segment.


A target device may represent one of a primary device and a companion device, or both a primary device and a companion device.


A content item of data service may have as a property at least one of a content item identifier, the name of a content item, a file set including content items, a display for representing whether the update of a content item is to be monitored, an available window representing a download available time, an expiration data representing a time at which a content item is discarded, a content item size, the playback length of a content item, a targeting/personalizing property, service/content protection, and content advisory rating.


Additionally, each additional NRT service may include a target screen as a property. At this point, the target screen may represent one among a primary device, a companion device, and both a primary device and a companion device.


Such an NRT data property may be signaled through an NRT information table. This will be described with reference to FIG. 64.



FIG. 64 is a view of an NRT information table according to an embodiment of the present invention.


The NRT information table may include an NRT service identifier and an NRT information block.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 64, the NRT information table may include at least one of a table_id field, section_syntax_indicator field, private_indicator field, section_length field, table id extension field, version_number field, current_next_indicator field, section_number field, last_section_numberr field, service_id field, and NRT_information_block field.


The table_id field represents the identifier of an NRT information table. At this point, a value of the table_id field may be one of reserved id values defined in ATSC A/65. According to a specific embodiment of the present invention, the table_id field may be an 8-bit field.


The section_syntax_indicator field represents whether an NRT information table is a private section table in the long formant of MEPG-2 TS standard. According to a specific embodiment of the present invention, the section_syntax_indicator field may be a 1-bit field.


The private_indicator field represents whether a current table corresponds to a private section. According to a specific embodiment of the present invention, the private_indicator field may be a 1-bit field.


The section_length field represents the length of a section after the section_length field. According to a specific embodiment of the present invention, the section_length field may be a 12-bit field.


The table_id_extension field represents a value for identifying an NRT information table in combination with the table_id field. Especially, the table_id field may include a protocol_version field representing a protocol version of an NRT information table. According to a specific embodiment of the present invention, the protocol_version field may be an 8-bit field. Especially, the table_id_extension field may include a subnet_id field identifying a subnet that an NRT information table transmits. According to a specific embodiment of the present invention, the subnet_id field may be an 8-bit field.


The version_number field represents a version of an NRT information table. The broadcast reception device 100 may determine the availability of an NRT information table on the basis of a value of the vserion_number field. In more detail, when a value of the version_number field is identical to a version of a previously received service signaling table, the information of the NRT information table may not be used. According to a specific embodiment of the present invention, the version_number field may be a 5-bit field.


The current_next_indicator field represents whether information of an NRT information table is currently available. In more detail, when a value of the current_next_indicator field is 1, it may represent that an NRT information table is available. Moreover, when a value of the current_next_indicator field is 1, it may represent that information of an NRT information table is available next time. According to a specific embodiment of the present invention, the current_next_indicator field may be a 1-bit field.


The section_number field represents a current section number. According to a specific embodiment of the present invention, the section_number field may be an 8-bit field.


The last_section_number field represents the last section number. When the size of an NRT information table is large, the NRT information table may be divided into a plurality of sections and then transmitted. At this point, the broadcast reception device 100 determines whether all sections necessary for an NRT information table are received on the basis of the section_number field and the last_section_number field. According to a specific embodiment of the present invention, the last_section_number field may be an 8-bit field.


The service_id field represents a service identifier for identifying an NRT service. According to a specific embodiment of the present invention, the service_id field may be a 16-bit field.


The NRT_information_block field represents an NRT information block. This will be described in more detail with reference to FIG. 65.



FIG. 65 is a view illustrating an NRT information block according to an embodiment of the present invention.


The NRT information block may include at least one of descriptors including information representing the start time of a time span that the NRT information block signals, information representing the length of a time span that the NRT information block signals, the number of content items that the NRT information block signals, content identification information identifying a corresponding content item, information on whether a corresponding content item is updated periodically, information on whether content protection is applied to files that a corresponding content item includes, information representing whether a corresponding content item is a master content item executed when service is selected, information on whether the NRT information block includes the length of a playback time of a corresponding content, the length of a playback time of a corresponding content, information on whether the NRT information block includes the playback delay time of a corresponding content, the playback delay time of a corresponding content, information on whether the NRT information block includes the expiration time of a corresponding content item, the expiration time of a content item, information on whether the NRT information block includes the size of a corresponding content item, the size of a corresponding content, information on whether the NRT information block includes information on a target device of NRT service, information on a target device of NRT service, information on whether a corresponding content item is received through a broadcast network, information on whether a corresponding content item is received through an internet network, the name of a corresponding content item, and specific information on a corresponding content.


In more detail, as shown in the embodiment of FIG. 66, the NRT information block may include at least one of a time_span_start field, time_span_length field, a num_content_items_in_section field, a content_id, an updates_available field, a content_security_conditions_indicator field, a master_item field, a playback_length_included field, a palybace_Delay_included field, an expiration_included field, a content_size_included field, an available_in_broadcast field, a target_included field, a playback_length_in seconds field, a playback_delay field, an expiration field, a content_size field, a target field, a content_name_text field, and a content_descriptor field.


In more detail, the NRT information block may include at least one of a time_span start field, time_span_length field, a num_content_items_in_section field, a content_id, an updates_available field, a content_security_conditions_indicator field, a master_item field, a playback_length_included field, a palybace_Delay_included field, an expiration_included field, a content_size_included field, an available_in_broadcast field, a target_included field, a playback_length_in seconds field, a playback_delay field, an expiration field, a content_size field, a target field, a content_name_text field, and a content_descriptor field.


The time_span_start field represents the start time of a time span that the NRT information block signals. According to a specific embodiment of the present invention, the time_span_start field may be a 32-bit field.


The time_span_length field represents the length of a time span that the NRT information block signals. According to a specific embodiment of the present invention, the time_span_length field may be a 16-bit field.


The NRT_content_items_in_section field represents the number of content items that the NRT information block signals. According to a specific embodiment of the present invention, the NRT_content_items_in_section field may be an 8-bit field.


The content_id field represents information for identifying a corresponding content item. According to a specific embodiment of the present invention, the content_id field may be a 32-bit field.


The updates_available field represents whether a corresponding content item is updated. According to a specific embodiment of the present invention, the updates_available field may be a 1-bit field.


The content_security_conditions_indicator field represents whether a content protection is applied to at least one of files that a corresponding content item includes. According to a specific embodiment of the present invention, the content_security_conditions_indicator field may be a 1-bit field.


The master_item field represents whether a corresponding content item is a master content item. In more detail, the master_item field represents whether a corresponding content item is a content item that needs to be executed when a corresponding NRT service is selected. According to a specific embodiment of the present invention, the master_item field may be a 1-bit field.


The playback_length_included field represents whether the NRT information block includes the length of a playback time of a corresponding content item. According to a specific embodiment of the present invention, the playback_length_included field may be a 1-bit field.


The palyback_Delay_included field represents whether the NRT information block includes delay playback time information of a corresponding content item. According to a specific embodiment of the present invention, the palyback_Delay_included field may be a 1-bit field.


The expiration_included field represents whether the NRT information block includes the expiration time of a corresponding content item. According to a specific embodiment of the present invention, the expiration_included field may be a 1-bit field.


The content_size_included field represents whether the NRT information block includes the size of a corresponding content item. According to a specific embodiment of the present invention, the content_size_included field may be a 1-bit field.


The available_in_broadcast field represents whether a corresponding content item is obtained through a broadcast network. According to a specific embodiment of the present invention, the available_in_broadcast field may be a 1-bit field.


The available_in internet field represents whether a corresponding content item is obtained through an internet network. According to a specific embodiment of the present invention, the available_in_internet field may be a 1-bit field.


The target_included field represents whether the NRT information block includes information on a target device. According to a specific embodiment of the present invention, the target_included may be a 1-bit field.


The playback_length_in seconds field represents the length of a playback time of a corresponding content item. According to a specific embodiment of the present invention, the playback_length_in seconds field may represent a length in seconds. Additionally, according to a specific embodiment of the present invention, the playback_length_in seconds field may be a 24-bit field.


The playback_delay field represents the playback delay time of a corresponding content item. According to a specific embodiment of the present invention, the playback_delay field may be a 24-bit field.


The expiration field represents the expiration time of a corresponding content item. According to a specific embodiment of the present invention, the expiration field may be a 32-bit field.


The content_size field represents the size of a corresponding content item. According to a specific embodiment of the present invention, the content_size field may be a 40-bit field.


The target field represents target device information of a corresponding content item. According to a specific embodiment of the present invention, when a value of the target field is 0x01, it represents that a target device is only a primary device. According to a specific embodiment of the present invention, when a value of the target field is 0x02, it represents that a target device is one or more companion devices. Additionally, according to a specific embodiment of the present invention, when a value of the target field is 0x03, it represents that a target device is both a primary device and one or more companion devices.


The content_name_length field represents the length of the content_name_text field. According to a specific embodiment of the present invention, the content_name_length field may be an 8-bit field.


The content_name_text field represents the name of a corresponding content item.


The content_descriptor field represents one or more NRT service descriptors including specific information on a content item. This will be described in more detail with reference to FIG. 66. FIG. 66 is a view of an NRT service descriptor according to an embodiment of the present invention.


The NRT service descriptor may include at least one of information representing a consumption model of NRT service, information on whether to update NRT service automatically, information on whether information representing a minimum storage space necessary for NRT service is included, information on whether information representing the default size of a content item is included, information on a target device, information representing a minimum storage space for NRT service, and information on the default size of a content item.


According to a specific embodiment of the present invention, the NRT service descriptor may include at least one of a consumption_model field, auto-update field, a stoargage_reservation_present field, a decault_content_size_present field, a target_include field, a storage_reservation field, and a default_content_size field.


The counsumption_model field represents a consumption model of NRT service. According to an embodiment of the present invention, when a value of the counsumption_model field is 0x00, it represents that a consumption model of NRT service is Push. According to an embodiment of the present invention, when a value of the counsumption_model field is 0x01, it represents that a consumption model of NRT service is Portal. According to an embodiment of the present invention, when a value of the counsumption_model field is 0x02, it represents that a consumption model of NRT service is Scripted Push. According to an embodiment of the present invention, when a value of the counsumption_model field is 0x03, it represents that a consumption model of NRT service is Scripted Portal. According to an embodiment of the present invention, when a value of the counsumption_model field is 0x04, it represents that a consumption model of NRT service is Triggered. According to an embodiment of the present invention, when a value of the counsumption_model field is 0x05, it represents that a consumption model of NRT service is Segment Delivery. According to a specific embodiment of the present invention, the counsumption_model field may be a 6-bit field.


The auto-update field represents that auto-update service is provided. According to a specific embodiment of the present invention, the auto-update field may be a 1-bit field.


The stoargage_reservation_present field represents whether information on the size of a minimum storage space necessary for executing NRT service is included. According to a specific embodiment of the present invention, the stoargage_reservation_present field may be a 1-bit field.


The decault_content_size_present field represents whether information representing the default size of a content item is included. According to a specific embodiment of the present invention, the decault_content_size_present field may be a 1-bit field.


The target_include field represents whether information on a target device is included. According to a specific embodiment of the present invention, the target_include may be a 1-bit field.


The storage_reservation field represents the size of a minimum storage space necessary for executing NRT service. According to a specific embodiment of the present invention, the storage_reservation field may be a 24-bit field.


The default_content_size field represents the default size of a content item. According to a specific embodiment of the present invention, the default_content_size field may be a 40-bit field.


The above described NRT information block and NRT service descriptor are described in a bit stream format. However, the NRT information block and the NRT service descriptor are not limited to a bit stream format and thus may be in another format. For example, the NRT information block and the NRT service descriptor may be in an XML file format.


Additionally, in order to signal the graphic icon of a broadcast service, a program or a show segment including the primary content of a program among a plurality of time spans, a broadcast service signaling table, program information, or segment information may include the graphic icon information. Especially, the broadcast service signaling table may include graphic icon service as service level information. Additionally, the program information may include graphic icon information as program level information. Additionally, the segment information may include graphic icon information as segment level information.



FIG. 67 is a view illustrating graphic icon information according to an embodiment of the present invention.


The graphic icon information may include at least one of an icon identifier, an icon transmission mode representing an icon transmission method, information representing whether the position of an icon is specified, coordinate system information representing coordinates that are the base of an icon position, horizontal coordinates information representing the horizontal coordinates of an icon, vertical coordinates information representing the vertical coordinates of an icon, information representing the image form of an icon, URL information representing the position where an icon image is stored, and icon data itself.


In more detail, as shown in the embodiment of FIG. 67, the graphic icon information may include at least one of a descriptor_tag field, a descriptor_length field, a descriptor_number field, a last_decirptor_number field, an icon_id field, an icon_transport_mode field, a position_flag field, a coordinate_system field, an icon_horizontal_origin field, an icon_vertical_origin field, an icon_type_length field, an icon_type_chars field, an icon_data_length field, an icon_data_byte field, a url_length field, a url field, and an icon_content_linkage field.


The descriptor_tag field represents that icon information is included. According to a specific embodiment of the present invention, the descriptor_tag field may be an 8-bit field.


The descriptor_length field represents the length of icon information after this field. According to a specific embodiment of the present invention, the descriptor_length field may be an 8-bit field.


The descriptor_number field represents the order of the current descriptor when icon information is divided into a plurality of descriptors and transmitted. According to a specific embodiment of the present invention, in the case of a descriptor transmitted first, a value of the descriptor_number field may be 0x00. According to a specific embodiment of the present invention, a value of the descriptor_number field may be increased by one. According to a specific embodiment of the present invention, the descriptor_number field may be a 4-bit field.


The last_decirptor_number field represents the number of the last descriptor. According to a specific embodiment of the present invention, the last_decirptor_number field may be a 4-bit field.


The icon_id field represents an icon identifier for identifying an icon. According to a specific embodiment of the present invention, the icon_id field may be an 8-bit field.


The icon_transport_mode field represents an icon transmission method. In more detail, a value of the icon_transport_mode field may represent one among when an icon image is transmitted through graphic icon information itself, when an icon image is linked through URL, and an icon image is transmitted through a FLUTE session. According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 68, when a value of the icon_transport_mode field is 0x00, it represents that an icon image is transmitted through graphic icon information itself. When a value of the icon_transport_mode field is 0x01, it represents that an icon image is linked through URL. When a value of the icon_transport_mode field is 0x02, it represents that an icon image is transmitted through a FLUTE session. According to a specific embodiment of the present invention, the icon_transport_mode field may be a 2-bit field.


The position_flag field represents whether the position of an icon is specified. According to a specific embodiment of the present invention, the position_flag field may be a 1-bit field.


The coordinate_system field represents coordinates that is the base of an icon position. In more detail, when a value of the coordinate_system field may represent at least one of when a coordinate system is configured with 720×576 coordinates, when a coordinate system is configured with 1280×720 coordinates, when a coordinate system is configured with 1920×1080 coordinates, when a coordinate system is configured with 3840×2160 coordinates, and when a coordinate system is configured with 7680×4320 coordinates. According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 69, when a value of the coordinate_system field is 0x00, it represents that a coordinate system is configured with 720×576 coordinates. When a value of the coordinate_system field is 0x01, it represents that a coordinate system is configured with 1280×720 coordinates. When a value of the coordinate_system field is 0x02, it represents that a coordinate system is configured with 1920×1080 coordinates. When a value of the coordinate_system field is 0x03, it represents that a coordinate system is configured with 3840×2160 coordinates. When a value of the coordinate_system field is 0x04, it represents that a coordinate system is configured with 7680×4320 coordinates. According to a specific embodiment of the present invention, the coordinate_system field may be a 3-bit field.


