This application claims priority from Japanese Patent Application No. 2020-136913 filed on Aug. 14, 2020. The entire disclosure of this Japanese patent application is incorporated herein by reference.
The present invention relates to a broccoli plant.
Broccoli plants are cultivated in winter, harvesting from December to January. However, in winter cultivation, broccoli plants tend to grow slowly, and anthocyanin coloration often occurs. Broccoli plants colored with anthocyanin have a problem of low merchantability.
Therefore, there is a need for broccoli plants with superior characteristics.
With the foregoing in mind, it is one objective of the present invention to provide a new broccoli plant.
In order to achieve the above objective, the present invention provides a broccoli plant including a broccoli plant identified by Accession No. FERM BP-22393.
The present invention also provides a method for producing a broccoli plant, including the step of self-crossing the broccoli plant according to the present invention.
The present invention also provides a method for producing a broccoli plant, including the step of crossing the broccoli plant according to the present invention with another broccoli plant.
According to the present invention, a new broccoli plant can be provided.
<Broccoli Plant>
The broccoli plant of the present invention includes a broccoli plant identified by Accession No. FERM BP-22393 or a progeny line thereof. The broccoli plant of the present invention is characterized in that it includes a broccoli plant identified by Accession No. FERM BP-22393 or a progeny line thereof, and other configurations or conditions are not particularly limited.
In the present invention, a “broccoli plant” is a plant classified into Brassica oleracea var italica of Brassica oleracea of Brassica. Examples of the broccoli plant include Brassica oleracea var. italica (Brassica oleracea L. convar. Botrytis (L.) Alef. var. italica) and Brassica oleracea var. cymosa Duch. (Brassica oleracea L. convar. botrytis (L.) Alef var. cymosa Duch.). The broccoli plant may be a hybrid with a related species or a wild species, for example.
In the present invention, a “broccoli plant for cultivation,” a “broccoli variety for cultivation,” or a “broccoli for cultivation” is a broccoli plant or a variety thereof, a breeding line, or a cultivar that is cultivated by humans and is excellent in cultivation. The “broccoli plant for cultivation,” the “broccoli variety for cultivation,” or the “broccoli for cultivation” may be a hybrid thereof, a hybrid with another broccoli variant, or a hybrid with another Brassica oleracea.
The term “plant,” as used in the present invention, may refer to either a plant individual representing the whole plant or a part of the plant individual (plant part). Examples of the “plant” include plant cells, plant protoplasts, plant cell cultures or tissue cultures capable of regenerating plants, plant calli, plant clumps, plant cells isolated from plants or plant parts, leaves, pollens, embryos, cotyledons, hypocotyls, roots, root tips (tips of roots), anthers, pistils, flowers, ovaries, ovules, seeds, fruits, stems, and seedlings. The part of the plant individual may be any of organs, tissues, cells, and propagules, for example. Examples of the organs include petals, corollas, flowers, leaves, seeds, fruits, stems, and roots. The tissue is a part of the organ, for example. Specific examples of the part of the plant individual include microspores, flowers, flower buds, pistils, anthers, pollens, ovaries, embryos, ovules, hypocotyls, embryonic sacs, egg cells, cuttings, roots, root tips, trunks, stems, leaves, pedicles, leaf marrow, cotyledons, cells, meristematic cells, protoplasts, and seeds. The pollens may be mature pollens or immature pollens. The part of the plant individual can be, for example, derived from a plant at any growth stage, and may be derived from, for example, a pre-rooting individual, a post-rooting individual, a seedling, a cutting, or a mature individual, and the like. The part of the plant body may be one type of organ, tissue, and/or cell, or two or more types of organs, tissues, and/or cells, for example.
<Deposit Line>
The broccoli plant of the present invention may be, for example, a broccoli plant deposited under Accession No. FERM BP-22393 (deposited line) or a progeny line thereof. The information on the deposit is shown below. Hereinafter, the deposited line is also referred to as a broccoli variety Takii 12.
Type of deposit: International deposit
Name of depository institution: National Institute of Technology and Evaluation, International Patent Organism Depositary; NITE-IPOD
Identifying designation: Takii 12
Date of acceptance: Jul. 30, 2020
The deposited lines exhibit morphological and physiological characteristics as described in Tables 1A to 1C below, for example. In Tables 1A and 1B, the morphological and physiological characteristics are based on Japanese prototypes in 2013. In Tables 1A and 1B, the morphological and physiological characteristics are evaluated based on the Broccoli Variant Test Guideline (April 2012) published by the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF). In Table 1C, the morphological and physiological characteristics are evaluated based on the criteria to be described below. Regarding the morphological and physiological characteristics, reference can be made to
(Characteristic No. 1)
“Plant: number of stems” refers to the number of stems immediately before the time of harvest and can be evaluated by visual observation. “Plant: number of stems” can be evaluated on the basis of Note 1 (one) or Note 2 (more than one, e.g., Var.: GREEN COMET). The time of harvest refers to the time at which half of the individuals are in the optimal time of harvest.
(Characteristic No. 2)
“Plant: height” refers to the plant height (cm) at the time of harvest. “Plant: height” can be evaluated on the basis of Note 3 (low, e.g., Var.: NAKAZATO WASE), Note 5 (medium, e.g., Var.: WASE MIDORI), or Note 7 (high, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 3)
“Leaf: attitude” refers to the angle (attitude) of the leaves at the beginning of head formation (head appearing stage) and can be evaluated by visual observation. “Leaf: attitude” can be evaluated on the basis of Note 3 (semi-erect), Note 5 (horizontal, e.g., Var.: OKA MIDORI), or Note 7 (semi-pendulous).
(Characteristic No. 4)
“Leaf: length” refers to the length (cm) of the leaf, including the petiole. “Leaf: length” can be evaluated on the basis of Note 3 (short, e.g., Var.: OKA MIDORI), Note 5 (medium, e.g., Var.: WASE MIDORI), or Note 7 (long, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 5)
“Leaf: width” refers to the width (cm) of the leaf “Leaf: width” can be evaluated on the basis of Note 3 (narrow, e.g., Var.: OKA MIDORI), Note 5 (medium, e.g., Var.: GREEN COMET), or Note 7 (broad, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 6)
“Leaf: number of lobes” refers to the number of lobes of the leaf and can be evaluated by visual observation. “Leaf: number of lobes” can be evaluated on the basis of Note 3 (few), Note 5 (medium, e.g., Var.: WASE MIDORI), or Note 7 (many, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 7)
“Leaf blade: color” refers to the color of the leaf blade and can be evaluated by visual observation. “Leaf blade: color” can be evaluated on the basis of Note 1 (green, e.g., Var.: GREEN COMET), Note 2 (gray-green, e.g., Var.: OKA MIDORI), or Note 3 (blue-green).
