1. Field
The present disclosure relates generally to communication systems, and more particularly, to broadcast/multicast services for machine-to-machine (M2M) and machine type communications (MTC).
2. Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power). Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is Long Term Evolution (LTE). LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP). It is designed to better support mobile broadband Internet access by improving spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards using OFDMA on the downlink (DL), SC-FDMA on the uplink (UL), and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
In an aspect of the disclosure, a method, a computer program product, and an apparatus are provided. An apparatus notifies a user equipment (UE) of an upcoming multicast/broadcast of data intended for receipt by a group of UEs assigned a machine type communication (MTC) class. The UE has one or more MTC classes assigned to it and is configured to awake for the upcoming multicast/broadcast of data if the data to be broadcast corresponds to an MTC class assigned to the UE. The apparatus also multicasts/broadcasts the data intended for receipt by a group of UEs through at least one multicast/broadcast mechanism.
In another aspect of the disclosure, an apparatus receives a notice of an upcoming multicast/broadcast of data intended for receipt by a group of UEs assigned a MTC class. The apparatus has one or more MTC classes assigned to it and is configured to awake for the upcoming multicast/broadcast of data if the data to be broadcast corresponds to an MTC class assigned to the UE. The apparatus also receive a multicast/broadcast of the data intended for receipt by a group of UEs through at least one multicast/broadcast mechanism.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, etc. (collectively referred to as “elements”). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented with a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), and floppy disk where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
The E-UTRAN includes the evolved Node B (eNB) 106 and other eNBs 108. The eNB 106 provides user and control planes protocol terminations toward the UE 102. The eNB 106 may be connected to the other eNBs 108 via a backhaul (e.g., an X2 interface). The eNB 106 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), or some other suitable terminology. The eNB 106 provides an access point to the EPC 110 for a UE 102. Examples of UEs 102 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA), a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, or any other similar functioning device. The UE 102 may also be referred to by those skilled in the art as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
The eNB 106 is connected by an S1 interface to the EPC 110. The EPC 110 includes a Mobility Management Entity (MME) 112, other MMEs 114, a Serving Gateway 116, and a Packet Data Network (PDN) Gateway 118. The MME 112 is the control node that processes the signaling between the UE 102 and the EPC 110. Generally, the MME 112 provides bearer and connection management. All user IP packets are transferred through the Serving Gateway 116, which itself is connected to the PDN Gateway 118. The PDN Gateway 118 provides UE IP address allocation as well as other functions. The PDN Gateway 118 is connected to the Operator's IP Services 122. The Operator's IP Services 122 may include the Internet, the Intranet, an IP Multimedia Subsystem (IMS), and a PS Streaming Service (PSS).
The modulation and multiple access scheme employed by the access network 200 may vary depending on the particular telecommunications standard being deployed. In LTE applications, OFDM is used on the DL and SC-FDMA is used on the UL to support both frequency division duplexing (FDD) and time division duplexing (TDD). As those skilled in the art will readily appreciate from the detailed description to follow, the various concepts presented herein are well suited for LTE applications. However, these concepts may be readily extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be extended to Evolution-Data Optimized (EV-DO) or Ultra Mobile Broadband (UMB). EV-DO and UMB are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; and Evolved UTRA (E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, and Flash-OFDM employing OFDMA. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 and UMB are described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.
The eNBs 204 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables the eNBs 204 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. The data steams may be transmitted to a single UE 206 to increase the data rate or to multiple UEs 206 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i.e., applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the DL. The spatially precoded data streams arrive at the UE(s) 206 with different spatial signatures, which enables each of the UE(s) 206 to recover the one or more data streams destined for that UE 206. On the UL, each UE 206 transmits a spatially precoded data stream, which enables the eNB 204 to identify the source of each spatially precoded data stream.
Spatial multiplexing is generally used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.
In the detailed description that follows, various aspects of an access network will be described with reference to a MIMO system supporting OFDM on the DL. OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The spacing provides “orthogonality” that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e.g., cyclic prefix) may be added to each OFDM symbol to combat inter-OFDM-symbol interference. The UL may use SC-FDMA in the form of a DFT-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR).
A UE may be assigned resource blocks 410a, 410b in the control section to transmit control information to an eNB. The UE may also be assigned resource blocks 420a, 420b in the data section to transmit data to the eNB. The UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequency.