The icon_horizontal_origin field represents the horizontal coordinates of an icon. In more detail, a value of coordinates may be increased in a direction from a left column to a right column. According to a specific embodiment of the present invention, the icon_horizontal_origin may be a 13-bit field.


The icon_vertical_origin field represents the vertical coordinates of an icon. In more detail, a value of coordinates may be increased in a direction from an upper row to a lower row. According to a specific embodiment of the present invention, the icon_vertical_origin may be a 13-bit field.


The icon_type_length field represents the length of the icon_type field. According to a specific embodiment of the present invention, the icon_type_length field may be an 8-bit field.


The icon_type_chars field represents the image form of an icon. In more detail, a value of the icon_type_chars field may be in a Multipurpose Internet Mail Extensions (MIME) image form defined in RFC 2045.


The icon_data_length field represents the length of the icon_data_byte field when an icon image is transmitted through graphic icon information. According to a specific embodiment of the present invention, the icon_data_length field may be an 8-bit field.


The icon_data_byte field represents data of an icon image that graphic icon information transmits.


The url_length field represents the length of the url field when an icon image is linked through URL. The url_length field may be an 8-bit field.


The url field represents a URL that an icon links.


The icon_content_linkage field represents a FLUTE FDT contents linkage transmitting an icon image when the icon image is transmitted through a FLUTE session.


Graphic icon information is described through the embodiment in which the graphic icon information is in a bit stream format, but the graphic icon information may be in another format such as an XML file format.


Additionally, as described above, broadcast services may include one or more media components. The service signaling table may include media component list information signaling media components that a broadcast service includes. Especially, the broadcast service signaling table may include media component list information as service level information.


This will be described in more detail with reference to FIG. 70.



FIG. 70 is a view illustrating media component list information according to an embodiment of the present invention.


The media component list information may include at least one of a component identifier for identifying a component, component type information representing the type of a media component, and media type information representing the type of media that a media component includes.


According to a specific embodiment of the present invention, as shown in FIG. 70, the media component list information may include a descriptor_tag field, a descriptor_length field, a num_component field, a component_id field, a component_type field, and a general_media_type field.


The descriptor_tag field represents that component list information is included. According to a specific embodiment of the present invention, the descriptor_tag field may be an 8-bit field.


The descriptor_length field represents the length after the descriptor_length field. According to a specific embodiment of the present invention, the descriptor_length field may be an 8-bit field.


The num_component field represents the number of media components that a corresponding broadcast service includes. According to a specific embodiment of the present invention, the num_component field may be an 8-bit field.


The component_id field represents an identifier for identifying a corresponding media component. According to a specific embodiment of the present invention, the component_id field may be an 8-bit field.


The component_type field represents the type of a media component. According to a specific embodiment of the present invention, a value of the component_type field may represent one among the above-described elementary component, composite component, and adaptive component. In more detail, when a value of the component_type field is 0x00, a corresponding media component represents an elementary component. When a value of the component_type field is 0x01, a corresponding media component represents a composite component. When a value of the component_type field is 0x02, a corresponding media component represents an adaptive component. According to a specific embodiment of the present invention, the component_type field may be a 4-bit field.


The general_media_type field represents the type of a media that a media component includes. A value of the general_media_type field may represent one among video, audio, text, application, and message. In more detail, when a value of the general_media_type field is 0x00, it represents that a media that a media component includes video. When a value of the general_media_type field is 0x01, it represents that a media that a media component includes audio. When a value of the general_media_type field is 0x02, it represents that a media that a media component includes text. When a value of the general_media_type field is 0x03, it represents that a media that a media component includes application. When a value of the general_media_type field is 0x04, it represents that a media that a media component includes message. According to a specific embodiment of the present invention, the general_media_type field may be a 4-bit field.


Additionally, component list information is described through a bit stream format, but may be in another format such as an XML file format.


According to a specific embodiment of the present invention, one media component may be shared by a plurality of broadcast services of the same broadcast stream. Additionally, a plurality of broadcast services in a different broadcast stream may share one media component. Accordingly, a method of a plurality of broadcast services to efficiently share one media component is required. For this, a broadcast transmission device may allow each media component or broadcast service to be associated with a unique resource identifier (URI).


This will be described in more detail with reference to FIG. 71.



FIG. 71 is a view when a media component or a broadcast service is mapped through URI in a broadcast service signaling table according to an embodiment of the present invention.


A broadcast service or a media component may be signaled through URI in the broadcast service signaling. At this point, information signaling broadcast service or media component through URI may be referred to as URI linkage information. The URI linkage information may include at least one of URI or private data independently defined by each broadcaster or region.


According to a specific embodiment of the present invention, as shown in FIG. 71, the URI linkage information may include a descriptor_tag field, a descriptor_length field, an uri_length field, an uri_char field, and a private_data_byte field.


The descriptor_tag field represents that URI linkage information is included. According to a specific embodiment of the present invention, the URI linkage information may be an 8-bit field.


The descriptor_length field represents the length of the URI linkage information after the descriptor_length field. According to a specific embodiment of the present invention, the descriptor_length field may be an 8-bit field.


The uri_length field represents the length of the uri_char field. According to a specific embodiment of the present invention, the uri_length field may be an 8-bit field.


The uri_char field represents each character in URI character string. According to a specific embodiment of the present invention, the uri_char field may be an 8-bit field.


The private_data_byte field represents private data independently defined by each broadcaster or region. According to a specific embodiment of the present invention, the private_data_byte field may be an 8-bit field.


The broadcast reception device 100 may identify a media component or a broadcast service through URI of URI linkage information. When the URI of the URI linkage information identifies a media component, a broadcast service signaling table may include URI linkage information as component level information. When the URI of the URI linkage information identifies a broadcast service, a broadcast service signaling table may include URI linkage information as service level information.


The format of URI link information is described through bit stream in the embodiment of FIG. 71 but is not limited thereto. Especially, URI link information may be in an XML file format.


A broadcast transmission device may transmit a broadcast service or a media component, which targets on users having a specific condition. Additionally, the broadcast reception device 100 may transmit information on a user of the broadcast reception device 100 and may receive a broadcast service or a media component proper for a user of the broadcast reception device 100. For example, the broadcast reception device 100 may transmit information of a region where the broadcast reception device 100 is placed and may receive a broadcast service for a corresponding region. For this, required is a method of signaling information on a targeting criterion and a personalization property that a broadcast service or a media component targets. This will be described with reference to FIG. 72.



FIG. 72 is a view illustrating targeting criterion information signaling the targeting criterion of a broadcast service or a media component.


The broadcast service signaling table may include targeting criterion information signaling the target criterion of a broadcast service or a media component.


The targeting criterion information may include at least one of targeting identifier information for identifying a target criterion, targeting form information representing the form of targeting, and targeting criterion value information representing a specific targeting criterion.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 72, the targeting criterion information may include at least one of a descriptor_tag field, a descriptor_length field, a num_targeting_criteria field, a criterion_id_length field, a criterion_id field, a criterion_type_code field, a num_criterion_values field, a criterion_value_length field, and criterion_value field.


The descriptor_tag field represents targeting criterion information. According to a specific embodiment of the present invention, the descriptor_tag field may be an 8-bit field.


The descriptor_length field represents the length of targeting criterion information after the descriptor_tag field. The descriptor_length field may be an 8-bit field.


The num_targeting_criteria field represents the number of targeting criterion information. According to an embodiment of the present invention, a targeting criterion that a broadcast service or a media component has may be in plurality. According to a specific embodiment of the present invention, the num_targeting_criteria field may be an 8-bit field.


The criterion_id_length field represents the length of the criterion_id field. According to a specific embodiment of the present invention, the criterion_id_length field may be an 8-bit field.


The criterion_id field represents a targeting criterion identifier for identifying a targeting criterion. According to a specific embodiment of the present invention, the criterion_id field may be an 8-bit field.


The criterion_type_code field represents the form of a targeting criterion. According to a specific embodiment of the present invention, the criterion_type_code may be a 3-bit field.


The num_criterion_values field represents the number of targeting criterion values. According to an embodiment of the present invention, a broadcast service or a media component may have a plurality of targeting criterion values corresponding to a targeting criterion form. According to a specific embodiment of the present invention, the num_criterion_values field may be a 5-bit field.


The criterion_value_length field represents the length of the criterion_value field. According to a specific embodiment of the present invention, the criterion_value_length field may be an 8-bit field.


The criterion_value field represents a targeting criterion value.


According to a specific embodiment of the present invention, when targeting criterion information signals targeting criterion of a media component, the broadcast service signaling table may include targeting criterion information as component level information. According to a specific embodiment of the present invention, when targeting criterion information signals the targeting criterion of a broadcast service, the broadcast service signaling table may include targeting criterion information as service level information.


Targeting criterion information is described through a bit stream format in the embodiment of FIG. 72 but is not limited thereto. Especially, the targeting criterion information may be in an XML file format.


The broadcast service signaling table may include text information for describing a broadcast service or a media component. This will be described in more detail with reference to FIG. 73.



FIG. 73 is a view illustrating text information for describing a broadcast service or a media component.


In more detail, the text information may include at least one of information representing the kind of text language, an identifier for identifying text information, and text information for describing a text including a broadcast service or a media component.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 73, the text information may include a descriptor_number field, a last_descriptor_number field, a description_id field, a language_code field, a text_length field, and a text_char field.


The descriptor_number field represents the order of a descriptor. When one descriptor does not include all text information, text information is divided and included in a plurality of descriptors. At this point, the descriptor_number field represents a number of a corresponding descriptor among a plurality of descriptors. According to a specific embodiment of the present invention, the descriptor_number field may be a 4-bit field.


The last_descriptor_number field represents a number of the last descriptor including text information. According to a specific embodiment of the present invention, the last_descriptor_number field may be a 4-bit field.


The description_id field represents an identifier for identifying text information. In more detail, the broadcast reception device 100 may identify text information for a specific broadcast service or media component from text information for another media component or broadcast service, on the basis of a value of the description_id field. According to a specific embodiment of the present invention, the description_id field may be an 8-bit field.


The language_code field represents a language used in text information. According to a specific embodiment of the present invention, the language_code field may be a 24-bit field.


The text_length field represents the length of the text_char field. According to a specific embodiment of the present invention, the text_length field may be an 8-bit field.


The text_char field represents a character of text information. According to a specific embodiment of the present invention, the text_char field may be an 8-bit field.


According to a specific embodiment of the present invention, when text information signals a text for describing a media component, the broadcast service signaling table may include text information as component level information. According to a specific embodiment of the present invention, when text information signals text information for describing a broadcast service, the broadcast service signaling table may include text information as service level information.


The text information format is described through a bit stream format in the embodiment of FIG. 73 but is not limited thereto. Especially, the text information may be in an XML file format.


Additionally, in order to signal the title of a broadcast service, a program or a show segment including the primary content of a program among a plurality of time spans, a broadcast service signaling table, program information, or segment information may include title information. Especially, the broadcast service signaling table may include title information as service level information. Additionally, the program information may include title information as program level information. Additionally, the segment information may include title information as segment level information. Especially, the title information may include titles in a plurality of languages to support multiple languages.



FIG. 74 is a view illustrating title information of a broadcast service, a program, or a show segment.


The title information may include at least one of information representing the number of languages, information representing the language of a title, information representing the length of a title, and characters in a title.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 74, the title information may include at least one of a num_title field, a language_code field, a title_length field, and a text_char field.


The num_title field represents the number of titles. In more detail, the title information may include the title of a broadcast service, a program, or a show segment, which are displayed according to a plurality of languages. Accordingly, the num_title field may represent the number of languages displaying a title. According to a specific embodiment of the present invention, the num_tilte field may be an 8-bit field.


The language_code field represents the type of language displaying a title. According to a specific embodiment of the present invention, the language_code field may be a 24-bit field.


The title_length field represents the number of characters in a title. According to a specific embodiment of the present invention, the title_length field may be an 8-bit field.


The text_char field represents characters in a title. According to a specific embodiment of the present invention, the text_char field may be an 8-bit or 16-bit field.


Although title information in a bit stream format is described, it is not limited to the bit stream format and may be in another format. In a specific embodiment, the title information may be in an XML file format.


Additionally, in order to signal the genre of a broadcast service, a program or a show segment including the primary content of a program among a plurality of time spans, a broadcast service signaling table, program information, or segment information may include genre information. Especially, the broadcast service signaling table may include genre information as service level information. Additionally, the program information may include genre information as program level information. Additionally, the segment information may include genre information as segment level information. This will be described in more detail with reference to FIG. 75.



FIG. 75 is a view illustrating genre information of a broadcast service, a program, or a show segment.


In more detail, the genre information may include information representing the number of genres and information representing the genre of a broadcast service, a program, or a show segment.


In more detail, as shown in the embodiment of FIG. 75, the genre information may include at least one of a num_genre field and a genre_value field.


The num_genre field represents the number of genres. According to a specific embodiment of the present invention, the num_genre field may be an 8-bit field. One broadcast service, program, and show segment may correspond to a plurality of genres. Accordingly, the genre information may include a plurality of genre information on one broadcast service, program, and show segment. Accordingly, the genre information may include the num_genre field.


The genre_value field represents the genre of a broadcast service, a program, or a show segment. According to a specific embodiment of the present invention, the genre_value field may be an 8-bit field.


Although genre information in a bit stream format is described, it is not limited to the bit stream format and may be in another format. In a specific embodiment, the genre information may be in an XML file format.


Additionally, a broadcast service, a media component, or a content item may be for a specific device. In detail, a broadcast service, a media component, or a content item may be for a primary device. Additionally, a broadcast service, a media component, or a content item may be for a plurality of companion devices. Accordingly, in order to signal a target device relating to a broadcast service, a media component, or a content item, a broadcast service program table, a program table, or an NRT information table may include target device information. This will be described with reference to FIG. 76.



FIG. 76 is a view illustrating target device information signaling a target device relating to a media component or a content item.


The target device information may include information representing a target device of a broadcast service, a media component, or a content item.


In a specific embodiment, the target device information may include a target_device field as shown in FIG. 76. The target_device field represents a target device of a broadcast service, a media component, or a content item. According to a specific embodiment of the present invention, the target_device may be an 8-bit field.


Although target device information in a bit stream format is described, it is not limited to the bit stream format and may be in another format. In a specific embodiment, the target device information may be in an XML file format.


A broadcast service and a media component that a broadcast service includes are described above. A program and a segment will be described in more detail with reference to FIGS. 77 to 81.



FIG. 77 is a view when a broadcast service is divided into a plurality of segments.


A broadcast service may include a program which is a temporal segment having a scheduled start time and playback length. More specifically, a radio service includes a radio program or an audio program. In addition, a TV service may include a TV program. In addition, a user request content service may include a user request program. In addition, a stand-alone NRT data service may include a data program.


Such a program may be divided according to broadcast service time. In addition, a broadcast time of a radio service is equal to a sum of durations of radio programs. A broadcast time of a TV service is equal to a sum of durations of TV programs. The duration of a user request content service does not indicate a playback time of specific content but indicates a time when a user request content service is possible. Accordingly, the playback time of individual content depends on the user. While a content item is provided, a start time and a length are restricted according to program. Accordingly, a content item provided through the user request content service may be included in a catalog. At this time, the catalog may be an application for providing a user interface to provide a service.