(Characteristic No. 8) “Leaf blade: intensity of color” refers to the intensity of the color of the leaf blade and can be evaluated by visual observation. “Leaf blade: intensity of color” can be evaluated on the basis of Note 3 (light), Note 5 (medium, e.g., Var.: GREEN COMET), or Note 7 (dark, e.g., Var.: OKA MIDORI).
(Characteristic No. 9) “Leaf blade: anthocyanin coloration” refers to the anthocyanin coloration of the leaf blade and can be evaluated by visual observation. “Leaf blade: anthocyanin coloration” can be evaluated on the basis of Note 1 (absent) or Note 9 (present, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 10)
“Leaf blade: undulation of margin” refers to the intensity of the undulation of the margin of the leaf blade and can be evaluated by visual observation. “Leaf blade: undulation of margin” can be evaluated on the basis of Note 3 (weak), Note 5 (medium), or Note 7 (strong).
(Characteristic No. 11)
“Leaf blade: dentation of margin” refers to the intensity of the dentation of the margin of the leaf blade and can be evaluated by visual observation. “Leaf blade: dentation of margin” can be evaluated on the basis of Note 3 (weak), Note 5 (medium), or Note 7 (strong, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 12)
“Leaf blade: blistering” refers to the intensity of the blistering of the leaf blade and can be evaluated by visual observation. “Leaf blade: blistering” can be evaluated on the basis of Note 3 (weak), Note 5 (medium), or Note 7 (strong).
(Characteristic No. 13)
“Petiole: anthocyanin coloration” refers to the presence or absence of the anthocyanin coloration of the petiole and can be evaluated by visual observation. “Petiole: anthocyanin coloration” can be evaluated on the basis of Note 1 (absent) or Note 9 (present).
(Characteristic No. 14)
“Petiole: length” refers to the length (cm) of the petiole and can be evaluated by visual observation. “Petiole: length” can be evaluated on the basis of Note 3 (short), Note 5 (medium), or Note 7 (long).
(Characteristic No. 15)
“Head: length of branching” refers to the length of branching of the head at the base, excluding the stem. “Head: length of branching” can be evaluated on the basis of Note 3 (short), Note 5 (medium), or Note 7 (long).
(Characteristic No. 16)
“Head: size” refers to the size of the head (height of head multiplied by diameter of head). “Head: size” can be evaluated on the basis of Note 3 (small, e.g., Var.: GREEN COMET), Note 5 (medium), or Note 7 (long, e.g., Var.: OKA MIDORI).
(Characteristic No. 17)
“Head: weight” refers to the weight (g) of the head. “Head: weight” can be evaluated on the basis of Note 3 (light, e.g., Var.: GREEN COMET), Note 5 (medium, e.g., Var.: WASE MIDORI), or Note 7 (heavy, e.g., Var.: OKA MIDORI).
(Characteristic No. 18)
“Head: shape in longitudinal section” refers to the shape in the longitudinal section of the head and can be evaluated by visual observation. “Head: shape in longitudinal section” can be evaluated on the basis of Note 1 (circular), Note 2 (transverse broad elliptic), Note 3 (transverse medium elliptic), Note 4 (transverse narrow elliptic), or Note 5 (triangular).
(Characteristic No. 19)
“Head: color” refers to the color of the head and can be evaluated by visual observation. “Head: color” can be evaluated on the basis of Note 1 (cream), Note 2 (green, e.g., Var.: NAKATE MIDORI), Note 3 (gray-green), Note 4 (blue-green), or Note 5 (violet).
(Characteristic No. 20)
“Head: intensity of color” refers to the intensity of the color of the head and can be evaluated by visual observation. “Head: intensity of color” can be evaluated on the basis of Note 3 (light, e.g., Var.: GOKUWASE MIDORI), Note 5 (medium, e.g., Var.: WASE MIDORI), or Note 7 (dark, e.g., Var.: OKA MIDORI).
(Characteristic No. 21)
“Head: anthocyanin coloration” refers to the presence or absence of the anthocyanin coloration of the head and can be evaluated by visual observation. “Head: anthocyanin coloration” can be evaluated on the basis of Note 1 (absent) or Note 9 (present).
(Characteristic No. 22)
“Head: intensity of anthocyanin coloration” refers to the intensity of the anthocyanin coloration of the head and can be evaluated by visual observation. “Head: intensity of anthocyanin coloration” can be evaluated on the basis of Note 3 (weak), Note 5 (medium), or Note 7 (strong).
(Characteristic No. 23)
“Head: knobbling” refers to the degree of the knobbling of the surface of the head and can be evaluated by visual observation. “Head: knobbling” can be evaluated on the basis of Note 3 (fine, e.g., Var.: GREEN COMET), Note 5 (medium, e.g., Var.: OKA MIDORI), or Note 7 (coarse, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 24)
“Head: texture” refers to the degree of texture of the surface of the head and can be evaluated by visual observation. “Head: texture” can be evaluated on the basis of Note 3 (fine, e.g., Var.: NAKATE MIDORI), Note 5 (medium, e.g., Var.: OKA MIDORI), or Note 7 (coarse, e.g., Var.: NAKAZATO WASE).
(Characteristic No. 25)
“Head: firmness” refers to the degree of firmness of the head and can be evaluated by visual observation. “Head: firmness” can be evaluated on the basis of Note 3 (loose), Note 5 (medium), or Note 7 (firm).
(Characteristic No. 26)
“Head: conspicuousness of spiral pattern” refers to the conspicuousness of the spiral pattern of the surface of the head and can be evaluated by visual observation. “Head: conspicuousness of spiral pattern” can be evaluated on the basis of Note 1 (obscure) or Note 2 (obvious).
(Characteristic No. 27)
“Head: bracts” refers to the presence or absence of the bracts of the head and can be evaluated by visual observation. “Head: bracts” can be evaluated on the basis of Note 1 (absent) or Note 9 (present).