A set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430. The PRACH 430 carries a random sequence and cannot carry any UL data/signaling. Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks. The starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH. The PRACH attempt is carried in a single subframe (1 ms) or in a sequence of few contiguous subframes and a UE can make only a single PRACH attempt per frame (10 ms).
In the user plane, the L2 layer 508 includes a media access control (MAC) sublayer 510, a radio link control (RLC) sublayer 512, and a packet data convergence protocol (PDCP) 514 sublayer, which are terminated at the eNB on the network side. Although not shown, the UE may have several upper layers above the L2 layer 508 including a network layer (e.g., IP layer) that is terminated at the PDN gateway 118 on the network side, and an application layer that is terminated at the other end of the connection (e.g., far end UE, server, etc.).
The PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels. The PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs. The RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ). The MAC sublayer 510 provides multiplexing between logical and transport channels. The MAC sublayer 510 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs. The MAC sublayer 510 is also responsible for HARQ operations.
In the control plane, the radio protocol architecture for the UE and eNB is substantially the same for the physical layer 506 and the L2 layer 508 with the exception that there is no header compression function for the control plane. The control plane also includes a radio resource control (RRC) sublayer 516 in Layer 3 (L3 layer). The RRC sublayer 516 is responsible for obtaining radio resources (i.e., radio bearers) and for configuring the lower layers using RRC signaling between the eNB and the UE.
The transmit (TX) processor 616 implements various signal processing functions for the L1 layer (i.e., physical layer). The signal processing functions includes coding and interleaving to facilitate forward error correction (FEC) at the UE 650 and mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)). The coded and modulated symbols are then split into parallel streams. Each stream is then mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 674 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 650. Each spatial stream is then provided to a different antenna 620 via a separate transmitter 618TX. Each transmitter 618TX modulates an RF carrier with a respective spatial stream for transmission.
At the UE 650, each receiver 654RX receives a signal through its respective antenna 652. Each receiver 654RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 656. The RX processor 656 implements various signal processing functions of the L1 layer. The RX processor 656 performs spatial processing on the information to recover any spatial streams destined for the UE 650. If multiple spatial streams are destined for the UE 650, they may be combined by the RX processor 656 into a single OFDM symbol stream. The RX processor 656 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT). The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, is recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 610. These soft decisions may be based on channel estimates computed by the channel estimator 658. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 610 on the physical channel. The data and control signals are then provided to the controller/processor 659.
The controller/processor 659 implements the L2 layer. The controller/processor can be associated with a memory 660 that stores program codes and data. The memory 660 may be referred to as a computer-readable medium. In the UL, the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer. Various control signals may also be provided to the data sink 662 for L3 processing. The controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
In the UL, a data source 667 is used to provide upper layer packets to the controller/processor 659. The data source 667 represents all protocol layers above the L2 layer. Similar to the functionality described in connection with the DL transmission by the eNB 610, the controller/processor 659 implements the L2 layer for the user plane and the control plane by providing header compression, ciphering, packet segmentation and reordering, and multiplexing between logical and transport channels based on radio resource allocations by the eNB 610. The controller/processor 659 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the eNB 610.
Channel estimates derived by a channel estimator 658 from a reference signal or feedback transmitted by the eNB 610 may be used by the TX processor 668 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 668 are provided to different antenna 652 via separate transmitters 654TX. Each transmitter 654TX modulates an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650. Each receiver 618RX receives a signal through its respective antenna 620. Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670. The RX processor 670 may implement the L1 layer.
The controller/processor 675 implements the L2 layer. The controller/processor 675 can be associated with a memory 676 that stores program codes and data. The memory 676 may be referred to as a computer-readable medium. In the UL, the control/processor 675 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the UE 650. Upper layer packets from the controller/processor 675 may be provided to the core network. The controller/processor 675 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Referring to
Broadcast/multicast mechanisms are more efficient when the same machine type communications (MTC) data or machine-to-machine (M2M) data are to be sent to a group of user devices. One such broadcast/multicast mechanism is cell broadcast service/public warning system (CBS/PWS). The CBS/PWS includes the earthquake and tsunami warning system (ETWS) and the commercial mobile alert service (CMAS). The CBS/PWS mechanism is suitable for small text data download and does not require device triggering. “Device trigger” as used herein refers generally to the concept of waking a device, e.g. UE, from an idle or sleeping state in order to receive data. Another broadcast/multicast mechanism is the multimedia broadcast multicast service (MBMS)/and evolved (eMBMS) for LTE, as described above with reference to
Broadcast/multicast of MTC/M2M data may be scheduled or unscheduled. In scheduled broadcasts, the broadcast/multicast mechanism broadcasts in accordance with a preset schedule and the user device, aware of that schedule, receives the broadcast data. An example of a scheduled data broadcast includes daily or weekly downloads of newspaper articles. In cases of unscheduled broadcasts, neither the broadcast mechanism nor the user device knows in advance when a broadcast will occur. In this case, the broadcast/multicast mechanism is triggered into broadcasting the data and the user device is triggered into receiving the data. Examples of unscheduled data broadcasts include device software and firmware updates and common commands or messages to a large number of devices to initiate an action (e.g., turn on/off street lights, message to smart meters to get report on a dynamic basis etc).