A program may include a show representing a primary content of a related program. Many parts which are considered as a property of a program may be substantially referred to a property of a show. For example, texts, actors, or genre describing a program included in a program property relate to the properties of a show. Properties other than the properties of a show in a program property are the properties of a program itself. For example, the identifier of a service including a program or the start time of a program is the property of the program itself. Even when a program includes the same show, the property of a program itself may vary.


A show may include at least one of identifier information for identifying the show, the text title of the show, a text describing the show, a genre, a graphic icon, a list of segments relating to the show, an advisory viewing rating, a targeting/personalizing property, and a content/service protection property. The property of such a show may be signaled through show information. At this point, the list of segments relating to a show may be a list of segments including a show. This will be described with reference to FIG. 78.



FIG. 78 is a view illustrating show information according to an embodiment of the present invention.


The show information may include a show information block including identifier information for identifying a show and specific information on a show.


In more detail, as shown in the embodiment of FIG. 78, the show information may include a table_id field, a section_syntax_indicator field, a private_indicator field, a section_length field, a table_id_extentsion field, a version_number field, a current_next_indicator field, a section_number field, a last_section_number field, a show_id field, and a show_infoamtion_block field.


The table_id field represents that show information is included. According to a specific embodiment of the present invention, the table_id field may be an 8-bit field.


The section_syntax_indicator field represents whether show information is a private section table in the long formant of MEPG-2 TS standard. According to a specific embodiment of the present invention, the section_syntax_indicator field may be a 1-bit field.


The private_indicator field represents whether a current table corresponds to a private section. According to a specific embodiment of the present invention, the private_indicator field may be a 1-bit field.


The section_length field represents the length of a section after the section_length field. According to a specific embodiment of the present invention, the section_length field may be a 12-bit field.


The table_id_extension field represents a value for identifying show information in combination with the table_id field. In more detail, the table_id_extension field may include at least one of the protocol_version field and the subnet_id field. The protocol_version field represents a protocol version of program information. In more detail, the protocol_version field may be an 8-bit field in which the upper four bits represent a major version number and the lower four bits represent a minor version number. When show information is transmitted through broadcast stream, the subnet_id field may represent a subnet identifier for identifying an IP subnet for transmitting program information. According to another specific embodiment of the present invention, a value of the subnet_id field may be 0. When program information is transmitted through internet network, the subnet_id field has the same value as the subnet_id field of program information transmitted through broadcast stream. According to a specific embodiment of the present invention, the subnet_id field may be an 8-bit field.


The version_number field represents a version of show information. The broadcast reception device 100 may determine the availability of show information on the basis of a value of the vserion_number field. In more detail, when a value of the version_number field is identical to a version of previously received service show information, the show information may not be used. According to a specific embodiment of the present invention, the version_number field may be a 5-bit field.


The current_next_indicator field represents whether show information is currently available. In more detail, when a value of the current_next_indicator field is 1, it may represent that show information is available. Moreover, when a value of the current_next_indicator field is 1, it may represent that show information is available next time. According to a specific embodiment of the present invention, the current_next_indicator field may be a 1-bit field.


The section_number field represents a current section number. According to a specific embodiment of the present invention, the section_number field may be an 8-bit field.


The last_section_number field represents the last section number. When the size of a show information table is large, the show information table may be divided into a plurality of sections and then transmitted. At this point, the broadcast reception device 100 determines whether all sections necessary for show information are received on the basis of the section_number field and the last_section_number field. According to a specific embodiment of the present invention, the last_section_number field may be an 8-bit field.


The show_id field represents a show identifier for identifying a show that show information signals. According to a specific embodiment of the present invention, the show_id field may be a 16-bit field.


The show_information_block field represents a show information block including information on the property of a segment. This will be described in more detail with reference to FIG. 79.



FIG. 79 is a view illustrating a show information block according to an embodiment of the present invention.


The show information block may include at least one of descriptors including the length of a show, a text for describing a show, the number of segments relating to a show, a segment information block signaling a segment relating to a show, and specific information on the property of a show. At this point, a show related segment may be a segment including a show.


In more detail, as shown in the embodiment of FIG. 79, the show information block may include at least one of a time_span_length field, a title_text_length field, a title_text( ) field, a num_segment field, a segment_information_block( ) field, a num_show_descriptors field, and a descriptors field.


The time_span_length field represents the length of a show. The show may be included in a plurality of segments. At this point, the start times of a plurality segments may vary but the length of a show may be identical. The reason is that even when contents of a show segment are included in different programs, they are the same. According to a specific embodiment of the present invention, the time_span_length field may be a 16-bit field.


The title_text_length field may include a title_text( ) field, a num_segment field, a segment_information_block( ) field, a num_show_descriptors field, and a descriptors field.



FIG. 80 is a view illustrating a segment information block according to an embodiment of the present invention.


The segment information block may include at least one of descriptors including a segment identifier for identifying a segment, information representing the start time of a segment, information representing the length of a segment, and specific information on a segment. In a specific embodiment, a segment identifier may be based on a program identifier for identifying a program including a segment and a domain name. In a specific embodiment, a segment identifier may be a combination of a program identifier for identifying a program including a segment and a domain name. In more detail, the start time of a segment may be a relative time from the start of a program including a segment.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 80, the segment information block may include at least one of a segment_id field, a start_time field, a time_span_length field, a num_segment_descriptors field, and a descriptor field.


The segment_id field represents a segment identifier for identifying a segment. According to a specific embodiment of the present invention, the segment_id field may be a 16-bit field.


The start_time field represents the start time of a segment. Even when a segment includes the same show, the start time for each segment may vary. Accordingly, each segment information may include information representing the start time of a segment. According to a specific embodiment of the present invention, the start_time field may be a 32-bit field.


The time_span_length field represents the length of a segment. According to a specific embodiment of the present invention, the time_span_length field may be a 16-bit field.


The num_segment_descriptors field represents the number of descriptors that a segment information block includes. According to a specific embodiment of the present invention, the num_segment_descriptors field may be an 8-bit field.


The descriptor field includes specific information on a segment.


Although show information, a show information block, and a segment information block in a bit stream format are described, they are not limited to the bit stream format and may be in another format. In more detail, show information, a show information block, and a segment information block may be in an XML file format.



FIG. 81 is a view when a broadcast transmission device transmits broadcast signals including at least one of show information and segment information according to an embodiment of the present invention.


The broadcast transmission device obtains the property of a show that a broadcast service includes through a control unit in operation S731. As described above, the property of a show may include at least one of identifier information for identifying the show, the text title of the show, a text describing the show, a genre, a graphic icon, a list of segments relating to the show, an advisory viewing rating, a targeting/personalizing property, and a content/service protection property. The property of such a show may be signaled through show information. At this point, the list of segments relating to a show may be a list of segments including a show.


The broadcast transmission device generates program information signaling a program on the basis of the property of a show through a control unit in operation S733. The show information may include at least one of the show information and the show information block described through FIGS. 78 and 79.


The broadcast transmission device obtains the property of a segment relating to a show through a control unit in operation S735. The property of a segment may include at least one of a unique identifier for identifying a segment, a list of media components played during a time span of a corresponding segment, the start time and the duration of a segment, a segment type, and a targeting/personalization property, and a contents advisory rating.


The broadcast transmission device generates a segment information block on the basis of the property of a segment through a control unit in operation S737. The segment information block may be the above-mentioned segment information block in FIG. 80.


The broadcast transmission device transmits a broadcast signal including at least one of a segment information block and program information through a transmitting unit in operation S739.



FIG. 82 is a view when a broadcast reception device receives broadcast signal including at least one of show information and segment information according to an embodiment of the present invention.


The broadcast reception device 100 receives a broadcast signal through the broadcast receiving unit 110 in operation S751.


The broadcast reception device 100 obtains program information on the basis of a broadcast signal through the control unit 150 in operation S753. In more detail, the broadcast reception device 100 may obtain show information from the broadcast signal. At this point, the show information may include at least one of the show information and the show information block described through FIGS. 78 and 79.


The broadcast reception device 100 obtains the property of a show on the basis of the show information through the control unit 150 in operation S755. As described above, the property of a show may include at least one of identifier information for identifying the show, the text title of the show, a text describing the show, a genre, a graphic icon, a list of segments relating to the show, an advisory viewing rating, a targeting/personalizing property, and a content/service protection property. The property of such a show may be signaled through show information. At this point, the list of segments relating to a show may be a list of segments including a show.


The broadcast reception device 100 obtains a segment information block relating to a show on the basis of a broadcast signal through the control unit 150 in operation S757. In more detail, the broadcast reception device 100 may obtain a segment information block relating to a show from the show information block. The segment information block may include the above-mentioned segment information block in FIG. 80.


The broadcast reception device 100 obtains the property of a segment on the basis of the segment information block through the control unit 150 in operation S759. The segment information block may be the above-mentioned segment information block in FIG. 80.


The broadcast reception device 100 generates a service guide displaying the property of a show on the basis of at least one of the property of a show and a segment property relating to a show in operation S761. According to a specific embodiment of the present invention, a service guide may display the property of a show and segments relating to a show together. For example, the service guide may display the properties of a plurality of segments including the same show. At this point, the property of a segment may include at least one of the start time of a segment and the property of a program including a segment. At this point, the property of a program may include at least one of the start time of a program and information of a service including a program.


A radio program, a TV program, and a data program may include at least one of a unique identifier, a list of media components in a program, the start time and length of a program, a show identifier for identifying a related show, a text for describing a title and a program, the genre of a program, a graphic icon, a contents advisory rating, a targeting/personalization property, a contents protection property, a list of related data services, and list of related segments. Properties included in an audio program, a TV program, and a data program may be signaled through program information. This will be described with reference to FIGS. 83 to 88.



FIG. 83 is a view illustrating program information according to an embodiment of the present invention.


As shown in the embodiment of FIG. 83, the program information may include at least one of a table_id field, a section_syntax_indicator field, a private_indicator field, a section_length field, a table_id_extentsion field, a version_number field, a current_next_indicator field, a section_number field, a last_section_number field, a service_id field, and a program_information_block field.


The table_id field represents program information. According to a specific embodiment of the present invention, the table_id field may be an 8-bit field.


The section_syntax_indicator field represents whether program information is a private section table in the long formant of MEPG-2 TS standard. According to a specific embodiment of the present invention, the section_syntax_indicator field may be a 1-bit field.


The private_indicator field represents whether a current table corresponds to a private section. According to a specific embodiment of the present invention, the private_indicator field may be a 1-bit field.


The section_length field represents the length of a section after the section_length field. According to a specific embodiment of the present invention, the section_length field may be a 12-bit field.


The table_id_extension field represents a value for identifying program information in combination with the table_id field. In more detail, the table_id_extension field may include at least one of the protocol_version field and the subnet_id field. The protocol_version field represents a protocol version of program information. In more detail, the protocol_version field may be an 8-bit field in which the upper four bits represent a major version number and the lower four bits represent a minor version number. When program information is transmitted through broadcast stream, the subnet_id field may represent a subnet identifier for identifying an IP subnet for transmitting program information. According to another specific embodiment of the present invention, a value of the subnet_id field may be 0. When program information is transmitted through internet network, the subnet_id field has the same value as the subnet_id field of program information transmitted through broadcast stream. According to a specific embodiment of the present invention, the subnet_id field may be an 8-bit field.


The version_number field represents a version of program information. The broadcast reception device 100 may determine the availability of program information on the basis of a value of the vserion_number field. In more detail, when a value of the version_number field is identical to a version of previously received service program information, the program information may not be used. According to a specific embodiment of the present invention, the version_number field may be a 5-bit field.


The current_next_indicator field represents whether program information is currently available. In more detail, when a value of the current_next_indicator field is 1, it may represent that program information is available. Moreover, when a value of the current_next_indicator field is 1, it may represent that the program information is available the next time. According to a specific embodiment of the present invention, the current_next_indicator field may be a 1-bit field.


The section_number field represents a current section number. According to a specific embodiment of the present invention, the section_number field may be an 8-bit field.


The last_section_number field represents the last section number. When the size of a program information table is large, the program information may be divided into a plurality of sections and then transmitted. At this point, the broadcast reception device 100 determines whether all sections necessary for program information are received on the basis of the section_number field and the last_section_number field. According to a specific embodiment of the present invention, the last_section_number field may be an 8-bit field.


The service_id field represents a service identifier for identifying a broadcast service relating to program information. In more detail, the service_id field may represent a service identifier for identifying a broadcast service including a program that program information signals. According to a specific embodiment of the present invention, the service_id field may be an 8-bit field.


The program_information_block field represents a program information block including information on the property of a program. This will be described in more detail with reference to FIG. 84.



FIG. 84 is a view illustrating a program information block according to an embodiment of the present invention.


The program information block may include the number of programs that the program information block signals, a program identifier for identifying a signaling program, a start time of a program, the length of a program, a text for describing a program, and a descriptor for signaling a text for describing a program and a property of a program.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 84, the program information block may include at least one of a num_program field, a program_id field, a time_span_start field, a time_span_length field, a title_text_length field, a title_text field, a num_program_descriptors field, and a descriptor field.


The num_program field represents the number of programs that a program information block signals. According to a specific embodiment of the present invention, the num_program field may be an 8-bit field.


The program_id field represents a program identifier for identifying a corresponding program. According to a specific embodiment of the present invention, the program_id field may be an 8-bit field.


The time_span_start field represents a start time of a corresponding program. In more detail, the time_span_start field may represent a UTC time that elapsed from 00:00 Jan. 6, 1980. According to a specific embodiment of the present invention, the time_span_start field may be a 32-bit field.


The time_span_length field represents the length of a corresponding program. In more detail, a corresponding program may represent the length of a time that a corresponding program is broadcasted in minutes on the basis of a value of the time_span_start field. When a value of the time_span_length field is set once, it does not change in the future. According to a specific embodiment of the present invention, the time_span_length field may be a 16-bit field.


The title_text_length field represents the length of the title_text field. According to a specific embodiment of the present invention, the title_text field may be an 8-bit field.


The title_text field represents each character that the title of a corresponding program includes. According to a specific embodiment of the present invention, each character may be in a UTF-8 encoding format. According to a specific embodiment of the present invention, the title_text field may be an 8-bit field.


The num_program_descriptors field represents the number of descriptors that a program information block includes. According to a specific embodiment of the present invention, the num_program_descriptors field may be an 8-bit field.


The descriptor field represents a descriptor including information relating to a property of a program. For example, a descriptor that the descriptor field has may include information on a media component list Additionally, a descriptor that the descriptor field has may include information on a contents advisory rating. Additionally, a descriptor that the descriptor field has may include information on a targeting property. Additionally, a descriptor that the descriptor field has may include information on a text for describing a program. Accordingly, the descriptor field may include at least one of the component_list_descriiptor field, the targeting_descriptor field, and the text_descriptor field. However, the program information block shown in FIG. 84 may not signal a show relating to a program. In more detail, the program information block in the embodiment of FIG. 84 may not signal a show in a program. A method for resolving the above issue will be described with reference to FIG. 85.



FIG. 85 is a view illustrating a program information block according to another embodiment of the present invention.


A program information block according to another embodiment of the present invention may further include at least one of information on whether information on a show relating to a program that the program information block signals is included and a show identifier for identifying a show relating to a program that the program information block signals.


According to a specific embodiment, the program information block may include at least one of an associated_show_flag field and a show_id field as shown in FIG. 85.