(Characteristic No. 28)
“Peduncle: length” refers to the length of the peduncle of the head. “Peduncle: length” can be evaluated on the basis of Note 3 (short, e.g., Var.: GREEN COMET), Note 5 (medium, e.g., Var.: JORYOKU), or Note 7 (long, e.g., Var.: NAKAZATO WASE).
(Characteristic No. 29)
“Peduncle: thickness” refers to the thickness of the peduncle of the head. “Peduncle: thickness” can be evaluated on the basis of Note 3 (fine, e.g., Var.: GREEN COMET), Note 5 (medium, e.g., Var.: WASE MIDORI), or Note 7 (thick, e.g., Var.: OKA MIDORI).
(Characteristic No. 30)
“Peduncle: hardness” refers to the hardness of the peduncle of the head and can be evaluated by visual observation. “Peduncle: hardness” can be evaluated on the basis of Note 3 (soft), Note 5 (medium, e.g., Var.: GREEN COMET), or Note 7 (hard).
(Characteristic No. 31)
“Peduncle: color” refers to the color of the peduncle of the head and can be evaluated by visual observation. “Peduncle: color” can be evaluated on the basis of Note 1 (white), Note 2 (light green, e.g., Var.: GREEN COMET), Note 3 (green), or Note 4 (tinged with purple).
(Characteristic No. 32)
“Plant: secondary heads” refers to the presence or absence of the secondary heads at the time of harvest and can be evaluated by visual observation. “Plant: secondary heads” can be evaluated on the basis of Note 1 (absent) or Note 9 (present, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 34)
“Flower: color” refers to the color of the flower at the time of flowering and can be evaluated by visual observation. “Flower: color” can be evaluated on the basis of Note 1 (white) or Note 2 (yellow).
(Characteristic No. 35)
“Flower: intensity of yellow color” refers to the intensity of the yellow color of the flower and can be evaluated by visual observation. “Flower: intensity of yellow color” can be evaluated on the basis of Note 3 (light), Note 5 (medium), or Note 7 (dark).
(Characteristic No. 36)
“Time of harvest” refers to the time of harvest (the time at which half of the individuals are in the optimal time of harvest). “Time of harvest” can be evaluated on the basis of Note 3 (early, e.g., Var.: WASE MIDORI), Note 5 (medium, e.g., Var.: OKA MIDORI), or Note 7 (late, e.g., Var.: NAKATE MIDORI).
(Characteristic No. 37)
“Time of beginning of flowering” refers to the time of beginning of flowering (the time at which 50% of the individuals are with at least 10% of small flowers). “Time of beginning of flowering” can be evaluated on the basis of Note 3 (early, e.g., Var.: GREEN COMET), Note 5 (medium, e.g., Var.: NAKATE MIDORI), or Note 7 (late).
(Characteristic No. 38)
“Male sterility” refers to the presence or absence of male sterility and can be evaluated by visual observation. “Male sterility” can be evaluated on the basis of Note 1 (absent) or Note 9 (present).
(Characteristic No. 40)
“Leaf: number” refers to the total number of leaves. “Leaf: number” can be evaluated on the basis of Note 3 (few, about 16, e.g., Var.: OHAYO), Note 5 (medium, about 22, e.g., Var.: GRANDOME), or Note 7 (many, about 26, e.g., Var.: OKUMIDORI 100).
(Characteristic No. 41)
“Stem: length” refers to the length of the stem from the ground edge to the base of the small flower head at the lowermost part of the main head. “Stem: length” can be evaluated on the basis of the Note 1 (short, about 16 cm, e.g., Var.: OHAYO) or Note 9 (long, about 26 cm, e.g., Var.: PIXEL).
(Characteristic No. 42)
“Leaf: depth of lobes” refers to the distance from the center point of the line connecting the apexes of the leaf blades above and below the lobe of the leaf to the position closest to the main vein of the lobe, and also refers to the deepest lobe when there are two or more lobes. “Leaf: depth of lobes” can be evaluated on the basis of Note 1 (shallow, about 2 cm, e.g., Var.: OHAYO) or Note 9 (deep, about 7 cm, e.g., Var.: CHALLENGER).
The deposited line has self-incompatibility. The S genes for self-incompatibility of the deposited lines are an SRK18 gene and an SLG18 gene. Regarding the SRK18 gene and the SLG18 gene, reference can be made to Reference 1 below. The base sequences of the SRK18 gene (Genbank Accession No.: AB032473.1) and the base sequences of the SLG18 gene (Genbank Accession No.: AB032471.1) are, for example, the base sequences of SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
In the present invention, plants having “essentially all physiological and morphological characteristics of the deposited line” are meant to be plants having the main characteristics of the deposited line when grown in the same environment. The main characteristics are the following characteristics of (1) to (10), i.e., characteristics of Characteristic Nos. 6, 9, 13, 21, 25, 28, 36, and 40 to 42, and self-incompatibility. The main characteristics are preferably characteristics of Characteristic Nos. 9, 13, 21, and 36 in Tables 1A and 1B, i.e., the following characteristics of (1) to (3) and (9) and self-incompatibility. The plants having essentially all physiological and morphological characteristics of the deposited line may be, for example, plants having the same characteristic as the deposited line, except for 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 characteristic, i.e., 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 characteristic may differ from the deposited line. The “characteristic different from the deposited line” may be a main characteristic of the deposited line or a characteristic other than the main characteristic of the deposited line, and is preferably a characteristic other than the main characteristic of the deposited line. The “characteristic different from the deposited line” can be made, for example, by the introduction of a characteristic and/or introduction of a gene, which will be described below. In the plants having essentially all the physiological and morphological characteristics of the deposited line, all the characteristics of Characteristic Nos. 1 to 21, 23 to 32, 34 to 38, and 40 to 43 and self-incompatibility may be the same as the deposited line.
(1) anthocyanin coloration of leaf blade: absent;
(2) anthocyanin coloration of petiole: absent;
(3) intensity of anthocyanin coloration of head: weak;
(4) number of leaves: many;
(5) length of stem: short;
(6) firmness of head: firm;
(7) number of lobes: many;
(8) depth of lobe: deep;
(9) time of harvest: late; and
(10) self-incompatibility gene: SRK18 gene and SLG18 gene.