A drawback with current multicast/broadcast mechanisms is that whenever data is broadcast/multicast the user device wakes up whether or not the data being sent is intended for it. To address this drawback, mechanisms described herein introduce concepts that allow user devices to wake up only when data intended to be received by the device is being broadcast. To this end, mechanisms disclosed herein involve assignment of one or more classes to a user device. These classes, as described further below, may include a hierarchical organization of categories, groups, sub-groups and/or sub-sub-groups. These classes, in combination with CBS/PWS and eMBMS mechanisms, allow for user devices to awake only when data associated with one of its assigned classes is being multicast/broadcast.
User devices may be preconfigured with class assignments. Classes, defined for example, by MTC category or group IDs, may be assigned via MTC service registration and request. The MTC category can be smart grid, health care, etc. The MTC group ID may be assigned for each MTC group including category information. For example Group ID1 may be San Diego Gas and Electric (SDGE) meter readers. Categories/group IDs can be assigned to devices through a paging message, for example, under CMAS-indication, CMAS-indication-Group-X and CMAS-indication-Group-Y may be added. In another example, MTC-Indication and MTC-Indication-Group x may be added and a new SIB for MTC introduced. In yet another example, eMBMS-indication or further eMBMS-indication-Group-x and eMBMS-indication-Group-y (currently systemInfoModification indicates any broadcast control channel (BCCH) modification other than SIB10/11/12) may be added.
As mentioned above, class assignments may be hierarchical and include a first tier, category/group assignment through a paging message followed by a second tier, subgroup assignment by SIB. Currently all UEs capable of CBS/PWS wake up whenever there is a change in SIB10, SIB11 or SIB12. Therefore, MTC category and/or group assignments may be included in SIB10, SIB11 or SIB12.
For multicast/broadcast employing eMBMS/MBMS mechanisms, it would be beneficial to introduce user service description (USD) change period (including period for certain category/group) so that the user device does not need to wake up frequently to check USD update. The device only wakes up during the change period. MTC category and/or group may be included under the service class in USD, or may be added to SIB13.
Regarding scheduling of broadcasts/multicasts using CBS/PWS mechanisms, UE battery life would be conserved if the UE knew its group schedule. To this end, schedule information may be sent through unicast, USD or CBS/PWS itself. Regarding scheduling in MBMS/eMBMS, a proprietary blob may be included in USD for each category and/or group. Instead of a common schedule for each group, each group will have a unique schedule.
Current SIBs and channels relevant to the above outlined multicast/broadcast enhancements include: SIB10, which contains an earthquake and tsunami warning system (ETWS) primary notification; SIB11, which contains an ETWS secondary notification; SIB12, which contains a commercial mobile alert service (CMAS) notification; and SIB13, which contains the information required to acquire the MBMS control information associated with one or more MBSFN areas. ETWS and/or CMAS capable UEs in RRC_CONNECTED read paging at least once every defaultPagingCycle to check whether ETWS and/or CMAS notification is present or not. The paging message includes the ETWS-Indication and CMAS-Indication. The master information block (MIB) is sent over the physical broadcast channel (PBCH) and all system information blocks (SIBs) and paging are sent over the physical downlink shared channel (PDSCH).
As mentioned above, in order to multicast/broadcast data to a group of user devices, the devices are associated with an MTC class, i.e., a category having one or more associated groups, sub-groups and/or sub-sub groups, corresponding to data intended for receipt by the group of UEs. Within each category a hierarchy of group IDs may exist. For example, as shown in the table below, MTC categories may include consumer electronics (CE), healthcare, automotive and metering. Each category has an assigned group ID. A group ID may have one or more associated sub-group IDs and a sub-group ID may have one or more associated sub-sub-group IDs.