The associated_show_flag field represents whether information on a show relating to a program that a program information block signals is included. According to an embodiment of the present invention, if there is a related show, the broadcast reception device 100 may receive show information. Accordingly, when associated_show_flag is 1, the broadcast reception device 100 may receive show information. At this point, the show information may be the show information or the show information block described with reference to FIGS. 88 and 89. According to a specific embodiment of the present invention, the associated_show_flag field may be a 1-bit field.


The show_id field represents a show identifier for identifying a show relating to a show that a program information block signals. According to a specific embodiment of the present invention, the show_id field may be a 16-bit field.


However, the program information block shown in FIG. 85 may not signal the property of a media component through component level information. Accordingly, a plurality of media components having various properties may not be signaled efficiently. A method for resolving the above issue will be described with reference to FIG. 98.



FIG. 86 is a view illustrating a program information block according to another embodiment of the present invention.


The program information block may include the number of media components that a corresponding program includes, a component identifier for identifying a corresponding media component, information for representing whether a corresponding media component is a media component necessary for corresponding program playback, and a component descriptor including an additional property of a media component.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 86, the program information block may include at least one of a num_component field, a component_id field, an essential_conponent_indicator field, a num_component_descritpors field, and a component_descriptor field.


The num_component field represents the number of media components that a corresponding program includes. According to a specific embodiment of the present invention, the num_component field may be an 8-bit field.


The component_id field represents a component identifier for identifying a corresponding media component. According to a specific embodiment of the present invention, the component_id field may be an 8-bit field.


The essential_component_indicator field represents whether a corresponding media component is an essential media component essential to a corresponding broadcast service presentation. According to a specific embodiment of the present invention, the essential_component_indicator field may be a 1-bit field.


The num_component_descritpors field represents the number of component_descriptor fields. According to a specific embodiment of the present invention, the num_component_descritpors field may be an 8-bit field.


The component_descriptor field represents a component descriptor including an additional property on a corresponding component.


However, in this case, information on a segment that a program includes may not be obtained. A method of resolving this will be described with reference to FIGS. 87 and 88.



FIGS. 87 and 88 are views illustrating a program information block according to another embodiment of the present invention.


The program information block may include information of a segment that a program signaled by the program information block includes. In more detail, the program information block may include a segment information block including the number of segments that a program signaled by the program information block includes and a specific property of a segment.


The program information block may include at least one of a num_segment field and a segment_information_block field as shown in FIGS. 87 and 88.


The num_segment field represents the number of segments that a program signaled by a program information block includes. According to a specific embodiment of the present invention, the num_segments field may be an 8-bit field.


The segment_infoamtion_block field may include the segment information block described through the embodiment of FIG. 92 or a segment information block to be described with reference to FIGS. 89 and 90.


In the embodiment of FIG. 87, the broadcast reception device 100 may not obtain information of a show relating to a program that a program information block signals. In the embodiment of FIG. 89, like the embodiment of FIG. 90, information of a show relating to a program that a program information block signals is included so that the broadcast reception device 100 may obtain information of a show relating to a program.


The program information and the program information block in a bit stream format are described through FIGS. 99 to 88 but the present invention is not limited to the bit stream format. Especially, the program information and the program information block may be in an XML file format.


As described above, a broadcast service may include a plurality of programs. At this point, a program may include a plurality of segments. A segment is a time interval configuring a program. A segment may include a show segment broadcasting the primary content of a show and an interstitial segment broadcasting a content not relating to the primary content of the program between the primary contents of the program. At this point, the interstitial segment may include ads or public service announcement. The show segment and the interstitial segment of a radio service or a TV service may have a scheduled start time and duration.


The segment may include at least one as one property among a unique identifier for identifying a segment, a list of media components played during a time interval of a corresponding segment, a start time and the duration of a segment, a segment type, and a targeting/personalization property, and a contents advisory rating. As described above, the segment type may be one among a show segment and an interstitial segment. At this point, the start time of a segment may represent a relative time on the basis of the start time of a show. For example, the start time of a segment may be specified on the basis of the start time of a show, for example, 10 minutes before a show start time. An anchored segment represents a segment relating to a specific program and having a specified start time. On the other hand, an unanchored segment represents a segment not relating to a specific program and not having a specified start time. For example, since the broadcast reception device 100 receives a targeted advertisement but a corresponding advertisement segment is used in various programs and services several times, when a start time for a corresponding is not clearly specified, the targeted advertisement may be referred to as an unanchored segment. It is necessary to efficiently signal such a segment. Signaling a segment will be described with reference to FIGS. 89 to 93.



FIG. 89 is a view illustrating segment information program information according to an embodiment of the present invention.


The segment information may include a segment block including a specific segment property.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 89, the segment information may include at least one of a table_id field, a section_syntax_indicator field, a private_indicator field, a section_length field, a table_id_extentsion field, a version_number field, a current_next_indicator field, a section_number field, a last_section_number field, and a segment_information_block field.


The table_id field represents segment information is included. According to a specific embodiment of the present invention, the table_id field may be an 8-bit field.


The section_syntax_indicator field represents whether broadcast service segment information is a private section table in a long format of MEPG-2 TS standard. According to a specific embodiment of the present invention, the section_syntax_indicator field may be a 1-bit field.


The private_indicator field represents whether a current table corresponds to a private section. According to a specific embodiment of the present invention, the private_indicator field may be a 1-bit field.


The section_length field represents the length of a section after the section_length field. According to a specific embodiment of the present invention, the section_length field may be a 12-bit field.


The table_id_extension field represents a value for identifying segment information in combination with the table_id field. In more detail, the table_id_extension field may include at least one of the protocol_version field and the subnet_id field. The protocol_version field represents a protocol version of segment information. In more detail, the protocol_version field may be an 8-bit field in which the upper four bits represent a major version number and the lower four bits represent a minor version number. When segment information is transmitted through broadcast stream, the subnet_id field may represent a subnet identifier for identifying an IP subnet for transmitting segment information. According to another specific embodiment of the present invention, a value of the subnet_id field may be 0. When segment information is transmitted through internet network, the subnet_id field has the same value as the subnet_id field of segment information transmitted through broadcast stream. According to a specific embodiment of the present invention, the subnet_id field may be an 8-bit field.


The version_number field represents a version of segment information. The broadcast reception device 100 may determine the availability of segment information on the basis of a value of the vserion_number field. In more detail, when a value of the version_number field is identical to a version of previously received service segment information, the segment information may not be used. According to a specific embodiment of the present invention, the version_number field may be a 5-bit field.


The current_next_indicator field represents whether segment information is currently available. In more detail, when a value of the current_next_indicator field is 1, it may represent that segment information is available. Moreover, when a value of the current_next_indicator field is 1, it may represent that segment information is available the next time. According to a specific embodiment of the present invention, the current_next_indicator field may be a 1-bit field.


The section_number field represents a current section number. According to a specific embodiment of the present invention, the section_number field may be an 8-bit field.


The last_section_number field represents the last section number. When the size of a segment information table is large, the segment information may be divided into a plurality of sections and then transmitted. At this point, the broadcast reception device 100 determines whether all sections necessary for segment information are received on the basis of the section_number field and the last_section_number field. According to a specific embodiment of the present invention, the last_section_number field may be an 8-bit field.


The service_id field represents a service identifier for identifying a broadcast service relating to segment information. In more detail, the service_id field may represent a service identifier for identifying a broadcast service including a segment that segment information signals. According to a specific embodiment of the present invention, the service_id field may be an 8-bit field.


The program_information_block field represents a segment information block including information on the property of a segment. This will be described in more detail with reference to FIG. 90.



FIG. 90 is a view illustrating a segment information block according to an embodiment of the present invention.


The segment information block in segment information may include at least one of a segment identifier for identifying a signaling segment, a segment type, information representing whether there is a program relating to a segment, information representing whether a start time and the duration of a segment is specified, a program identifier for identifying a program relating to a segment, a start time of a segment, the number of media components in a segment, a media component identifier for identifying a corresponding media component, the number of descriptors including a property for a corresponding media component, a descriptor including a property for a corresponding media component, the number of descriptors including a property for a corresponding segment, and a descriptor including a corresponding segment.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 90, the segment information may include at least one of a segment_id field, a segment_type field, an associated_program_flag field, a time_included field, a progmam_id field, a time_span_start field, a time_span_length field, a num_component field, a component_id field, a num_component_descirtors field, a component_descritpors field, a num_descritpor field, and a descriptor field.


The segment_id field represents a segment identifier for identifying a corresponding segment. According to a specific embodiment of the present invention, the segment_id field may be an 8-bit field.


The segment_type field represents the type of a corresponding segment. In more detail, it may represent a show segment or an interstitial segment. According to a specific embodiment of the present invention, when a value of the segment_type field is 0x02, it represents a show segment and when a value of the segment_type field is a value between 0x03 to 0x07, it represents an interstitial segment According to a specific embodiment of the present invention, the segment_type field may be a 3-bit field.


The associated_program_flag field represents whether there is a program relating to a corresponding segment. In more detail, when a value of the associated_program_flag field is 1, it represents that there is a program relating to a corresponding segment and when a value of the associated_program_flag field is 0, it represents that there is no program relating to a corresponding segment. According to a specific embodiment of the present invention, the associated_program_flag field may be a 1-bit field.


The time_included field represents whether a start time and duration of a corresponding segment is specified. In more detail, when a value of the time_included field is 1, it represents that a start time and duration of a corresponding segment is specified and when a value of the time_included field is 0, it represents that a start time and duration of a corresponding segment is not specified. According to a specific embodiment of the present invention, the time_included field may be a 1-bit field.


The program_id field represents a program identifier for identifying a program relating to a corresponding program. According to a specific embodiment of the present invention, the program_id field may be a 16-bit field.


The time_span_start field represents a start time of a corresponding segment. In more detail, the time_span_start field may represent a UTC time that elapsed from 00:00 Jan. 6, 1980. According to a specific embodiment of the present invention, the time_span_start field may be a 32-bit field.


The time_span_length field represents the length of a corresponding segment. In more detail, a corresponding segment may represent the length of a time that a corresponding program is broadcasted in minutes on the basis of a value of the time_span_start field. When a value of the time_span_length field is set once, it does not change in the future. According to a specific embodiment of the present invention, the time_span_length field may be a 16-bit field.


The num_component field represents the number of media components that a corresponding segment includes. According to a specific embodiment of the present invention, the num_component field may be an 8-bit field.


The component_id field represents a component identifier for identifying a corresponding media component. According to a specific embodiment of the present invention, the component_id field may be an 8-bit field.


The num_component_descritpors field represents the number of component_descriptor fields. According to a specific embodiment of the present invention, the num_component_descritpors field may be an 8-bit field.


The component_descriptor field represents a component descriptor including an additional property on a corresponding component.


The num_descritpor field represents the number of descriptor fields. According to a specific embodiment of the present invention, the num_desciptors field may be an 8-bit field.


The descriptor field represents a descriptor including an additional property. For example, the descriptor may include at least one of a contents advisory rating and a targeting property. Accordingly, the descriptor field may be the targeting_descirptor field.


When a program is divided into a plurality of segments, even when a viewer watches the same program, another segment may be provided according to the characteristics of each viewer. Especially, segments according the characteristics of each viewer may be provided to an interstitial segment instead of the show segment. Through this, broadcasters may provide the feature broadcast of the same content and also may provide a target advertisement to viewers according to the characteristics of each viewer. For this, it is necessary to provide a targeting segment set signaling the targeting information and property of each segment. This will be described with reference to FIG. 91.



FIG. 91 is a view illustrating a targeting segment set information according to an embodiment of the present invention.


The targeting segment set may signal targeting information on a plurality of segments. Especially, the targeting segment set information may signal targeting information on a plurality of segments having the same duration. According to a specific embodiment of the present invention, the targeting segment set information may signal targeting information on a plurality of segments relating to the same program. According to another specific embodiment of the present invention, targeting segment information may signal targeting information on a plurality of segments having the same start time.


The targeting segment set information may include at least one of a start time of a corresponding segment, the duration of a segment, the number of segments that a targeting segment set includes, a segment identifier for identifying a corresponding segment, the number of targeting criteria that targeting segment set information includes, targeting identification information for identifying a target criterion, targeting form information representing the form of targeting, and targeting criterion value information representing a specific targeting criterion.


According to a specific embodiment of the present invention, as shown in the embodiment of FIG. 91, the targeting segment set information may include at least one of a descriptor_tag field, a descritpro_length field, a time_span start field, a time_span_length field, a num_segment field, a segment_id field, a num_targeting_criteria field, a criterion_id_length field, a criterion_id field, a criterion_type_code field, a num_criterion_values field, a criterion_value_length field, and a criterion_value field.


The descriptor_tag field represents targeting segment set information. According to a specific embodiment of the present invention, the descriptor_tag field may be an 8-bit field.


The descriptor_length field represents the length of targeting segment information after the descriptor_tag field. The descriptor_length field may be an 8-bit field.


The time_span_start field represents a start time of a corresponding segment. In more detail, the time_span_start field may represent a UTC time that elapsed from 00:00 Jan. 6, 1980. According to a specific embodiment of the present invention, the time_span_start field may be a 32-bit field.


The time_span_length field represents the length of a corresponding segment. In more detail, a corresponding segment may represent the length of a time that a corresponding program is broadcasted in minutes on the basis of a value of the time_span_start field. When a value of the time_span_length field is set once, it does not change in the future. According to a specific embodiment of the present invention, the time_span_length field may be a 16-bit field.


The num_segments field represents the number of segments that targeting segment set information signals. According to a specific embodiment of the present invention, the num_segments field may be an 8-bit field.


The num_targeting_criteria field represents the number of targeting segment set information. According to an embodiment of the present invention, a targeting criterion that a broadcast service or a media component has may be in plurality. According to a specific embodiment of the present invention, the num_targeting_criteria field may be an 8-bit field.


The criterion_id_length field represents the length of the criterion_id field. According to a specific embodiment of the present invention, the criterion_id_length field may be an 8-bit field.


The criterion_id field represents a targeting criterion identifier for identifying a targeting criterion. According to a specific embodiment of the present invention, the criterion_id field may be an 8-bit field.


The criterion_type_code field represents the form of a targeting criterion. According to a specific embodiment of the present invention, the criterion_type_code may be a 3-bit field.


The num_criterion_values field represents the number of targeting criterion values. According to an embodiment of the present invention, a segment may have a plurality of targeting criterion values corresponding to a targeting criterion form. According to a specific embodiment of the present invention, the num_criterion_values field may be a 5-bit field.


The criterion_value_length field represents the length of the criterion_value field. According to a specific embodiment of the present invention, the criterion_value_length field may be an 8-bit field.


The criterion_value field represents a targeting criterion value.


In consideration of a broadcast receiving situation or the capability of the broadcast reception device 100, if a specific segment cannot be received, the broadcast reception device 100 may receive or play another segment on the basis of targeting segment set information. For example, if the broadcast reception device 100 does not support the playback of a 3D image, it may receive or play a segment including a 2D image on the basis of a targeting segment set instead of a segment. According to another specific embodiment of the present invention, the broadcast reception device 100 may selectively receive or play only content suitable for a user on the basis of targeting segment set information. For example, if a viewer is youth, the broadcast reception device 100 may receive or play a trailer of a youth movie instead of a trailer of an adult movie.


The case in which segment information, a segment information block, segment targeting set information are in a bit stream format is described above with reference to FIGS. 89 to 91. However, the formats of segment information, a segment information block, and segment targeting set information are not limited to the bit stream format. Especially, segment information, a segment information block, and segment targeting set information may be in an XML file format. Additionally, according to a specific embodiment of the present invention, the above-described program information may include segment information, a segment information block, and segment targeting set information.