The deposited lines have, for example, the single nucleotide polymorphisms (SNPs) described in Tables 2A through 2U below. In Tables 2A through 2U, the base [N1/N2] in parentheses denotes a single base polymorphism in which N1 is a base in a dataset (Brassica oleracea L.: genome base sequence of TO1000) registered in NCBI with RefSeq assembly accession: GCF_000695525.1 (https: //www.ncbi.nlm.nih.gov/assembly/GCF_000695525.1/) and N2 is a base other than the base in the dataset. For the analysis of the data set, reference can be made to Reference 2 below, for example.
<Progeny Line>
The broccoli plant of the present invention may be a progeny line of a deposited line. The progeny line may be a plant individual of a progeny line, a part of a plant individual of a progeny line, or a seed of a progeny line.
In the present invention, the “progeny line” or the “progeny broccoli plant” (hereinafter collectively referred to as the “progeny line”) is a plant obtained from a broccoli plant of the deposited line or the progeny line thereof. In the present invention, the progeny line may be a plant obtained from crossing the deposited line with another deposited line or another broccoli plant, or by crossing the deposited line with a wild broccoli plant. The progeny line may be obtained, obtainable, or derived directly or indirectly through self-crossing and/or cross-pollination of the deposited line or a progeny line thereof. Also, the progeny line may be derived from a parental line obtained from the deposited line using traditional breeding methods such as self-crossing and/or cross-pollination. Examples of the progeny line include self-crossing progeny lines and first-generation hybrids F1 (hybrid first-generation line, F1 hybrid). In obtaining the progeny line, the deposited line may be used as a female parent, a male parent, or both parents.
The term “crossing” as used in the present invention refers to the crossing of two parent lines. The crossing may be “cross-pollination” or “self-pollination.” Cross-pollination refers to fertilization by the binding of two gametes derived from different plants. Self-pollination means that pollens migrate from the anther to the stigma of the same plant. Self-pollination can also be referred to as self-crossing, for example. The crossing may include backcrossing, which is one of the traditional breeding methods.
The “backcrossing” is one of the traditional breeding techniques in which a breeder repeatedly backcrosses a progeny line of the hybrid to one of the parental lines and introduces a characteristic into a plant or a variety. A plant including the characteristic to be introduced may be referred to as a donor plant, for example. A plant into which the characteristic is introduced may be referred to as a recurrent parent, for example. The backcrossing can be performed by crossing a donor plant with a recurrent parent, thereby obtaining a first-generation hybrid F1 (hybrid first-generation line, F1 hybrid). The progeny line having a characteristic is then crossed with a recurrent parent. Then, by backcrossing and/or self-crossing several generations, the characteristic of the donor plant can be introduced into the recurrent parent.
In the present invention, the progeny line may be regenerated from a cell culture or a tissue culture derived from the deposited line, a protoplast, or a part of a plant individual; may be obtained by self-crossing the deposited line; or may be obtained by producing seeds from the plant individual of the deposited line.
The term “regeneration,” as used in the present invention, refers to the development or vegetative propagation of a plant from a cell culture, a tissue culture, or a protoplast.
The “tissue culture” or “cell culture” may be a composition including the same or different types of isolated cells or may be a collection of cells that are organized into parts of a plant. Tissue cultures of various tissues of broccoli plants and methods for regenerating plants from the tissue cultures are well known, and reference can be made to References 3 to 5 below, for example.
The progeny lines may have desired characteristics. The progeny lines may have “essentially all physiological and morphological characteristics of the deposited line” when they are cultivated in the same cultivation conditions, for example. Specifically, the progeny line may have a common characteristic with the deposited line. As a specific example, 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, or 13 or more characteristics of the progeny line match the characteristics of the deposited line. The progeny line may be a plant having the main characteristic of the deposited line. The main characteristics are characteristics of Characteristic Nos. 9, 13, 21, and 36 in Tables 1A and 1B, i.e., the characteristics of (1) to (3) and (9). The progeny lines may be, for example, plants having the same characteristic as the deposited line, except for 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 characteristic, i.e., 13 or less, 12 or less, 11 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 characteristic may differ from the deposited line. The “characteristic different from the deposited line” may be a main characteristic of the deposited line or a characteristic other than the main characteristic of the deposited line, and is preferably a characteristic other than the main characteristic of the deposited line. The “characteristic different from the deposited line” can be made, for example, by the introduction of a characteristic and/or introduction of a gene, which will be described below. In the progeny lines, all the characteristics of Characteristic Nos. 1 to 38 may be the same as the deposited line. Examples of the characteristic different from the deposited lines include diamondback moth (Plutella xylostella) insect resistance, fall armyworm (Spodoptera frugiperda) resistance, LSL (Long Shelf Life, stay green, ethylene insensitive), and characteristics of coloring green even under weak light (characteristics of coloring green even in hidden areas). Each characteristic can be introduced, for example, by crossing with a known plant having a locus associated with each characteristic.
The progeny line may include a cell containing at least one set of chromosomes derived from the deposited line. At least 6.25%, 12.5%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of allele of the progeny line may be derived from the deposited line. That is, the progeny line may have at least about 6.25%, 12.5%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% genetic complement with the deposited line.
The “allele” is any one or more genes, and all of which are associated with a trait or characteristic of a broccoli plant. In a diploid cell or organism, a pair of alleles of a given gene occupy the corresponding locus on a pair of homologous chromosomes.
The genetic complement can be calculated, for example, by decoding a molecular marker or a base sequence, comparing it with a molecular marker or a base sequence of a Takii 12, and calculating a concordance rate. Examples of the molecular marker include SNP markers, amplified fragment length polymorphism (AFLP) markers, restriction fragment length polymorphism (RFLP) markers, microsatellite markers, sequence-characterized amplified region markers, and cleaved amplified polymorphic sequence (CAPS) markers. Methods for analyzing genomes using the molecular markers are well known and widely published (e.g., References 6 and 7 below). The base sequence can be decoded, for example, by extracting a chromosome from the progeny line and sequencing the chromosome. The proportion of allele derived from the deposited line and the proportion of genetic complement may be estimated, for example, by the number of times of crossing. In this case, the proportion can be estimated from the number of times of crossing from the deposited line. As a specific example, when the number of times of crossing from the deposited line is n, the proportion can be estimated to be, for example, (½)n×100%.