A user device may be associated with one or more group IDs, sub-group IDs or sub-sub-group IDs such that the device is set up to receive broadcast/multicast data corresponding to one or more of the IDs. For ease in further description, the term “group ID,” is intended to encompass all levels of ID, including group, sub-group and sub-sub-group.
Group IDs may be allocated by an operator or a service provider. For example, in the case of an operation, mobile country code/mobile network code (MCC/MNC) can be included in group ID, and in the case of a service provider, MCC/Service provider ID can be included in Group ID. Group IDs may also be allocated by a M2M international forum, such as OneM2M.
Group ID assignment to user devices may occur through preconfiguration or through online assignment. In the case of preconfiguration, a device may register its group ID with an MTC server during MTC service registration. In cases of online assignment, the MTC server may assign a group ID to the device during MTC service registration. Also, an operator may assign a group ID during attach procedures, in which case the device subsequently registers its assigned group ID with the MTC server during MTC service registration.
Multicast/Broadcast Using CBS/PWS:
The CBE/CBS 802, in turn, sends the set of data 804, 804′ directly to a mobility management entity (MME) 812 using the write-replace-warning request protocol (TS 23.041). The MME 812 then sends the set of data 804, 804′ to a radio access network (RAN) 814. The RAN 814 notifies user devices, now on referred to as UEs 816, within the group of an upcoming data multicast/broadcast. Such notification may be through a group ID included in a paging message sent to the UEs 816 or in SIB1. For example, in a paging message the group ID may be represented by an ETWS-Indication or a CMAS-Indication. Upon receipt of such notification, the UEs 816 wake up and receive a multicast/broadcast schedule, which is also sent by the RAN 814. This schedule may be received, for example, through SIB1. In accordance with the received schedule, the RAN 814 multicasts/broadcasts the data on one or more of SIB10, SIB11 and SIB12, and the UEs 816 receive the data.
The set of data 904 includes data identifying a MTC class, including relevant groups IDs, associated with the data to be multicast/broadcast. The data set 904 further includes the data that is to be multicast/broadcast. The data set 904 may also include a device trigger. The MTC-IWF 918 includes mapping information that maps the data to be multicast/broadcast to one or more CBE/CBSs 902 and associated RANs 914 within target range of the UEs assigned to the group ID. Based on this mapping information, the MTC-IWF 918 sends the data to the appropriate CBE/CBS 902. Communication from the MTC server 906 to the MTC-IWF 918 gives more flexibility in the architecture in terms of group IDs that are being used for UEs. They could be group IDs that are associated with the interim application at the MTC application 910 or MTC server 906 level. Mapping between what the interim application is targeting verses what device the RAN needs to target may be necessary.
The set of data 904 can also include a duration of time T over which the UEs can respond or send an acknowledgement over a unicast connection to the MTC server, if a response is desired. The UEs can stagger their responses during this duration T, so as to distribute the load associated with the unicast accesses of the UEs over that period of time, so that the network does not get congested. The set of data 904 can also include the IP address of an alternate server to which the UEs can communicate with, to attempt a file repair associated with the information received. The MTC server 906 can further attempt to target subgroups of UEs at a time, to prioritize the groups in sequence. For example, in a smart grid case, for a demand response scenario with a request for load shedding, a higher priority group can be targeted first, followed by lower priority groups. For example, the MTC_Meter_Enterprise group may be a higher priority group than MTC_Meter_Home group, because an enterprise may be able to shed more load than an individual home, when requested. In this case, the MTC server 906 suggests a time Ti to each subgroup i, in the set of data 904. The MTC server 906 targets each subgroup i (or subsubgroups as the case may be), in sequence, to distribute the unicast response load on the network from the UEs. Alternatively, the MTC server 906 may send a multi-class (or multi-group) broadcast message to the MTC-IWF 918 or directly to the CBE/CBS 902, such as <B1, C1, T1, C2, T2, C3, T3, . . . > where B1 is a broadcast message identifier, C1, C2, C3 are different prioritized groups of devices, in order of decreasing priority and T1, T2 and T3 are times, where T1<T2<T3. Devices with priority group/class C1, can respond in time t where 0<t<T1, devices with priority class C2 can respond in time t where T1<t<T2, and devices with priority class C3 can respond in time t where T2<t<T3. The CBE/CBS 902 can then target each MTC group/class with separate broadcast messages separated in time to distribute the unicast response load on the network. It is also possible that multiple subgroups are targeted simultaneously, where such subgroups may target different repair servers, to distribute the load on the repair servers. Additional description of the forgoing broadcast support concept for M2M devices is provided further below under the Broadcast Support for M2M section.