Operations of a broadcast transmission device and the broadcast reception device 100 transmitting/receiving the properties of a program and a segment will be described with reference to FIGS. 92 and 93.



FIG. 92 is a view when a broadcast transmission device transmits broadcast signal including at least one of program information and segment information according to an embodiment of the present invention.


The broadcast transmission device obtains the property of a program that a broadcast service includes through a control unit in operation S101. As described above, the property of a program may include at least one of a unique identifier, a list of media components in a program, a start time and a length of a program, a text for describing a title and a program, a graphic icon, a contents advisory rating, a targeting/personalization property, and a contents protection property.


The broadcast transmission device generates program information signaling a program on the basis of the property of a program through a control unit in operation S803. The program information may include at least one of the program information and the program information block described through FIGS. 92 and 93.


The broadcast transmission device obtains the property of a segment that a program includes through a control unit in operation S805. As described above, the property of a segment may include at least one as one property among a unique identifier for identifying a segment, a list of media components played during a time interval of a corresponding segment, a start time and the duration of a segment, a segment type, and a targeting/personalization property, and a contents advisory rating.


The broadcast transmission device generates segment information on the basis of the property of a program through a control unit in operation S807. The segment information may include at least one of the above-mentioned segment information, segment information block, and segment targeting set information of FIGS. 89 to 93.


The broadcast transmission device transmits a broadcast signal including at least one of segment information and program information through a transmitting unit in operation S809.



FIG. 93 is a view when a broadcast reception device receives broadcast signal including at least one of program information and segment information according to an embodiment of the present invention.


The broadcast reception device 100 receives a broadcast signal through the broadcast receiving unit 110 in operation S901.


The broadcast reception device 100 obtains program information on the basis of a broadcast signal through the control unit 150 in operation S903. In more detail, the broadcast reception device 100 may obtain broadcast information from the broadcast signal. At this point, the program information may include at least one of the program information and the program information block described through FIGS. 95 and 96.


The broadcast reception device 100 obtains the property of a program on the basis of the program information through the control unit 150 in operation S905. As described above, the property of a program may include at least one of a unique identifier, a list of media components in a program, a start time and a length of a program, a text for describing a title and a program, a graphic icon, a contents advisory rating, a targeting/personalization property, and a contents protection property.


The broadcast reception device 100 obtains segment information on the basis of a broadcast signal through the control unit 150 in operation S907. In more detail, the broadcast reception device 100 may obtain segment information from the broadcast signal. The segment information may include at least one of the above-mentioned segment information, segment information block, and segment targeting set information of FIGS. 89 to 91.


The broadcast reception device 100 obtains the property of a segment on the basis of the segment information through the control unit 150 in operation S909. The segment information may include at least one of the above-mentioned segment information, segment information block, and segment targeting set information of FIGS. 89 to 91.


The broadcast reception device 100 generates a service guide for displaying the property of a program on the basis of at least one of the program property and the segment property in operation S911. According to an embodiment of the present invention, a service guide may also display the property of a segment that a program includes. In more detail, a service guide may display the property of a show segment in a program together. For example, a service guide may display the start time and length of a show segment in a program and another program information including the same show segment in addition to a program property.


As described above, a broadcast service according to an embodiment of the present invention divides the property of a media component and again divides a program representing a time span of the broadcast service into segments, so as to effectively signal the format of the broadcast service that become more complex and various. This will be described in more detail with reference to FIGS. 94 to 100.


A broadcast service according to an embodiment of the present invention may be described as an object model including a kind of class, an inheritance relationship between classes, a containment relationship between classes, and an another association between classes.



FIG. 94 is a view illustrating a continuous component class, an audio component class, a video component class, and a closed caption component class.


A continuous component class represents a continuous component. A continuous component class may include a component identifier componentID for identifying a component as a property.


An audio component class represents a continuous component whose content type is audio. The audio component class may have a “Sub-class relationship with Continuous Component class”.


A video component class represents a continuous component whose content type is video. The video component class may have a Sub-class relationship with Continuous Component class.


A closed caption component class represents a continuous component whose content type is a closed caption. The closed caption component class may have a Sub-class relationship with Continuous Component class.



FIG. 95 is a view illustrating an elementary audio component class, an elementary video component class, and an elementary closed caption component class.


An elementary audio component class represents an elementary component whose content type is audio. The elementary audio component class may include at least one of codec, the number of audio channels, encoding bitrate, other encoding parameters, and the language and mode of an audio component, as attribute. In more detail, another encoding parameter may be determined according to codec. Additionally, the mode may represent the mode of a corresponding audio and also may represent at least one of “complete main”, “music”, “dialog”, “effects”, “visual impaired”, and “hearing impaired”, and “commentary”. The audio component class may have a “Sub-class relationship with Audio Component class”.


An elementary video component class represents an elementary component whose content type is video. The elementary video component class may include at least one of “codec”, “resolution”, “aspect ratio”, “scanning method”, “frame rate”, “still picture mode”, and “another encoding parameter”, as attribute. The resolution may be represented by width×height pixel units. Additionally, the scanning method may be one of an interlaced method and a progressive method. Additionally, other encoding parameters may be determined according to codec. The elementary video component class may have a “Sub-class relationship with Video Component class”.


An elementary closed caption class represents an elementary component whose content type is a closed caption. The elementary closed caption class may include at least one of “codec”, “language”, and “type”. At this point, codec may represent the format of closed caption text. The language represents a language configuring a closed caption. The type may be a general closed caption and an easy-reader closed caption for low vision person. An elementary closed caption component class may have a “Sub-class relationship with Closed Caption Component class”.


A complex component class represents a complex component. As described above, the complex component may be a composite component or a PickOne component. Accordingly, a class for the composite component and the PickOne component will be described with reference to FIGS. 96 and 97.



FIG. 96 is a view illustrating a composite audio component class and a composite video component class.


A composite audio component class represents a composite component whose content type is audio. The composite audio component class may include one of “ContainsAudio” and “Sub-class relationship with Audio Component class” as relationship. At this point “ContainsAudio” represents an audio component class included in a composite audio class. At this point, all objects included in “ContainsAudio” are limited as representing one sound scene.


A composite video component class represents a composite component whose content type is video. The composite video component class may include one of “ContainsVideo” and “Sub-class relationship with Video Component class” as relationship. At this point, the ContainsVideo represents a sub-class relationship with a video component class of a composite video component class. At this point, all objects in the ContainsVideo are limited as representing one video scene. Additionally, the property of the ContainsVideo may include “role”. At this point, the role may represent an enhanced layer of variable video. Additionally, the role may represent the left view or right view of a 3D image. Additionally, the role may represent the depth information of a 3D image. Additionally, the role may represent part of a video array divided into a plurality of screens. At this point, the role may represent the xth in the yth line from the left if there is an n×m matrix. Additionally, the role may represent Follow-subject metadata.



FIG. 97 is a view illustrating a PickOne component class.


A PickOne component class represents a PickOne component. The PickOne component class may include one of “contains” and “Sub-class relationship with Continuous Component Class” as relationship. At this point, “contains” represents a relationship with a continuous component class of a PickOne component class. At this point, all components in “contains” are the same content type and is limited as representing all the same image scene or audio scene.



FIG. 98 is a view illustrating a presentable component class, a presentable video component class, a presentable audio component class, and a presentable closed caption component class.


A presentable component class represents a presentable component. A presentable component class may include as a property at least one of a targeting/personalization property, a content advisory rating, a content/service protection property, and a target device. At this point, the target device may be at least one of a primary screen, a companion screen, and a screen partially inserted into the primary screen.


A presentable video component class represents a presentable video component. The presentable video component class may include at least one of “AssociatedAudio”, “Associated CC” and “Sub-class relationship with Video Component Class” as relationship. “AssociatedAudio” may represent a presentable audio component that is appropriate to be played with a presentable video component.


The presentable audio component class represents a presentable audio component. The presentable audio component class may have a Sub-class relationship with Audio Component class as relationship.


The presentable closed caption component class indicates a presentable closed caption component. The presentable closed caption component class may have a Sub-class relationship with closed caption component class as relationship.



FIG. 99 is a view illustrating an OnDemand component class.


An OnDemand component represents a content component transmitted by a user request. The OnDemand component may include as an attribute at least one of OnDemandComponentId representing the unique identifier of an OnDemand component, ComponentLocation representing a location where an OnDemand component can be accessed, ComponentName representing the name of a component, possibly in multiple languages, PlaybackLength representing the total playback time of a component, AvailabilityStart representing a start time at which a component becomes available, AvailabilityDuration representing the length of a time that a component remains available, Targeting/personalization properties representing a device that a component targets or user's characteristics, Content/Service protection properties representing whether content or service is protected, and Content advisory rating representing a content advisory ration.



FIG. 100 is a view illustrating an NRT content item class and an NRT file class.


An NRT content item component class represents a content item of NRT data service. The NRT content item component class may include as a property at least one of the name of a content item for identifying a content item (ContentItemID), the name of a content item (ContentItemName), a display for representing whether the update of a content item is to be monitored, (Updateable), a download available window representing a download available time (Avaiblewindow), an expiration time representing a time at which a content item is discarded, a content item size (ContentItemSize), the playback length of a content item (PlaybackLength), a targeting/personalization property (TargetInfo), the protection property of a content item (ProtectionInfo), and the contents advisory rating of a content item (ContentAdvRating). Additionally, the NRT content item class may include an NRT file class as relationship.


The NRT file class represents a non-real time file. In more detail, the NRT file may represent a file used for NRT service. The NRT file class may include as an attribute at least one of ContentLocation representing the location of content and ContentType representing the type of content. At this point, ContentLocation and ContentType may be defined in IETF RFC 2616.


Classes for service will be described with reference to FIGS. 113 and 114.


A service class represents a service. The service class may include as a property at least one of a service identifier (ServiceId), a service name (ServiceName), a channel number (ChanNum), description of a service (Description), a graphic icon representing a service (Icon), a list of media components in a service, a property for broadcast service protection (Content/service protection properties for the service), a property for targeting/personalization (targeting properties for the service), a viewing advisory rating (contentAdvRating), service language (Language), and a property on broadcast service user report (UsageReportInfo). At this point, the channel number may be divided into a major number (MajorChanNum) and a minor number (MinorChanNum).


A radio service class represents a radio service scheduled to be broadcasted at a predetermined time. The radio service class may include at least one of “Containment Relationship with Presentable Video Component Class”, “Containment Relationship with Presentable CC Component Class”, and “Adjunct relationship with NRT Data Service Class” as relationship.


A TV service class represents a TV service scheduled to be broadcasted at a predetermined time. The TV service class may include at least one of “Containment Relationship with Presentable Video Component Class”, “Containment Relationship with Presentable Audio Component Class”, “Containment Relationship with Presentable CC Component Class”, and “Adjunct relationship with NRT Data Service Class” as relationship. “Containment Relationship with Presentable Video Component Class” includes the role of a video component as a property. In more detail, the role of a video component may represent at least one of a primary video, an alternative camera view, another alternative video component, a sign language screen, and Follow Subject Video/metadata. Especially, the Follow Subject Video/metadata may include the name of a subject that follows. Such Follow Subject Video/metadata may be video stream. Or, a follow subject video may be rectangles of each frame for zoom-in of a subject of a video stream.


An OnDemand service class represents an OnDemand content service. The OnDemand service class may include “Containment relationship with OnDemand UI App Class”, “Containment relationship with OnDemand Offering Class”, and “containment relationship with OnDemand Catalog class” as relationship. “Containment relationship with OnDemand UI App Class” is to provide a user interface for OnDemand service. In a specific embodiment, the user interface of a user request service may be provided in a plurality of languages. An OnDemand offering may represent products of services provided by OnDemand. “Containment relationship with OnDemand Offering Class” is for a content item provided from an OnDemand service. “containment relationship with OnDemand Catalog class” is for an OnDemand offering catalog of an OnDemand service. In a specific embodiment, the OnDemand offering catalog may be provided in a plurality of languages.


An NRT data service class represents an NRT data service. The NRT data service class may include at least one of “Consumption Mode”, “Essential capabilities”, “Non-essential capabilities”, “Target Device”, and “containment relationship with data item component class” as a property. “Essential capabilities” represents a capability necessary to allow the broadcast reception device 100 to receive a service. “Non-essential capabilities” represents a capability necessary to allow the broadcast reception device 100 to receive a service's selection item. “Target Device” may represent at least one of a primary device or a companion device.


According to another specific embodiment, a service class may be classified into linear service and App-based service. This will be described with reference to FIGS. 113 to 116.



FIG. 101 is a view illustrating an OnDemand component class according to another embodiment of the present invention.


The OnDemand component class may include “Essential capabilities” and “Non-essential capabilities” as attributes. “Essential capabilities” represent a capability necessary for the broadcast reception device 100 to present an OnDemand component. “Non-essential capabilities” represent a capability necessary for the broadcast reception device 100 to present a selection item of an OnDemand component. The broadcast reception device 100 may determine whether to present an OnDemand component on the basis of “Essential capabilities”. For example, when not supporting a device capability included in “Essential capabilities”, the broadcast reception device 100 may not present an OnDemand component. Additionally, in a specific embodiment, when not supporting at least one of “Essential capabilities” and “Non-essential capabilities”, the broadcast reception device 100 may display that it does not support at least one of “Essential capabilities” and “Non-essential capabilities”.



FIG. 102 is a view illustrating an NRT content item class and an NRT file class according to another embodiment of the present invention.


The NRT content item class may include “Essential capabilities” and “Non-essential capabilities” as attributes. “Essential capabilities” represent a capability necessary for the broadcast reception device 100 to present an NRT content item. “Non-essential capabilities” represent a capability necessary for the broadcast reception device 100 to present a selection item of an NRT content item. The broadcast reception device 100 may determine whether to present an NRT content item on the basis of “Essential capabilities”. For example, when not supporting a device capability included in “Essential capabilities”, the broadcast reception device 100 may not present an NRT content item. Additionally, in a specific embodiment, when not supporting at least one of “Essential capabilities” and “Non-essential capabilities” of an NRT content item, the broadcast reception device 100 may display that it does not support at least one of “Essential capabilities” and “Non-essential capabilities” of an NRT content item.


The NRT file class may include “Essential capabilities” and “Non-essential capabilities” as attributes. “Essential capabilities” represent a capability necessary for the broadcast reception device 100 to present an NRT file. “Non-essential capabilities” represent a capability necessary for the broadcast reception device 100 to present a selection item of an NRT file. The broadcast reception device 100 may determine whether to present an NRT file on the basis of at least one of “Essential capabilities“and” Non-essential capabilities”. For example, when not supporting a device capability included in “Essential capabilities”, the broadcast reception device 100 may not present an NRT file. Additionally, in a specific embodiment, when not supporting at least one of “Essential capabilities” and “Non-essential capabilities” of an NRT file, the broadcast reception device 100 may display that it does not support at least one of “Essential capabilities” and “Non-essential capabilities” of an NRT file.



FIG. 103 is a view illustrating a linear service class.