Preferably, the proportion of allele derived from the deposited line and the proportion of genetic complement is, for example, an average value of the proportion of a plurality of progeny lines. The “plurality” here, for example, is the number of individuals capable of subjecting statistical examination, and, as a specific example, is 200 individuals or more, and preferably 200 to 1,000 individuals.
The progeny line may have an SNP derived from the deposited line. The SNPs of the deposited line are the SNPs shown in Tables 2A through 2U. At least 6.25%, 12.5%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the SNPs of the progeny line may be derived from the deposited line, for example. That is, at least about 6.25%, 12.5%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the SNPs of the progeny line may match the SNPs of the deposited line. In the present invention, if 50%, 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more of the SNPs of a target broccoli plant match the SNPs of the deposited line, for example, the target broccoli plant can be determined (discriminated, estimated, appraised, or distinguished) to be a progeny line of the deposited line. For example, the progeny line preferably has at least one SNP selected from the group consisting of SNP7, SNP8, SNP20, SNP21, SNP75, SNP78, SNP81, SNP84, SNP90, SNP142, SNP165, and SNP177 among the SNPs of the deposited line, and more preferably has at least one SNP selected from the group consisting of SNP78, SNP81, and SNP142 among the SNPs of the deposited line.
The progeny line may have, for example, a mutation or transgene. In this case, the progeny line has, for example, one or more characteristics modified. The progeny line can be produced, for example, by transferring a mutation or a transgene into the deposited line or a progeny line thereof. The mutations may be introduced artificially or may be introduced naturally. The mutation may be, for example, a chemical-induced mutation or a radiation-induced mutation. Also, the mutation may be introduced, for example, by a molecular biological procedure or a genome-editing technique (e.g., Reference 8 below). As to the transgene, a method using Agrobacterium tumefaciens can be given.
Examples of the one or more characteristics include diamondback moth insect resistance, fall armyworm resistance, LSL (stay green, ethylene insensitive), and characteristics of coloring green even under weak light (characteristics of coloring green even in hidden areas).
The “transgene” refers to a desired gene introduced into the genome of a plant, e.g., by a genetic engineering procedure or a traditional breeding method. The transgenes may be derived from the same species or from different species, for example. The transgene may be a gene having the same base sequence as or a different base sequence from the species from which it is derived, for example. In the latter case, a different base sequence can be prepared, for example, by performing codon optimization, the addition of a transcription control factor such as a promoter, or the like, to the same base sequence. The transgene may have a translated region and an untranslated region.
<Haploid Plant and Doubled Haploid Plant>
The broccoli plant of the present invention may be a haploid plant and/or a doubled haploid plant that is obtained, obtainable, or induced from the deposited line. The haploid plant and/or the doubled haploid plant of the deposited line may be used in a method for producing a parent line of the deposited line. In one embodiment, the present invention may provide a plant of a haploid plant and/or a doubled haploid plant, a plant part of a haploid plant and/or a doubled haploid plant, or a seed of a haploid plant and/or a doubled haploid plant.
The doubled haploid plants can be produced by doubling chromosomes in haploid plants or cells (e.g., Reference 9 below). As a specific example, haploid pollens are cultured under predetermined conditions to form 1n chromosome plantlets. The chromosomes are then doubled by treating plantlets with chemicals such as colchicine, for example. Thus, the cells of the plantlets have chromosomes of 2n (doubled haploids). Then, by growing the plantlets after the treatment, it is possible to obtain the doubled haploid plants and progeny lines.
<Method for Producing Broccoli Plant>
As described above, the method for producing a broccoli plant of the present invention includes the step of crossing a first broccoli plant with a second broccoli plant, wherein the first broccoli plant is the broccoli plant of the present invention. The production method of the present invention is characterized in that the broccoli plant of the present invention is used for at least one of parents in the crossing, and other steps and conditions are not particularly limited.
Further, the method for producing a broccoli plant according to the present invention includes the step of self-crossing (self-pollinating) the broccoli plant according to the present invention. The production method of the present invention is characterized in that the broccoli plant of the present invention is self-crossed, and other steps and conditions are not particularly limited.
According to the production method of the present invention, a progeny line of the deposited line can be produced. Regarding the production method of the present invention, reference can be made to the description as to the broccoli plant of the present invention.
In the present invention, the crossing between the first broccoli plant (first parental line) and the second broccoli plant (second parental line) may be, for example, crossing between the same individuals (regular self-pollination), crossing between individuals of a line maintained in the same clonal individual or inbred line (quasi-self-pollination), or crossing between different individuals (cross-pollination). In the case of the regular self-pollination, one of the first parental line and the second parental line is a female organ in the same individual and the other of which is a pollen in the same individual. The quasi-self-pollination may be, for example, a case where the S genotype related to self-incompatibility is the same, and the cross-pollination may be, for example, a case where the S genotype related to self-incompatibility is different. In crossing of broccoli plants, preferably the first parental line and the second parental line are of different S genotypes and the crossing is cross-pollination.
In the present invention, the first parental line is the broccoli plant of the present invention, e.g., a broccoli plant deposited under the Accession No. FERM BP-22393 or a progeny line thereof.
The second parental line is not particularly limited, and any broccoli plant can be used. The second parental line may be, for example, taxonomically a broccoli plant of the same species or a broccoli plant of different species with the first parental line. The second parental line may be, for example, the deposited line or the progeny line or other broccoli plant.
The production method of the present invention may further include the step of growing a progeny line obtained in the crossing after the crossing, for example. Growth conditions in the growing are general growth conditions for broccoli plants.
The broccoli plant of the present invention can be obtained, for example, by the production method of the present invention.
<Method for Producing a Seed of a Broccoli Plant>
The present invention provides a method for producing a broccoli seed. The method for producing a broccoli seed according to the present invention includes the steps of self-crossing the broccoli plant of the deposited line or crossing the broccoli plant of the deposited line with another broccoli plant, and optionally gathering (collecting or harvesting) the resulting seed. The method for producing a seed of the present invention may provide a plant, a plant part, or a seed by growing a seed of a broccoli plant.