The CBE/CBS 902, in turn, sends the set of data 904 to the MME 912 using the write-replace-warning request protocol (TS 23.041). The MME 912 then sends the set of data 904 to the RAN 914. The RAN 914 notifies UEs 916 within the group of an upcoming data multicast/broadcast. Such notification may be through a group ID included in a paging message sent to the UEs 916 or in SIB1. Upon receipt of such notification, the UEs 916 wake up and receive a multicast/broadcast schedule, which is also sent by the RAN 914. This schedule may be received, for example, through SIB1. In accordance with the received schedule, the RAN 914 broadcasts the date on one or more of SIB10, SIB11 and SIB12, and the UEs 916 receive the data.
Multicast/Broadcast Using MBMS/eMBMS:
Data 1014, 1014′ to be downloaded is sent from the MT server 1006 or MTC application 1016 to the BM-SC 1002. The BM-SC 1002 sends the data directly to the MBMS gateway (MBMS-GW) 1018. The MBMS-GW 1018 then sends the data to the radio access network (RAN) 1020. The RAN 1020 notifies the UEs 1012 within the group of an upcoming data multicast/broadcast, in which case the UEs 1012 read USD updates for download information and the multicast traffic channel (MTCH) for the data 1014, 1014′ being downloaded.
Data 1114, 1114′ to be downloaded is sent from the MTC server 1106 or MTC application 1116 to the BM-SC 1102. The BM-SC 1102 sends the data 1114, 1114′ directly to a MBMS-GW 1118. The MBMS-GW 1118 then sends the data to the RAN 1120. The RAN 1120 notifies UEs 1112 within the group of an upcoming data multicast/broadcast, in which case the UEs read USD updates for download information and the MTCH for the data being downloaded.
The MTC-IWF 1208 sends the device trigger 1204′ directly to the BM-SC 1202 and contacts the BM-SC 1202 to request to add a MBMS session with group ID. The BM-SC 1202 creates a MBMS download session. Once the session is created the eMBMS sends the device trigger 1204″ to the UEs 1212 through the MME 1224 and MCE 1230 components of the eMBMS and the RAN 1220, while at same time sending the data to the UE 1212 through the MBMS-GW 1218 of the eMBMS. The UEs 1212 wake up to read SIB13, MCCH changes and the USD. After that the data is downloaded over MTCH.
Data 1214, 1214′ to be downloaded is sent from the MT server 1206 or MTC application 1216 to the BM-SC 1202. The BM-SC 1202 sends the data directly to the MBMS-GW 1218. The MBMS-GW 1218 then sends the data RAN 1220. The RAN 1220 notifies UEs 1212 within the group of an upcoming data multicast/broadcast, in which case the UEs read USD updates for download information and the MTCH for the data being downloaded.
This architecture may use SIB13 for group device triggering. The SIB13 includes a new DeviceCategory/Group ID and ChangeCount IE. As described above, different DeviceCategory/Group ID values are assigned to different applications/groups. ChangeCount can be used to indicate if a UE needs to check USD because SIB13 change could be because MCCH configuration change. The DeviceCategory/Group ID is also added as a new attribute to the user service description (USD). UEs monitor the USD channel at a period that is configured to minimize battery consumption. UEs monitor for changes to SIB13. When the DeviceCategory/Group ID from the USD is signaled on a new SIB13, the UE does an off-schedule check for USD (schedule fragment) changes. A new SIB change with the same ChangeCount does not cause a new USD check. Alternatively, a CBS/PWS or a unicast trigger can indicate the UE to the use of eMBMS for upcoming data download and may include SDP information in the device trigger.
The schedule fragment for the service associated with the DeviceCategory/Group ID is updated with a schedule for the last minute data transfer. The BM-SC 1202 activates the TMGI for the service session and adds DeviceCategory/Group ID to startMBMS Session. SIB13 is updated to include the DeviceCategory/GroupID from the startMBMS Session signaling. The UEs 1212 are paged when SIB13 is changed to cause the UEs to read the USD. Based on the USD schedule fragment, the UEs tune to MCCH to check if the corresponding TMGI is available and then tune to MTCH to receive data being multicast/broadcast.