Linear service represents a service in which primary content includes a continuous component. At this point, continuous components may be consumed according to a time base and schedule that a broadcaster defines. However, even when continuous components are consumed according to a time base and schedule that a broadcaster defines, a user may use various kinds of time shift methods on the continuous components. The TV service class may include as relationship at least one of Contains Relationship with Presentable Video Component Class, Contains Relationship with Presentable Audio Component Class, Contains Relationship with Presentable CC Component Class, Contains relationship with App-Based Enhancement class, and Sub-class relationship with Service class. Especially, the Contains Relationship with Presentable Video Component Class may include a role of video component representing the role of a video component as an attribute. At this point, the role of video component may represent one of a Primary video, an alternative camera view, an alternative video component, a sign language screen, and a follow subject video. At this point, the primary video may be expressed as a default video. Additionally, the follow subject video may include the name of a following subject. The follow subject video may be supported by a separated video component.



FIG. 104 is a view illustrating an App class and an App-based enhancement service.


The App class represents one type of a content item supporting interactivity. Sub-class relationship with NRT Content Item Class is included as relationship.


An App-based enhancement service class represents an App-based enhancement service. The App-based enhancement service may include as an attribute at least one of Essential capabilities representing a device capacity needed for performing enhancement service, Non-essential capabilities useful for performing enhancement service but no absolutely necessary, and a target device representing a device that enhancement service targets. The target device may represent at least one of a primary device and a companion device. At least one of Contains relationship with App Class, Contains relationship with NRT Content Item class, Contains relationship with Notification Stream class, and Contains relationship with OnDemand Component class may be included as relationship The Contains relationship with NRT Content Item class relates to an NRT content item used by App-based enhancement service. The Contains relationship with Notification Stream class relates to a notification stream delivering notifications to synchronize an action of application according to a linear time base. The Contains relationship with OnDemand Component class relates to an OnDemand component managed by application. A time base class that is the synchronization reference of components in service and a notification stream class will be described with reference to FIG. 105.



FIG. 105 is a view illustrating a time base class and a notification stream class.


The time base class is metadata used for generating a timeline to synchronize components of a linear service. At this point, the time line may represent a continuous reference time that is the synchronization reference. The time base class may include at least one of a time base identifier for identifying a time base and a clock rate representing the clock rate of a time base as an attribute.


The notification stream class represents a notification stream for transmitting a notification for an action to be performed. The notification stream class may include a notification stream identifier representing the identifier of a notification stream as an attribute.



FIG. 106 is a view illustrating an App-based service class.


The App-based service class represents an App-based service. At least one of Contains relationship with Time Base Class, Contains relationship with App-Based Enhancement class, and Sub-class relationship with Service class may be included as relationship.


Components of an NRT content item may have a similar structure to a program. However, the NRT content item is transmitted in a file format instead of a stream format. Additionally, the program may have an adjunct data service. In more detail, the adjunct data service may be an interactive service relating to the program. A program class representing a program, a show class representing a show that is a primary content included in a program, and a segment class representing a segment that is a temporal segment of a program will be described in more detail with reference to FIGS. 107 to 109.



FIG. 107 is a view illustrating a program class.


A program class represents a program. The program class may include at least one of a program identifier (ProgamIdentifier), the start time of a program (StartTime), the duration of a program (ProgramDuration), the title of a program (TextualTitle), a text describing a program (TextualTitle), the genre of a program (Genre), a graphic icon representing a program (GraphicalIcon), a content advisory rating (ContentAdvisoryRating), a targeting/personalization property (Targeting/personalization properties), and a content/service protection property representing the content/service protection of a program (Content/Service protection properties) as a property. The start time of a program may include a date and a time at which a program starts. The duration of a program is a duration from the start time to the end time of a program. The title of a program may be displayed in a plurality of languages. Additionally, when there is no title of a program, the image display device 100 may display the title of a related show as the title of a program. Additionally, when there is no genre of a program, the image display device 100 may display the genre of a related show as the genre of a program. Additionally, a graphic icon may be displayed in a plurality of sizes. When there is no graphic icon of a program, the image display device 100 may display the graphic icon of a related show as the graphic icon of a program. A viewing advisory rating may vary by region and may have different values by region. Additionally, if there is no viewing advisory rating, the broadcast reception device 100 may display the viewing advisory rating of a show relating to a program as a viewing advisory rating. If there is no targeting/personalizing property, the broadcast reception device 100 may display the targeting/personalizing property of a related show. If there is no content/service protection property, the broadcast reception device 100 may display the content/service protection property of a related show.


The program class may include, as relationship, at least one of ProgramOf relationship with Linear Service Class, ContentItemOf relationship with App-Based Service Class, Contains relationship with Presentable Video Component class, Contains with Presentable Video Component class, Contains relationship with Presentable Audio Component class, Contains relationship with Presentable CC Component class, Contains relationship with App-Based Enhancement class, Contains relationship with Time Base Class, Based-on relationship with Show class, and Contains relationship with Segment Class. At this point, the Contains relationship with Presentable Video Component class may include a role of video component representing the role of a video component as an attribute. At this point, the role of video component may represent one of a Primary video, an alternative camera view, an alternative video component, a sign language screen, and a follow subject video. At this point, the primary video may be expressed as a default video. Additionally, the follow subject video may include the name of a following subject. The follow subject video may be supported by a separated video component. Additionally, the Contains relationship with Segment Class may include RelativeSegmentStartTime representing the relative start time of a segment using the start of a program as a reference.


A radio program class represents a radio program. The radio service class may include at least one of “Containment relationship with Presentable Audio Component class”, “Containment relationship with Presentable CC Component class”, “Adjunct relationship with NRT Data Service class”, and “Containment relationship with Radio Segment Class)” as relationship. Additionally, the radio program class may include the start time of a radio segment as a property. At this point, the start time of a radio segment may be a relative time from the start time of a program.


The TV program class may represent a TV program. The presentable video component class may have “Containment relationship with Presentable Video Component Class” as relationship. “Containment relationship with Presentable Video Component Class” may include at least one of the role of a video component, a containment relationship with presentable audio component class, a containment relationship with presentable closed caption component class, an adjunct relationship with NRT data service class, the base with TV show class, and a containment relationship with TV segment class as a property. The role of a video component may represent at least one of a primary video, an alternative camera view, another alternative video component, a sign language inset, and a Follow Subject Video including the name of a followed subject. The follow subject video may be supported by a separated video component. A containment relationship with TV segment class may include a segment start time (RelativeSegmentStartTime). At this point, the segment start time may be a relative time from the start of a program.



FIG. 108 is a view illustrating a show class.


A show class represents a show. At this point, the show may represent a primary content of a program as described above. Especially, the show may represent a primary content from a view's perspective view. The show class may include at least one of “ShowIdentifier”, “ShowDuration”, “TextualDescription”, “Genre”, “GraphicalIcon”, “ContentAdvisoryRating”, “Targeting/personalization properties”, and “Content/Service protection properties” as attribute. The show class may have an “includes” relationship with show segments”


The TV show class may represent a primary content of a TV program. The TV show class may have “Containment relationship with Presentable TV Show Segment class” as relationship.



FIG. 109 is a view illustrating a segment class, a show segment class, and an interstitial segment class.


A segment class represents a segment. The segment class may include at least one of “SegmentId”, “Duration”, “Targeting/personalization properties”, and “Content advisory rating”.


The show segment class represents a segment of a show. The show segment class may have ShowSegmentRelativeStartTime representing a relative start time using the start time of a show as a reference, as an attribute. The show segment class may have a “Sub-class” relationship with segment class.


The interstitial segment class represents a segment that is not a show segment among segments of a program. The interstitial segment class may have a “Sub-class” relationship with segment class.


A radio segment class represents a segment of a radio program.


A TV segment class represents a segment of a TV program.


A radio show segment class represents a segment of a radio show. A radio show segment class may include “ShowSegmentRelativeStartTime” as a property. In more detail, the start time of a show segment may be a relative time on the basis of a radio program.


A TV show segment class represents a show segment including a content that is a TV program. A TV show segment class may include “ShowSegmentRelativeStartTime” as a property. In more detail, the start time of a show segment may be a relative time on the basis of a TV program.


A Radio Interstitial Segment represents a segment instead of a show segment of a radio program.


A TV Interstitial Segment represents a segment instead of a show segment of a TV program.


An OnDemand UI App class represents an application providing a user interface for OnDemand service.


An OnDemand Offering class represents offering of OnDemand service.


An OnDemand Catalog class represents description on offerings of OnDemand service. At this point, offering may represent a service product provided by OnDemand. An OnDemand request catalog class may include “relationship with OnDemand offering class”.



FIG. 110 is a diagram for explanation of the terms used in a system for transmitting and receiving a broadcast signal according to an embodiment of the present invention.


The terms “Continuous Component”, “Elementary Component”, “Composite Component”, “PickOne Component”, “Complex Component”, and “Presentable Component” used herein have been described above.


The NRT File may refer to a file that is delivered in non-real time. A file containing ESG data may be a special type of NRT file.


The NRT Content Item may be one or more NRT files which are intended to be consumed as an integrated whole. The files including ESG data may make up a special type of NRT content item.


The OnDemand Content Item may refer to one or more Presentable Components that are accessed on demand through a broadband and are intended to be presented together. (e.g., a program) In general, the OnDemand Content Item may be streamed from a remote server for one number of time consumption rather than being locally stored. An NRT content item that is stored from a viewer point of view may behave like the OnDemand Content Item. However, in general, the NRT content item may be transmitted through a broadcast network and presented after all files are completely received.


The Application may refer to a set of documents constituting a satisfied enhanced or interactive service. The documents of the application may include HTML, JavaScript, CSS, XML, and multimedia files. The Application may access other data that is not a portion of the application itself. The Application may be a special case of the NRT content item.


The ATSC 3.0 Application may be an application confirming to ATSC 3.0 Application Runtime Environment Specification.



FIG. 111 is a diagram showing a service type and a component type according to another embodiment of the present invention.


Only a difference from the above similar drawings will be described below. The AppBased Service may include one or more Time Bases. The ESG Service may include one or more ESG content items. The ESG content item may be a special type of NRT content item that does not require AppBased Enhancement but makes a request for native App to be consumed.



FIG. 112 is a diagram for explanation of attribute of OnDemand Component Service Model Class and OnDemand Component class according to an embodiment of the present invention.


According to an embodiment of the present invention, the OnDemand Component class may refer to a content component transmitted on demend. The OnDemand Component class may include OnDemandComponentId, ComponentLocation, ComponentName, PlaybackLength, AvailabilityStart, AvailablityDuration, Targeting/personalization properties, Content/Service protection properties, ContentAdvisoryRating, and/or Accessibility Feature.


The OnDemandComponentId may indicate an identifier of OnDemandComponent. The ComponentLocation may indicate a location for access to the OnDemandComponent. The ComponentName may indicate a name of a component. The PlaybackLength may refer to a playback time of a component. The AvailabilityStart may indicate available date and time of a component. The AvailablityDuration may indicate duration up to an available time of a component. The Accessibility Feature may include an Id and/or a Value.



FIG. 113 is a diagram for explanation of an NRT Content Item class and attribute of the NRT Content Item class according to an embodiment of the present invention.


According to an embodiment of the present invention, the NRT Content Item class may indicate an NRT content item. The NRT Content Item service model class may include ContentItemId, ContentItemName, Updatable, Expiration, ContentItemSize, PlaybackLength, Targeting/personalization properties, Content/Service, protection properties, ContentAdvisoryRating, and/or Accessibility Feature.


The ContentItemId may indicate an identifier of the NRT content item. The ContentItemName may indicate a name of an NRT content item. The Updatable may indicate whether the NRT content item is to be monitored for update. The Expiration may indicate a date and time after the NRT content item is discarded. The ContentItemSize may indicate a size of the NRT content item. The PlaybackLength may indicate a playback time of the NRT content item. The field may be a meaningful field only for a content time with a determined playback time like an audio clip or a video clip. The Accessibility Feature may include an Id and/or a Value. Furthermore, the NRT Content Item class may be associated with the NRT File class.



FIG. 114 is a diagram for explanation of an NRT File class and attribute of the NRT File class according to an embodiment of the present invention.


According to an embodiment of the present invention, the NRT File class may indicate an NRT file. The NRT File class may include ContentLocation, ContentType, and/or Accessibility Feature.


The ContentLocation may indicate a content location defined in the standard. The ContentType may indicate a content type defined in the standard. The Accessibility Feature may include an Id and/or a Value for each feature.



FIG. 115 is a diagram for explanation of a Service class and attribute of the Service class according to an embodiment of the present invention.


According to an embodiment of the present invention, the Service class may indicate a service. The Service class may include ServiceId, ServiceName, MajorChanNum, MinorChanNum, Description, Genre, Icon, Language, UsageReportInfo, Targeting/personalization properties, Content/Service protection properties, ContentAdvisoryRating, Essential capabilities, and/or Nonessential capabilities.


The ServiceId may indicate a unique service for a service. The ServiceName may indicate a name of a service. The MajorChanNum may indicate a major channel number of a service. The MinorChanNum may indicate a minor channel number of a service. The Description may indicate description in a letter of a service. The Genre may indicate genre of a service. The Icon may indicate an icon used to indicate a service. The Language may indicate a main language used in a service. The UsageReportInfo may indicate a parameter used in service usage reporting for the service. The Targeting/personalization properties may indicate targeting properties for the service. The field may be used for search, recommendation, and/or user selection in the ESG. The field may be overridden by each program, an NRT content item, or on demand offering. The Content/Service protection properties may indicate service protection properties for the service. The field may be overridden by a program, an NRT content item, or on demand offering. The ContentAdvisoryRating may indicate content advisory rating for the service. The field may be overridden by a program, an NRT content item, or on demand offering. The Essential capabilities may indicate receiver performance required for rendering of the service. The Nonessential capabilities may indicate receiver performance required for optimum rendering of the service.



FIG. 116 is a diagram for explanation of ContentAdvisoryRating class and attribute of the ContentAdvisoryRating class according to an embodiment of the present invention.


The ContentAdvisoryRating class according to an embodiment of the present invention may include Region identifier. Rating Description (text), and/or Rated Dimension for each rating region.


The Region identifier may indicate an identifier of a rating region. The Rating Description (text) may indicate explanation of rating. The Rated Dimension may include Rating Dimension and/or Rating Value for each rated dimension.



FIG. 117 is a diagram showing a relationship of a unified modeling language (UML) class according to an embodiment of the present invention.


The terms used in the drawing will be described below.


When Class A, “inherits from” Class B, this may indicate that Class A includes all features included in the Class B and includes properties indicated by definition of Class A.


When Class A is strongly included in Class B, this may indicate that objects represented by Class A are “owned” by an object represented by Class B. Here, when the owning object is deleted, the owned object may also be deleted.


When Class A is weakly included in Class B, this may indicate that objects represented by Class A are included in objects represented by Class B. However, objects represented by Class A may be independently present from objects in Class B.


When one class is associated with another class, this is indicated by “association” and this may mean that a connection or dependent relationship is present between objects represented by classes.



FIG. 118 is a diagram showing a function provided by a broadcast system according to an embodiment of the present invention.