The method for producing a seed of the present invention may be a method for producing a seed derived from the deposited line. In this case, the method for producing a seed of the present invention may include the step of (a) crossing a plant of the deposited line with another broccoli plant to produce a seed. The method for producing a seed of the present invention may further include the steps of (b) cultivating a broccoli plant from the seed obtained in step (a) to produce a broccoli plant derived from the deposited line, and (c) self-crossing the broccoli plant obtained in step (b) or crossing the broccoli plant obtained in step (b) with another broccoli plant to produce an additional broccoli plant derived from the deposited line. The method for producing a seed of the present invention may further include the step of (d) optionally repeating steps (b) and (c) one or more times to further produce a broccoli plant(s) derived from the deposited line. In this case, as the broccoli plant was cultivated from the seed obtained from step (a) in step (b), an additional broccoli plant that has been obtained in step (c) can be used. The “one or more times” is, for example, one to 10 times, three to seven times, or three to five times. The method for producing a seed of the present invention may further include the step of collecting or harvesting the seed. The method for producing a seed of the present invention may provide a seed produced by the above method and a plant or a part of a plant individual obtained by growing the seed.
<Method for Producing a Hybrid Broccoli Plant>
The present invention provides a method for producing a hybrid broccoli plant. The method for producing a hybrid plant of the present invention includes the step of crossing the broccoli plant of the present invention with another broccoli plant. The method for producing a hybrid plant of the present invention may include the step of collecting or harvesting the seed obtained by crossing. The method for producing a hybrid plant of the present invention may provide a seed produced by the above method and a hybrid plant or a part of a hybrid plant individual.
<Method for Introducing a New Characteristic>
The present invention provides a method for introducing at least one new trait or characteristic (hereinafter, together referred to as a “characteristic”) into the deposited line. The method for introducing a characteristic of the present invention can also be referred to as, for example, a method for producing a broccoli plant into which a new characteristic has been introduced. The method for introducing a characteristic of the invention includes the steps of (a) crossing a plant of the deposited line with a broccoli plant having at least one new characteristic to produce a progeny line, and (b) selecting a progeny line having at least one new characteristic, for example. The method for introducing a characteristic of the present invention includes (c) crossing the progeny line with the deposited line to produce a backcross progeny seed(s), and (d) selecting a backcross progeny having at least one new characteristic and having essentially all physiological and morphological characteristics of the deposited line, for example. In steps (b) and (d), selection of a progeny line having a new characteristic may be performed by detecting the characteristic or by detecting a gene or a molecular marker associated (linked) with the characteristic. Examples of the new characteristic include diamondback moth insect resistance, fall armyworm resistance, LSL (stay green, ethylene insensitive), and characteristics of coloring green even under weak light (characteristics of coloring green even in hidden areas).
The method for introducing a characteristic of the present invention may include the step of (e) optionally repeating steps (c) and (d) one or more times to produce a broccoli plant(s) having at least one new characteristic. In this case, in the method for introducing a characteristic of the present invention, a backcross progeny that has been selected in step (d) can be used as the progeny line in step (c). A broccoli plant obtained or obtainable in step (e) may have essentially all physiological and morphological characteristics of the deposited line. Regarding the “essentially all physiological and morphological characteristics,” reference can be made to the description as to the progeny line by replacing a “progeny line” with a “broccoli plant obtained or obtainable in step (e).” The “one or more times” is, for example, one to 10 times, three to seven times, or three to five times. The method for introducing a characteristic of the present invention may include the step of collecting or harvesting a seed. The method for introducing a characteristic of the present invention may provide a seed produced by the above method and a plant or a part of a plant individual obtained by growing the seed.
<Method for Transferring a Transgene>
The present invention provides a method for producing a plant derived from a deposited line having at least one new trait or characteristic. The method for transferring a transgene of the present invention can also be referred to as, for example, a method for producing a broccoli plant into which a new characteristic has been introduced.
The method for transferring a transgene of the invention includes the step of transferring a mutation or a transgene that imparts at least one new characteristic into a plant of a deposited line, for example. The transfer of a mutation or a transgene can be performed, for example, in the same manner as the transfer of a mutation or a transgene in the progeny line. A broccoli plant obtained or obtainable by the transferring may have essentially all physiological and morphological characteristics of the deposited line. Regarding the “essentially all physiological and morphological characteristics,” reference can be made to the description as to the progeny line by replacing a “progeny line” with a “broccoli plant obtained or obtainable by the transferring.” The method for transferring a transgene of the present invention may include the step of collecting or harvesting a seed. The method for transferring a transgene of the present invention may provide a seed produced by the above method and a plant or a part of a plant individual obtained by growing the seed. Examples of the new characteristic include diamondback moth insect resistance, fall armyworm resistance, LSL (stay green, ethylene insensitive), and characteristics of coloring green even under weak light (characteristics of coloring green even in hidden areas).
<Broccoli Plant Regenerated Product and Regeneration Method>
The present invention provides a broccoli plant regenerated from a cell culture, a tissue culture, or a protoplast of a deposited line (hereinafter referred to as a “regenerated product”). The present invention may provide cell cultures or tissue cultures of regeneratable cells or protoplasts derived from broccoli plants of a deposited line. The cells, tissues, or protoplasts may be derived from tissues including leaves, pollens, embryos, cotyledons, hypocotyls, meristematic cells, roots, root tips, anthers, flowers, seeds, or trunks.
The present invention provides a method of growth or propagation of a broccoli plant of a deposited line. The propagation of the broccoli plant of the deposited line may be a vegetative propagation of the broccoli plant of the deposited line. In this case, the method for regenerating a broccoli plant of the present invention includes the steps of (a) collecting a tissue that can be grown from a plant of a deposited line, (b) culturing the tissue to obtain a grown shoot, and (c) rooting the grown shoot to obtain a rooted plantlet, for example. The method for regenerating a broccoli plant of the present invention may further include (d) optionally growing a plant from a rooted plantlet. Regarding the method of vegetative propagation, for example, reference can be made to References 10 and 11 below. The regeneration method of the present invention may provide a plantlet, a plant, or a part of a plant individual regenerated (produced) by the method described above. The plant may have essentially all physiological and morphological characteristics of the deposited line. Regarding the “essentially all physiological and morphological characteristics,” reference can be made to the description of the progeny line by replacing a “progeny line” with a “regenerated plant.”
<Harvest and Processed Product of Broccoli Plant>
The present invention provides a harvest and/or a processed product of a deposited line or a progeny line. The harvest is a whole plant or a part of a plant individual, preferably including a flower head or a seed.