In unscheduled instances, a device trigger wakes up the UE. Device triggers may be implemented as one of the following: an existing unicast channel device trigger mechanism (
For scheduled cases. The MTC server has an agreement with the eMBMS operator regarding the schedule of data downloads and corresponding MTC groups. In these cases the data to be downloaded is sent directly from the MTC server to the BM-SC. The BM-SC has the session schedule and corresponding MTC groups. Once the time to download data is close, the BM-SC sends a session establishment to the MME and MCE through the MBMS-GW.
The apparatus may include additional modules that perform each of the steps of the algorithm in the aforementioned flow chart of
The processing system 1714 may be coupled to a transceiver 1710. The transceiver 1710 is coupled to one or more antennas 1720. The transceiver 1710 provides a means for communicating with various other apparatus over a transmission medium. The processing system 1714 includes a processor 1704 coupled to a computer-readable medium 1706. The processor 1704 is responsible for general processing, including the execution of software stored on the computer-readable medium 1706. The software, when executed by the processor 1704, causes the processing system 1714 to perform the various functions described supra for any particular apparatus. The computer-readable medium 1706 may also be used for storing data that is manipulated by the processor 1704 when executing software. The processing system further includes at least one of the modules 1604, 1606. The modules may be software modules running in the processor 1704, resident/stored in the computer readable medium 1706, one or more hardware modules coupled to the processor 1704, or some combination thereof.
In one configuration, the apparatus 1602/1602′ for wireless communication includes means for notifying a UE of an upcoming multicast/broadcast of data intended for receipt by a group of UEs assigned a MTC class. The UE has one or more MTC classes assigned to it and is configured to awake for the upcoming multicast/broadcast of data if the data to be broadcast corresponds to an MTC class assigned to the UE. The apparatus 1602/1602′ also includes means for multicasting/broadcasting the data intended for receipt by a group of UEs through at least one multicast/broadcast mechanism. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1902 and/or the processing system 2014 of the apparatus 1902′ configured to perform the functions recited by the aforementioned means.
The apparatus 1902 may include additional modules that perform each of the steps of the algorithm in the aforementioned flow charts of
The processing system 2014 may be coupled to a transceiver 2010. The transceiver 2010 is coupled to one or more antennas 2020. The transceiver 2010 provides a means for communicating with various other apparatus over a transmission medium. The processing system 2014 includes a processor 2004 coupled to a computer-readable medium 2006. The processor 2004 is responsible for general processing, including the execution of software stored on the computer-readable medium 2006. The software, when executed by the processor 2004, causes the processing system 2014 to perform the various functions described supra for any particular apparatus. The computer-readable medium 2006 may also be used for storing data that is manipulated by the processor 2004 when executing software. The processing system further includes at least one of the modules 1904 and 1906. The modules may be software modules running in the processor 2004, resident/stored in the computer readable medium 2006, one or more hardware modules coupled to the processor 2004, or some combination thereof. The processing system 2014 may be a component of the UE 650 and may include the memory 660 and/or at least one of the TX processor 668, the RX processor 656, and the controller/processor 659.
In one configuration, the apparatus 1902/1902′ for wireless communication includes means for receiving a notice of an upcoming multicast/broadcast of data intended for receipt by a group of UEs assigned a machine type communication (MTC) class. The apparatus has one or more MTC classes assigned to it and is configured to awake for the upcoming multicast/broadcast of data if the data to be broadcast corresponds to an MTC class assigned to the apparatus. The apparatus 1902/1902′ also includes means for receiving a multicast/broadcast of the data intended for receipt by a group of UEs through at least one multicast/broadcast mechanism. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1902 and/or the processing system 2014 of the apparatus 1902′ configured to perform the functions recited by the aforementioned means. As described supra, the processing system 2014 may include the TX Processor 668, the RX Processor 656, and the controller/processor 659. As such, in one configuration, the aforementioned means may be the TX Processor 668, the RX Processor 656, and the controller/processor 659 configured to perform the functions recited by the aforementioned means.
Broadcast Support for M2M.
Many small M2M devices may need to be woken up at the same time. For example, a utility company may be requesting the devices to upload their current measurement data, or a utility company may want the devices to act on a load shedding demand/response request, e.g. to turn off power hungry appliances such as air conditioners or dishwashers. A broadcast paging mechanism is desirable as unicast paging for each individual device can consume significant network resources.