The broadcast system according to an embodiment of the present invention may support separate flexible multiple path delivery for robustness and efficient delivery (8), may support NRT and RT content offered at appropriate timers to optimize spectrum usage at peak time (9), may enable dynamic and flexible broadcast capacity sharing between two or more broadcast stations under common control within a given coverage area (10), may have robust and adaptive system for mobile and fixed services (15), may support RT and NRT content for a mobile device (20), may support multiple simultaneous presentations of content components (26), may support aggregation, combination, and synchronization of content components from multiple content sources carried over one or more delivery networks (27), may support dynamic or scheduled hand-off among delivery networks for service/content delivery (28), may support aggregation, combination, and synchronization of content at the receiver of content from different delivery networks (29), may support interactive services delivered via one or a combination of delivery networks (30), may support different content presentations by different receives for the same service, depending on device capabilities and characteristics (34), may support a wide range of content types to be delivered and presentation of multiple content components (36), may support delivery and presentation of non-timed and timed data (37), may support the delivery and presentation of multiple content components (38), may support the delivery and presentation of multiple content components (39), may support content component identification so that the components of multi-component and shared component content may be identified and related, regardless of the location of the content component or the delivery method of the content component (40), may support dynamic configuration (combining, separating, adding or removing) of content components for consumption (41), may support dynamic configuration (combining, separating, adding or removing) for content components for delivery (42), may support streaming via terrestrial broadcast or broadband of live recorded content of any duration including indefinite (43), may support the use of different QoS types and levels for each delivered content or content component within a given service (45), may support delivery of information describing the temporal and spatial relationship among content components (48), may enable delivery of different video components of 3D content via the same network or via different network (55), may enable 3D content to be delivered in RT, NRT, or a combination of the two (56), may be able to switch back and forth between 3D and 2D modes accurately reflecting the intention of the broadcaster (64), may enable user control of certain aspects of the some scene that is rendered from the encoded representation (e.g., relative level of dialog, music, effects, or other elements important to the user) (74), may enable user-selectable alternative audio tracks to be delivered via terrestrial broadcaster or via broadband and in RT or NRT and, in this case, such audio tracks may be intended to replace the primary audio track or be mixed with the primary audio track and may be delivered for synchronous presentation with the corresponding video content (75), may enable mixing in the receiver of alternative audio tracks (e.g., assistive audio services, other language dialog, special commentary, music and effects) with the main audio track or with each other, with relative levels and position in the sound field and with receiver adjustments suitable to the user (76), may support closed captions and video description (82), may enable multiple, user-selectable alternative closed captions and suitable services to be delivered via terrestrial broadcast or via broadband and in RT or NRT for synchronous presentation with the corresponding video content (83), may enable broadcasters to provide users with the option of varying the loudness of a TV program's dialog relative to other elements of the audio mix, for purposes of increased intelligibility (87), may enable transmission of multiple simultaneous and overlaid synchronized video services, such as an American Sign language or other manual language as a video service, either via terrestrial broadcast or via broadband delivery (89), may enable user selection among alternative video views when available (100), may enable the capability of a device to automatically select appropriate layers of streams to decode when multiple video resolution or layered encoding of video content is available (101), may enable delivery of panoramic video (102), may enable support of “followsubject” video modes with user selection of subjects to follow (103), may enable alternative, targeted content to be delivered via terrestrial broadcast or via broadband and in RT or NRT for replacement of original, non-targeted content, and may enable such replacement to be synchronized or asynchronous as appropriate (126), may enable the broadcaster to provision portions of screen real estate within the TV program (128), may support a system clock of GPS time accuracy (134), may enable the delivery and signaling of content advisory levels per individual TV program content components (137), may enable receivers to efficiently initially discover and subsequently automatically track changes in broadcaster service offerings (140), may enable mobile receivers to efficiently manage changes in service offering availability (141), may allow the deployment of new or extended service, content types, protocols, and data structures, including signaling and announcement, such that devices not built to support them continue to function normally (142), and may support delivery and display of still picture modes up to and including UHD (143), and the emission signal may provide receivers the information needed to dynamically switch between differing video frame rates (145).



FIG. 119 is a diagram showing a function provided by a broadcast system according to an embodiment of the present invention.


The description of the drawing has been given above with reference to the previous diagrams.



FIG. 120 is a diagram for explanation of terms used in a system for transmitting and receiving a broadcast signal according to another embodiment of the present invention.


The Locally Cached File may have the same meaning as the NRT File. The Locally Cached File may be transmitted in non-real time and may indicate a file stored in a device for future consumption. The Locally Cached File may not be consumed or presented until the typically required file is completely received and stored. The Locally Cached File may be transmitted through a broadcast network or a broadband network.


The Locally Cached Content Item may have the same meaning as the NRT Content Item. The Locally Cached Content Item may indicate a set of one or more locally cached files that are consumed as one integrated file. The Locally Cached Content Item may not be consumed or presented until the typically required file is completely received and stored.


The Network Content Item may have the same meaning as the OnDemand Content Item.


The description of the Application or App has been given above and may be transmitted through a broadcast network or a broadband network. The application may not be a type of an NRT content item.


The description of the ATSC 3.0 Application has been given above.


The Notification Stream may indicate transmission of a series of data intended to be consumed by an application. The data may notify a life cycle of an application and may order an application to perform an action at a specific time. (e.g., fetch updated sports stats, insert personalized content, etc.)


The Primary App may indicate an application that is automatically launched immediately when a related service is selected.


According to an embodiment of the present invention, the Continuous Component may be streamed for consumption through broadcast or broadband and may be stored as a locally cached content item. The Continuous Component may be transmitted in non-real time through broadcast or a broadband and may be streamed as a Network Content Item through a broadband. A viewer may access both a locally cached content item and a network content item through a user interface that is generally provided by an app-based service.


According to an embodiment of the present invention, the Network Content Item is intended to be consumed via an appbased service or appbased enhancement. The Locally Cached Content Item is typically consumed via an appbased service or appbased enhancement. However, there may be Locally Cached Content Item that is not consumed via an appbased service or appbased enhancement. (e.g., an app itself, a file including electronic service guide (ESG), and a file including supplemental emergency alert information) The Locally Cached Content Item including an app may be accessed and launched via an event in Notification Stream. The Locally Cached Content Item including a Primary app may be access and launched via selection of a specific service. The Locally Cached Content Item including ESG information or supplemental emergency alert information may be accessed and consumed by an original mechanism of a device. The Locally Cached Content Item may be transmitted in RT or NRT via broadcast or broadband and may be completely and locally received and stored before starting presentation. The Network Content Item may be accessed through a broadband network from a remote server for immediate presentation to a viewer. That is, presentation of continuous network content items may be started immediately when sufficient media to avoid underflow is generated. Presentation of network content items including a set of files may be started immediately when sufficient files are acquired for consistent presentation. According to an embodiment of the present invention, an appbased service for providing content on demand may provide a locally cached content item, a network content item, or a combination thereof.



FIG. 121 is a diagram showing a service type and component type structure according to another embodiment of the present invention.


Only a difference from the above similar drawings will be described below. According to the embodiment according to the diagrams, information regarding that an ESG Service box and an ESG Service include one or more NRT Content Items is deleted.


According to an embodiment of the present invention, an app based enhancement may include one or more application, 0 or more Notification Streams, 0 or more locally cached content item, and/or 0 or more network content items.


According to an embodiment of the present invention, the app-based service may include time base to enable use of Notification Stream by app.


According to an embodiment of the present invention, an app may be a set of files transmitted through broadcast or broadband and the files may constitute one app according the predefined standard. In addition, the app may be launched immediately when being received and may be stored as a locally cached content item for future launching.



FIG. 122 is a diagram showing a relationship of Presentable Component in a service including video according to another embodiment of the present invention.


Only a difference from the above similar drawings will be described below. The Presentable CC Component according to the embodiment of the drawing may not be associated with one or more Presentable Video Components.



FIG. 123 is a diagram for explanation of App class and attribute of the App class according to another embodiment of the present invention.


According to an embodiment of the present invention, the App class may show one or more files or a set of the files that comply with the standard documents. The App class may include attribute and may not include Relationships element.


According to an embodiment of the present invention, the On Demand Service may operate as a user interface provided by primary app and an app-based service in presentation management. A catalog provided on demand may have format of locally cached content item or a network content item, may be signaled as a portion of a service, may be presented by an app as necessary, may be simply downloaded by an app, and may be presented as necessary. When a viewer selects an item from the catalog, the app may present the on demand service.



FIG. 124 is a diagram showing a protocol applied to features according to an embodiment of the present invention.


In the following diagrams, in a broadcast system according to an embodiment of the present invention, a protocol and message structure format for a companion will be described below. Hereinafter, the following terms “communication” may refer to communication between a main device and a companion device.


According to an embodiment of the present invention, with regard to 5.5 Protocol for Service and Content Identification Communication (Subscriptionbased), an appropriate protocol may be HTTP or WebSocket, Notification may be used as required message features, and Subscription may be applied.


According to an embodiment of the present invention, with respect to 5.6 Protocol for ESG Information Communication, an appropriate protocol may be HTTP, Request/Response may be used as required message features, and Subscription may not be applied.


According to an embodiment of the present invention, with respect to 5.7 Protocol for Service, Show and Segment Data Communication, an appropriate protocol may be HTTP, Request/Response may be used as required message features, and Subscription may not be applied.


According to an embodiment of the present invention, with respect to 5.8 Protocol for Media Timeline Communication (Req/Resbased & Subscriptionbased), an appropriate protocol may be WebSocket and HTTP, Notification and/or Request/Response may be used as required message features, and Subscription may be applied when WebSocket is used and may not be applied when the HTTP is not used.


According to an embodiment of the present invention, with respect to 5.9 Protocol for Media Playback State Communication (Subscriptionbased), an appropriate protocol may be WebSocket, Notification may be used as required message features, and Subscription may be applied.


According to an embodiment of the present invention, with respect to 5.9 Protocol for Media Playback State Communication (Subscriptionbased), an appropriate protocol may be WebSocket or HTTP (multicast). Notification may be used as required message features, and Subscription may be applied when WebSocket is used and may not be applied when HTTP is used.



FIG. 125 is a diagram showing Message Structure Format for HTTP Request according to an embodiment of the present invention.


A left diagram shows message structure format for HTTP Request according to an embodiment of the present invention. The CDRequest element may include a Feature element and/or an Argument element. The Feature element may have a feature name as a field value.


A right diagram shows an example of use of message structure format for HTTP Request according to an embodiment of the present invention. The Feature element present in the CDRequest element may include PlaybascState, ContentIdentification, ESG, DataCommunication, MediaTimeline, and/or EAS.



FIG. 126 is a diagram showing message structure format for HTTP Response and WebSocket Response according to an embodiment of the present invention.


An upper-left diagram shows message structure format for HTTP Response and WebSocket Response according to an embodiment of the present invention. The CDResponse element may include a Feature element and/or message content for the feature element. The feature element may have a feature name as a field value.


A lower-left diagram shows message structure format for HTTP Response and WebSocket Response according to another embodiment of the present invention. The CDResponse element may include feature attribute and/or message content for the Feature attribute. The feature attribute may have a feature name as a field value.


A right diagram shows an example of use of message structure format for HTTP Response and WebSocket Response according to another embodiment of the present invention. The CDResponse element may include feature attribute, a SubscriptionID element, an MPState element, an MPSpeed element, a MediaURL element, a MediaID element, a PDDevID element, and/or a PDVersion element. Here, the SubscriptionID element, the MPState element, the MPSpeed element, the MediaURL element, the MediaID element, the PDDevID element, and/or the PDVersion element may correspond to message content for feature attribute. The feature attribute may have a “PlaybackState” value, the SubscriptionID element may indicate aaa, and the MPState element may indicate PLAYING. That is, in the example of use, the HTTP Response and/or the WebSocket Response may transmit response to feature that is PlaybackState, SubscriptionID of the PlaybackState feature may be aaa, and the speed may indicate one data rate.



FIG. 127 is a diagram showing message structure format for WebSocket Subscription according to an embodiment of the present invention.


A left diagram shows message structure format of WebSocket Subscription Request according to an embodiment of the present invention. The CDSubRequest element may include feature attribute, a SubCallbackURL element, a SubDuration element, a CDDevID element, a CDAppID element, and/or a CDAppVersion element.


The feature attribute may indicate a name of the feature for subscription. The SubCallbackURL element may include URL information of response to the request. The SubDuration element may include duration time information of subscription. The CDDevID element may include an identifier of a companion device. The CDAppID element may include an identifier of an application of a companion device. The CDAppVersion element may include version information of an application of a companion device.


A right diagram shows message structure format of WebSocket Subscription Response according to an embodiment of the present invention. The CDSubResponse element may include feature attribute, a StatusCode element, a StatusString element, a SubID element, a SubTimeoutDuration element, a PDDevID element, and/or a PDVersion element.


The feature attribute may indicate a name of feature for subscription. The SubID element may include an identifier of subscription. The SubTimeoutDuration element may include duration time information for expiration of the subscription. The PDDevID element may include an identifier of a primary device (a main device). The PDVersion element may include version information of the primary device.



FIG. 128 is a diagram showing message structure format for WebSocket Subscription Renewal according to an embodiment of the present invention.


A left diagram shows message structure format of WebSocket Subscription Renewal Request according to an embodiment of the present invention. The CDSubRequest element may include feature attribute, a SubID element, a SubDuration element, a CDDevID element, a CDAppID element, and/or a CDAppVersion element.


The feature attribute may indicate a name of feature for subscription. The SubID element may include an identifier of the subscription. The SubDuration element may include duration time information of subscription. The CDDevID element may include an identifier of a companion device. The CDAppID element may include an identifier of an application of a companion device. The CDAppVersion element may include version information of an application of a companion device.


A right diagram shows a message structure format of WebSocket Subscription Renewal Response according to an embodiment of the present invention. The CDSubResponse element may include feature attribute, a StatusCode element, a StatusString element, a SubID element, a SubTimeoutDuration element, a PDDevID element, and/or a PDVersion element.


The feature attribute may indicate a name of feature for subscription. The SubID element may include an identifier of subscription. The SubTimeoutDuration element may include duration time information for expiration of the subscription. The PDDevID element may include an identifier of a primary device (a main device). The PDVersion element may include version information of a primary device.



FIG. 129 is a diagram showing message structure format for WebSocket Subscription Cancel according to an embodiment of the present invention.


A left diagram shows a message structure format of WebSocket Subscription Cancel Request according to an embodiment of the present invention. The CDSubRequest element may include feature attribute, a SubID element, a CDDevID element, a CDAppID element, and/or a CDAppVersion element.


The feature attribute may indicate a name of feature for subscription. The SubID element may include an identifier of subscription. The CDDevID element may include an identifier of a companion device. The CDAppID element may include an identifier of an application of a companion device. The CDAppVersion element may include version information of an application of a companion device.


A right diagram shows a message structure format of WebSocket Subscription Cancel Response according to an embodiment of the present invention. The CDSubResponse element may include feature attribute, a StatusCode element, and/or a StatusString element.


The feature attribute may indicate a name of feature for subscription.



FIG. 130 is a diagram showing a method of transmitting a broadcast signal according to an embodiment of the present invention.


According to an embodiment of the present invention, the method of transmitting a broadcast signal may include generating (SL130010) service data of a broadcast service, first signaling information for signaling the service data, and second signaling information including location information of a packet for transmitting the first signaling information (SL130010), generating (SL130020) the service data, the first signaling information, and the second signaling information, generating (SL130030) a broadcast signal including the packets, and/or transmitting (SL130040) the broadcast signal. Here, the first signaling information may include third signaling information for describing the service data, fourth signaling information including location information of a packet for transmitting service data of the broadcast signal, and fifth signaling information for signaling an application included in the broadcast signal. Here, the first signaling information may indicate an SLS, the second signaling information may indicate an SLT, the third signaling information may indicate an MPD, the fourth signaling information may indicate an STSID, and the fifth signaling information may indicate an AST.