When the harvest is a flower head, the harvest may include a peduncle immediately below the flower head, in addition to the flower head. The length of the peduncle to be harvested is, for example, about 1 to 20 cm and about 7 to 15 cm. If the harvest is a flower head, the flower head may be a bundle of a plurality of flower heads.
The processed product includes any product obtained by treating the deposited line or the progeny line. The treatment is not particularly limited, and can be, for example, cutting, slicing, grinding, pureeing, drying, canning, bottling, washing, packaging, freezing and/or heating. In the deposited line or the progeny line, a plant or a part of a plant individual used in the processed product is, for example, a flower head. The processed product may be, for example, a product obtained by washing and packaging the deposited line or the progeny line. The processed product may be contained, for example, in a container of any size or shape. Specific examples of the container include a bag, a box, and a carton. The cut may be, for example, a floret processing of cutting the main flower head into small flower heads.
The present invention may provide a container containing one or more broccoli plants. The container contains a whole plant or a part of a plant individual, preferably a flower head.
The present invention may provide a method for producing a broccoli plant as a food (a method for producing a food). The method for producing a food of the present invention includes the step of collecting or harvesting a whole plant or a part of a plant individual of the deposited line or the progeny line, preferably a flower head of the deposited line or the progeny line, for example. In addition, the method for producing a food of the present invention includes the step of cultivating a broccoli plant of the deposited line or the progeny line until it is matured.
<Method for Determining Genotype>
The present invention provides a method for determining or detecting a genotype of a deposited line or a progeny line. The method for determining a genotype of the invention includes the steps of (a) obtaining a nucleic acid sample from a deposited line or a progeny line, and (b) detecting a genome in the nucleic acid sample, for example. In step (a), the method for preparing a nucleic acid from the deposited line or the progeny line can be performed using a general method for preparing a nucleic acid from a tissue. In step (b), for example, a polymorphism and/or an allele in the genome in the nucleic acid sample is detected. Detection of the polymorphism and/or allele can be performed using, for example, SNP genotyping, AFLP detection, genomic DNA RFLP identification, genomic DNA CAPS detection, genomic DNA random amplified polymorphic detection, polymerase chain reaction, DNA sequences, allele specific oligonucleotide probes, DNA microarrays, and the like. The polymorphism and/or the allele may be detected, for example, by sequencing the base sequence of the genome, or, as described above, by referring to the SNPs of the deposited lines. In step (b), one or two or more polymorphisms and/or alleles in the genomic DNA may be detected. The method for determining a genotype of the present invention may include the step of storing a detection result of a polymorphism and/or an allele in a computer-readable medium. The present invention may provide a computer-readable medium produced by such a method.
The method for determining a genotype of the present invention may be performed on any broccoli plant (target broccoli plant) in place of the deposited line or the progeny line, for example. In this case, the method for determining a genotype of the present invention may further include the step of determining whether the target broccoli plant is the progeny line on the basis of the result of step (b), for example. The determination can also be said to be, for example, discrimination, estimation, appraisal, or distinguishability. The determination can be made based on, for example, a concordance rate between the result of step (b) and the genotype of the deposited line.
The present invention will be described specifically below with reference to examples.
It is to be noted, however, that the present invention is by no means limited to embodiments described in the following examples.
Broccoli plants of the deposited line were bred to examine their traits and characteristics and to examine polymorphisms possessed by the deposited line.
(1) Breeding of Deposited Line
In 2007, a broccoli line of stable cultivation with many leaves (made by TAKII & CO., LTD) was crossed with a broccoli line with relatively vigorous growth in a low-temperature period and no anthocyanin coloration (made by TAKII & CO., LTD) to obtain F1 generation. In 2008, the F1 generation was self-crossed to obtain F2 generation. The obtained F2 generation was selected by focusing attention on the stability of growth, the shape of the flower head, the color of the flower head, and the like, and the selected F2 generation was self-crossed. After that, selection and self-crossing were repeated in the same manner, thereby obtaining F7 generation. Since it was determined that the target characteristic was fixed, breeding was terminated at the F7 generation in 2013.
One hundred strains of F7 were seeded on Aug. 2, 2013 at the testing laboratory (Sato, Okubo-cho, Tahara-shi, Aichi Prefecture), and then cultivated to examine that there was no variation in characteristics in F7 and that the bred broccoli variety had uniformity and stability. Then, the F7 generation was self-crossed, and the seed of the F8 generation obtained was deposited in NITE-IPOD under Accession No. FERM BP-22393.
(2) Characteristics of Deposited Line
The traits and characteristics of F7 plant individuals were evaluated according to the Broccoli Variant Test Guideline published by the MAFF. The traits and characteristics of F7 plant individuals were also evaluated based on the criteria for Characteristic Nos. 40 to 42. The results are shown in Tables 3A through 3C below. It has been verified that the deposited lines also exhibit the same characteristics. Photographs of the F7 line at the time of harvest are shown in
(3) SNP Marker of Deposited Line
The SNPs described in Tables 2A through 2U were analyzed for the deposited lines and the commercial broccoli varieties described below. The results are shown in Tables 4A through 4G below. As shown in Tables 4A through 4G below, it was found that SNP7, SNP8, SNP20, SNP21, SNP75, SNP78, SNP81, SNP84, SNP90, SNP142, SNP165, and SNP177 are deposited line-specific SNPs and that the progeny line can be identified by combining one or more of these SNPs. It was verified that F7 has the same SNPs. In addition, in Tables 4A through 4G, A represents a homozygous type of SNP A, H represents a heterozygous type of SNP A and SNP B, B represents a homozygous type of SNP B, chr represents a chromosome number, and cM represents centimorgan.
While the present invention has been described above with reference to embodiments and examples, the present invention is by no means limited thereto. Various changes and modifications that may become apparent to those skilled in the art may be made in the configuration and specifics of the present invention without departing from the scope of the present invention.
Some or all of the above example embodiments and examples may be described as in the following Supplementary Notes, but are not limited thereto.
A broccoli plant including a broccoli plant identified by Accession No. FERM BP-22393 or a progeny line thereof
The broccoli plant according to Supplementary Note 1, wherein
the progeny line has 50% or more allele of the broccoli plant identified by Accession No. FERM BP-22393.