Utility companies may need to have the capability to send a broadcast message to a group of M2M nodes (e.g. in the smartgrid). In this case, a broadcast message needs to reach intended devices. A response from the devices may or may not be necessary. For example, if the broadcast message relates to a pricing update, a unicast response from the devices is not needed. Alternatively, unicast acknowledgement may be desired (e.g. for D/R situations) within in a certain timeframe. Such acknowledgement may include an ACK indicating a full response is being processed (optional) or an ACK indicating an actual full response. In both cases a time period within which to respond is provided, with full responses having a longer timeframe. Responses, whether only indicating a full response is being processed or indicating a full response, can flood the network and therefore need to be managed well.
Definition of a group of nodes for a utility can be different from a group of nodes within a cellular network. In one case, one utility group corresponds to nodes across multiple cells typically. In the other case, one utility group corresponds to a subset of nodes within a cell.
Enhancements to the MTC server provide Broadcast Service Coordination capability to deliver broadcasts to many M2M devices. The enhanced MTC server: maintains a mapping between utility group(s) and cellular group(s); maintains a list of serviced devices for each utility group; enables different types of broadcast services, such as pricing update, D/R etc.; crafts a broadcast message indicating specific broadcast service and an (absolute) response time (if ACK is desired); creates a header to indicate a coarse indication of type of broadcast message acceptable by the WWAN, for example this can just be a broadcast message with ACK, a broadcast message with no ACK desired, could also indicate that this is a smartgrid-related message.
The enhanced MTC server also: submits messages to cellular network; derives a list of intended devices (from a service perspective) intended to be reached; waits for service layer unicast acknowledgements/responses from intended target devices; maintains a list of devices that have responded if response is desired; retargets broadcast groups or nodes that have not responded; and sends an update to utility company on efficacy of the broadcast request.
In an exemplary broadcasting implementation, a network (WWAN) sends a broadcast page to a group of devices. The page includes a generic group classification identifier associated with an M2M device (C1). The page also provides a staggered time duration (T1) during which a response from the M2M device is desired by the network. The network may rebroadcast the page multiple times to increase the efficiency of the broadcast. The page also includes a broadcast transaction identifier (B1) which is reused if the page is rebroadcast. The three tuple (B1, C1, T1) constitutes the broadcast page request. The network waits for a response from the M2M devices within the time frame suggested
If some of M2M devices do not respond within the time frame, the network can send a new broadcast page with a new broadcast transaction identifier and a new time duration for response. This new page can be rebroadcast multiple times as well to increase the efficiency of the broadcast. Different classes of M2M devices can be targeted with different time durations, where higher priority devices have to respond over a shorter duration, and lower priority devices have to respond over an extended time duration. For example, a multi-class broadcast message could consist of (B1, C1, T1, C2, T2, C3, T3, . . . ), where T is time and T1<T2<T3. Devices of class C1 have to respond within time T1. Devices of class C2 have to respond within time T2 and may respond only in the time T2−T1 for example. Devices of class C3 have to respond within time T3 and may respond only in the time T3−T2 for example. Finally, an optional unicast session may be utilized by the network to reach out to each m2m device that has not responded to the broadcast page attempts
With respect to an M2M device, it receives the broadcast page and identifies that the device classification identifier in the page matches its classification identifier. The device identifies the time duration during which its response is desired. For a multi-class broadcast page, the device identifies the time frame during which its response is desired, e.g., T3−T2 for device class C3. The device selects a random time for transmission within the time frame identified for response. The device communicates back to the network at that random time. If a failure in transmission occurs, the device attempts again at a random time in the remaining time left. If the device fails to communicate within the time allocated, it waits for a new broadcast page from the network with a new broadcast identifier. Alternatively the device waits for a unicast page specific for the device.
With respect to unicast responses, devices could respond over RACH picking a transmission time randomly within their allocated staggered time interval. Devices that received information but which are attempting repair could report their status, for example, as follows: received message, attempting repair; or received message, repair successful. Devices that did not receive any information and which did not receive the broadcast message can be targeted again by the MTC server in a subsequent broadcast message. Different subgroups of devices could target different repair servers to distribute the load on the repair servers when multiple subgroups are targeted simultaneously. Different subgroups of devices could be targeted in different time intervals to alleviate the unicast response congestion load on the network.
It is understood that the specific order or hierarchy of steps in the processes disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged. Further, some steps may be combined or omitted. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2012/082520 | 10/3/2012 | WO | 00 |