According to another embodiment of the present invention, the fourth signaling information may include location information of a packet for transmitting an application included in the broadcast service, and the fifth signaling information may include information for identifying the application, and information for acquisition of files constituting the identified application. The aforementioned information may indicate @tsi of the STSID and ContentLinkage of AST.


According to another embodiment of the present invention, the third signaling information may include a period element for describing a period for configuring the service data, the period element may include an event stream element for describing an event stream including one or more events for starting the application, the event stream element may include an event element for describing an event, and the event element may include presentation time information of the event, duration information of the event, and information for identifying the event. The aforementioned information may indicate period, eventstream, event, presentationtime, duration, and id.


According to another embodiment of the present invention, the service data may include an event message box for describing information on an event for starting the application and the event message box may include presentation time information of the event, presentation duration information of the event, and information for identifying the event. The aforementioned information may indicate emsg, @presentationTimeDelta, @eventDuration, and @id.


According to another embodiment of the present invention, the third signaling information may include a period element for describing a period for configuring the service data, the period element may include an adaptation element for describing adaptation for configuring the period, and the adaptation element may include a representation element for describing representation for configuring adaptation, and the representation element may include an inband event stream element for signaling the event message box. The aforementioned information may include period, adaptationset, representation, and inbandEventStream.


According to another embodiment of the present invention, the second signaling information may include URL information of the fifth signaling information. The aforementioned information may indicate broadbandServerURL_AST.


According to another embodiment of the present invention, the fifth signaling information may include URL information of an event stream table for describing information on an event for starting the application. The aforementioned information may indicate B BroadbandStaticEventURL.



FIG. 131 illustrates a structure of a broadcast signal transmitting apparatus according to an embodiment of the present invention.


A broadcast signal transmitting apparatus L131010 according to an embodiment of the present invention may include a data generating unit L131020 for generating service data of a broadcast service, first signaling information for signaling the service data, and second signaling information including location information of a packet for transmitting the first signaling information, a packet generating unit L131030 for generating packets for transmitting the service data, the first signaling information, and the second signaling information, a broadcast signal generating unit L131040 for generating a broadcast signal including the packets, and/or a transmitting unit L131050 for transmitting the broadcast signal. Here, the first signaling information may include third signaling information for describing the service data, fourth signaling information including location information of a packet for transmitting service data of the broadcast signal, and fifth signaling information for signaling an application included in the broadcast signal. Here, the first signaling information may indicate an SLS, the second signaling information may indicate an SLT, the third signaling information may indicate an MPD, the fourth signaling information may indicate an STSID, and the fifth signaling information may indicate an AST.


According to another embodiment of the present invention, the fourth signaling information may include location information of a packet for transmitting an application included in the broadcast service, and the fifth signaling information may include information for identifying the application, and information for acquisition of files constituting the identified application. The aforementioned information may indicate @tsi of the STSID and ContentLinkage of AST.


According to another embodiment of the present invention, the third signaling information may include a period element for describing a period for configuring the service data, the period element may include an event stream element for describing an event stream including one or more events for starting the application, the event stream element may include an event element for describing an event, and the event element may include presentation time information of the event, duration information of the event, and information for identifying the event. The aforementioned information may indicate period, eventstream, event, presentationtime, duration, and id.


According to another embodiment of the present invention, the service data may include an event message box for describing information on an event for starting the application and the event message box may include presentation time information of the event, presentation duration information of the event, and information for identifying the event. The aforementioned information may indicate emsg, @presentationTimeDelta, @eventDuration, and @id.


According to another embodiment of the present invention, the third signaling information may include a period element for describing a period for configuring the service data, the period element may include an adaptation element for describing adaptation for configuring the period, and the adaptation element may include a representation element for describing representation for configuring adaptation, and the representation element may include an inband event stream element for signaling the event message box. The aforementioned information may include period, adaptationset, representation, and inbandEventStream.


According to another embodiment of the present invention, the second signaling information may include URL information of the fifth signaling information. The aforementioned information may indicate broadbandServerURL_AST.


According to another embodiment of the present invention, the fifth signaling information may include URL information of an event stream table for describing information on an event for starting the application. The aforementioned information may indicate BroadbandStaticEventURL.


Modules or units may be processors executing consecutive processes stored in a memory (or a storage unit). The steps described in the aforementioned embodiments can be performed by hardware/processors. Modules/blocks/units described in the above embodiments can operate as hardware/processors. The methods proposed by the present invention can be executed as code. Such code can be written on a processor-readable storage medium and thus can be read by a processor provided by an apparatus.


While the embodiments have been described with reference to respective drawings for convenience, embodiments may be combined to implement a new embodiment. In addition, designing a computer-readable recording medium that stores programs for implementing the aforementioned embodiments is within the scope of the present invention.


The apparatus and method according to the present invention are not limited to the configurations and methods of the above-described embodiments and all or some of the embodiments may be selectively combined to obtain various modifications.


The methods proposed by the present invention may be implemented as processor-readable code stored in a processor-readable recording medium included in a network device. The processor-readable recording medium includes all kinds of recording media storing data readable by a processor. Examples of the processor-readable recording medium include a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device and the like, and implementation as carrier waves such as transmission over the Internet. In addition, the processor-readable recording medium may be distributed to computer systems connected through a network, stored and executed as code readable in a distributed manner.


Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. Such modifications should not be individually understood from the technical spirit or prospect of the present invention.


Both apparatus and method inventions are mentioned in this specification and descriptions of both the apparatus and method inventions may be complementarily applied to each other.


Those skilled in the art will appreciate that the present invention may be carried out in other specific ways than those set forth herein without departing from the spirit and essential characteristics of the present invention. Therefore, the scope of the invention should be determined by the appended claims and their legal equivalents, not by the above description, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.


In the specification, both the apparatus invention and the method invention are mentioned and description of both the apparatus invention and the method invention can be applied complementarily.


MODE FOR INVENTION

Various embodiments have been described in the best mode for carrying out the invention.


INDUSTRIAL APPLICABILITY

The present invention is applied to broadcast signal providing fields.


Various equivalent modifications are possible within the spirit and scope of the present invention, as those skilled in the relevant art will recognize and appreciate. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1-14. (canceled)
  • 15. A method of communication between a primary device and a companion device over a WebSocket, the method comprising: sending a WebSocket subscription request message for a service to the primary device, wherein the WebSocket subscription request message includes first identification information identifying the service to request and first duration information indicating a duration of a subscription to request; andreceiving a WebSocket subscription response message in response to the WebSocket subscription request message from the primary device, wherein the WebSocket subscription response message includes second identification information identifying the service to respond, code information indicating a success or failure status code for the WebSocket subscription request message and second duration information indicating a duration for which the subscription is active.
  • 16. The method of claim 15, further comprising: sending a WebSocket subscription renewal message for renewing an existing subscription to the primary device at the time indicated by the second duration time, wherein the WebSocket subscription renewal message includes third identification information identifying the service to renew and third duration information indicating a new duration of a subscription to renew; andreceiving a WebSocket subscription renewal response message in response to the WebSocket subscription renewal message from the primary device, wherein the WebSocket subscription renewal response message includes fourth identification information identifying the service to renew, renewal code information indicating a success or failure status code for the WebSocket subscription renewal message and fourth duration information indicating a new duration for which the subscription is active,wherein the first identification information or the second identification information identifies a media play back state when the service to request or respond corresponds to the media play back state.
  • 17. The method claim 15, further comprising: sending a WebSocket subscription cancel message for canceling an existing subscription to the primary device, wherein the WebSocket subscription cancel message includes fifth identification information identifying the service to cancel; andreceiving a WebSocket subscription cancel response message in response to the WebSocket subscription cancel message from the primary device, wherein the WebSocket subscription cancel response message includes sixth identification information identifying the service to cancel and cancel code information indicating a success or failure status code for the WebSocket subscription cancel message.
  • 18. A method of communication between a primary device and a companion device over a HTTP (hypertext transfer protocol), the method comprising: sending a HTTP request message for a service to the primary device, wherein the HTTP request message includes first identification information identifying the service to request,wherein the first identification information identifies a ESG (electronic service guide) when the service to request corresponds to the ESG; andreceiving a HTTP response message including the service in response to the HTTP request from the primary device, wherein the HTTP response message includes second identification information identifying the service to respond and message body carrying the service to respond.
  • 19. The method of claim 18, wherein the first identification information identifies a media timeline when the service to request corresponds to the media timeline.
  • 20. An apparatus of communication over a WebSocket, the apparatus comprising: a sending unit that sends a WebSocket subscription request message for a service to a primary device, wherein the WebSocket subscription request message includes first identification information identifying the service to request and first duration information indicating a duration of a subscription to request; anda receiving unit that receives a WebSocket subscription response message in response to the WebSocket subscription request message from the primary device, wherein the WebSocket subscription response message includes second identification information identifying the service to respond, code information indicating a success or failure status code for the WebSocket subscription request message and second duration information indicating a duration for which the subscription is active.
  • 21. The apparatus of claim 20, wherein the sending unit further sends a WebSocket subscription renewal message for renewing an existing subscription to the primary device at the time indicated by the second duration time, wherein the WebSocket subscription renewal message includes third identification information identifying the service to renew and third duration information indicating a new duration of a subscription to renew,wherein the receiving unit further receives a WebSocket subscription renewal response message in response to the WebSocket subscription renewal message from the primary device, wherein the WebSocket subscription renewal response message includes fourth identification information identifying the service to renew, renewal code information indicating a success or failure status code for the WebSocket subscription renewal message and fourth duration information indicating a new duration for which the subscription is active,wherein the first identification information or the second identification information identifies a media play back state when the service to request or respond corresponds to the media play back state.
  • 22. The apparatus of claim 20, wherein the sending unit further sends a WebSocket subscription cancel message for canceling an existing subscription to the primary device, wherein the WebSocket subscription cancel message includes fifth identification information identifying the service to cancel,wherein the receiving unit further receives a WebSocket subscription cancel response message in response to the WebSocket subscription cancel message from the primary device, wherein the WebSocket subscription cancel response message includes sixth identification information identifying the service to cancel and cancel code information indicating a success or failure status code for the WebSocket subscription cancel message.
  • 23. An apparatus of communication over a HTTP (hypertext transfer protocol), the apparatus comprising: a sending unit that sends a HTTP request message for a service to the primary device, wherein the HTTP request message includes first identification information identifying the service to request,wherein the first identification information identifies a ESG (electronic service guide) when the service to request corresponds to the ESG; anda receiving unit that receives a HTTP response message including the service in response to the HTTP request from the primary device, wherein the HTTP response message includes second identification information identifying the service to respond and message body carrying the service to respond.
  • 24. The apparatus of claim 23, wherein the first identification information identifies a media timeline when the service to request corresponds to the media timeline.
  • 25. A method of communication between a primary device and a companion device over a WebSocket, the method comprising: receiving a WebSocket subscription request message for a service from the companion device, wherein the WebSocket subscription request message includes first identification information identifying the service to request and first duration information indicating a duration of a subscription to request; andsending a WebSocket subscription response message in response to the WebSocket subscription request message to the companion device, wherein the WebSocket subscription response message includes second identification information identifying the service to respond, code information indicating a success or failure status code for the WebSocket subscription request message and second duration information indicating a duration for which the subscription is active.
  • 26. The method of claim 25, further comprising: receiving a WebSocket subscription renewal message for renewing an existing subscription from the companion device at the time indicated by the second duration time, wherein the WebSocket subscription renewal message includes third identification information identifying the service to renew and third duration information indicating a new duration of a subscription to renew; andsending a WebSocket subscription renewal response message in response to the WebSocket subscription renewal message to the companion device, wherein the WebSocket subscription renewal response message includes fourth identification information identifying the service to renew, renewal code information indicating a success or failure status code for the WebSocket subscription renewal message and fourth duration information indicating a new duration for which the subscription is active,wherein the first identification information or the second identification information identifies a media play back state when the service to request or respond corresponds to the media play back state.
  • 27. The method claim 25, further comprising: receiving a WebSocket subscription cancel message for canceling an existing subscription from the companion device, wherein the WebSocket subscription cancel message includes fifth identification information identifying the service to cancel; andsending a WebSocket subscription cancel response message in response to the WebSocket subscription cancel message to the companion device, wherein the WebSocket subscription cancel response message includes sixth identification information identifying the service to cancel and cancel code information indicating a success or failure status code for the WebSocket subscription cancel message.
  • 28. A method of communication between a primary device and a companion device over a HTTP (hypertext transfer protocol), the method comprising: receiving a HTTP request message for a service from the companion device, wherein the HTTP request message includes first identification information identifying the service to request,wherein the first identification information identifies a ESG (electronic service guide) when the service to request corresponds to the ESG; andsending a HTTP response message including the service in response to the HTTP request to the companion device, wherein the HTTP response message includes second identification information identifying the service to respond and message body carrying the service to respond.
  • 29. The method of claim 28, wherein the first identification information identifies a media timeline when the service to request corresponds to the media timeline.
  • 30. An apparatus of communication over a WebSocket, the apparatus comprising: a receiving unit that receives a WebSocket subscription request message for a service from a companion device, wherein the WebSocket subscription request message includes first identification information identifying the service to request and first duration information indicating a duration of a subscription to request; anda sending unit that sends a WebSocket subscription response message in response to the WebSocket subscription request message to the companion device, wherein the WebSocket subscription response message includes second identification information identifying the service to respond, code information indicating a success or failure status code for the WebSocket subscription request message and second duration information indicating a duration for which the subscription is active.
  • 31. The apparatus of claim 30, wherein the receiving unit further receives a WebSocket subscription renewal message for renewing an existing subscription from the companion device at the time indicated by the second duration time, wherein the WebSocket subscription renewal message includes third identification information identifying the service to renew and third duration information indicating a new duration of a subscription to renew,wherein the sending unit further sends a WebSocket subscription renewal response message in response to the WebSocket subscription renewal message to the companion device, wherein the WebSocket subscription renewal response message includes fourth identification information identifying the service to renew, renewal code information indicating a success or failure status code for the WebSocket subscription renewal message and fourth duration information indicating a new duration for which the subscription is active,wherein the first identification information or the second identification information identifies a media play back state when the service to request or respond corresponds to the media play back state.
  • 32. The apparatus of claim 30, wherein the receiving unit further receives a WebSocket subscription cancel message for canceling an existing subscription from the companion device, wherein the WebSocket subscription cancel message includes fifth identification information identifying the service to cancel,wherein the sending unit further sends a WebSocket subscription cancel response message in response to the WebSocket subscription cancel message to the companion device, wherein the WebSocket subscription cancel response message includes sixth identification information identifying the service to cancel and cancel code information indicating a success or failure status code for the WebSocket subscription cancel message.
  • 33. An apparatus of communication over a HTTP (hypertext transfer protocol), the apparatus comprising: a receiving unit that receives a HTTP request message for a service from the companion device, wherein the HTTP request message includes first identification information identifying the service to request,wherein the first identification information identifies a ESG (electronic service guide) when the service to request corresponds to the ESG; anda sending unit that sends a HTTP response message including the service in response to the HTTP request to the companion device, wherein the HTTP response message includes second identification information identifying the service to respond and message body carrying the service to respond.
  • 34. The apparatus of claim 33, wherein the first identification information identifies a media timeline when the service to request corresponds to the media timeline.
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2016/003112 3/28/2016 WO 00
Provisional Applications (4)
Number Date Country
62138953 Mar 2015 US
62144311 Apr 2015 US
62147598 Apr 2015 US
62200659 Aug 2015 US