The broccoli plant according to Supplementary Note 1 or 2, wherein
the progeny line has 50% or more allele of the broccoli plant identified by Accession No. FERM BP-22393, and
the progeny line has the following characteristics (1) through (10):
(1) anthocyanin coloration of leaf blade: absent;
(2) anthocyanin coloration of petiole: absent;
(3) intensity of anthocyanin coloration of head: weak;
(4) number of leaves: many;
(5) length of stem: short;
(6) firmness of head: firm;
(7) number of lobes: many;
(8) depth of lobe: deep;
(9) time of harvest: late; and
(10) self-incompatibility gene: SRK18 gene and SLG18 gene.
The broccoli plant according to any one of Supplementary Notes 1 to 3, wherein
the progeny line has 50% or more allele of the broccoli plant identified by Accession No. FERM BP-22393, and
the progeny line has at least one SNP selected from the group consisting of SNP7, SNP8, SNP20, SNP21, SNP75, SNP78, SNP81, SNP84, SNP90, SNP142, SNP165, and SNP177.
The broccoli plant according to any one of Supplementary Notes 1 to 4, wherein
the broccoli plant is a plant body or a part thereof
The broccoli plant according to any one of Supplementary Notes 1 to 5, wherein
the broccoli plant is a seed.
A method for producing a broccoli plant, including the step of:
crossing a first broccoli plant with a second broccoli plant, wherein
the first broccoli plant is the broccoli plant according to any one of Supplementary Notes 1 to 6.
A seed of a broccoli variety Takii 12, wherein
a typical sample is a seed of a broccoli plant deposited under Accession No. FERM BP-22393.
A broccoli plant of a broccoli variety Takii 12, wherein
a typical sample is a seed of a broccoli plant deposited under Accession No. FERM BP-22393.
A broccoli plant or a part thereof, having essentially all physiological and morphological characteristics of the broccoli plant according to Supplementary Note 9.
A progeny broccoli plant of the broccoli plant according to Supplementary Note 9, having at least 50% allele of the broccoli plant according to Supplementary Note 9, wherein
the progeny broccoli plant has the following characteristics (1) through (10):
(1) anthocyanin coloration of leaf blade: absent;
(2) anthocyanin coloration of petiole: absent;
(3) intensity of anthocyanin coloration of head: weak;
(4) number of leaves: many;
(5) length of stem: short;
(6) firmness of head: firm;
(7) number of lobes of leaf: many;
(8) depth of lobe of leaf: deep;
(9) time of harvest: late; and
(10) self-incompatibility gene: SRK18 gene and SLG18 gene.
A seed for production of the broccoli plant according to Supplementary Note 11.
A progeny broccoli plant of the broccoli plant according to Supplementary Note 9, wherein
the progeny broccoli plant has at least 50% allele of the broccoli plant, according to Supplementary Note 9, and
the progeny broccoli plant has at least one SNP selected from the group consisting of SNP7, SNP8, SNP20, SNP21, SNP75, SNP78, SNP81, SNP84, SNP90, SNP142, SNP165, and SNP177.
A seed for production of the broccoli plant according to Supplementary Note 13.
A plant part of the broccoli plant according to Supplementary Note 9.
The plant part according to Supplementary Note 15, wherein
the plant part includes microspores, pollens, ovaries, ovules, embryonic sacs, egg cells, cuttings, roots, trunks, leaves, cells, or protoplasts.
A method for producing a broccoli seed, including the step of:
self-crossing the broccoli plant according to Supplementary Note 9, or crossing the broccoli plant according to Supplementary Note 9 with another broccoli plant, and
collecting (gathering) a resulting seed(s).
A broccoli seed derived from a broccoli plant produced by the method according to Supplementary Note 17.
A broccoli plant or a part thereof produced by growing the broccoli seed according to Supplementary Note 18.
The broccoli plant or the part thereof according to Supplementary Note 19, having at least 50% allele of a broccoli variety Takii 12 whose typical sample is a seed of a broccoli plant deposited under Accession No. FERM BP-22393, wherein
the broccoli plant or the part thereof has the following characteristics (1) through (10):
(1) anthocyanin coloration of leaf blade: absent;
(2) anthocyanin coloration of petiole: absent;
(3) intensity of anthocyanin coloration of head: weak;
(4) number of leaves: many;
(5) length of stem: short;
(6) firmness of head: firm;
(7) number of lobes: many;
(8) depth of lobe: deep;
(9) time of harvest: late; and
(10) self-incompatibility gene: SRK18 gene and SLG18 gene.
The broccoli plant or the part thereof according to Supplementary Note 19, having at least 50% allele of a broccoli variety Takii 12 whose typical sample is a seed of a broccoli plant deposited under Accession No. FERM BP-22393, wherein
the broccoli plant or the part thereof has at least one SNP selected from the group consisting of SNP7, SNP8, SNP20, SNP21, SNP75, SNP78, SNP81, SNP84, SNP90, SNP142, SNP165, and SNP177.
The broccoli plant or the part thereof according to Supplementary Note 19, having essentially all physiological and morphological characteristics of a broccoli variety Takii 12 whose typical sample is a seed of a broccoli plant deposited under Accession No. FERM BP-22393.
The broccoli plant or the part thereof according to Supplementary Note 20, wherein
one or more characteristics have been modified.
The broccoli plant or the part thereof according to Supplementary Note 23, wherein
the modification is performed by mutagenesis.
A method for producing a seed of a broccoli plant derived from the broccoli plant according to Supplementary Note 9, including the steps of:
(a) crossing a broccoli variety Takii 12, which is a seed of a broccoli plant deposited under Accession No. FERM BP-22393, with another broccoli plant to produce a seed;
(b) growing a broccoli plant from the seed obtained in step (a) to produce a broccoli plant derived from the broccoli variety Takii 12;
(c) self-crossing the broccoli plant obtained in step (b) or crossing the broccoli plant obtained in step (b) with another broccoli plant to produce an additional broccoli plant derived from the broccoli variety Takii 12; and
(d) optionally repeating steps (b) and (c) one or more times to further produce a broccoli plant(s) derived from the broccoli variety Takii 12, wherein the broccoli plant in step (b) has been grown from the additional broccoli plant obtained in step (c).
A seed produced by the method according to Supplementary Note 25, having at least 50% allele of the broccoli plant according to Supplementary Note 9, wherein
the broccoli plant grown from the seed has the following characteristics (1) through (10):
(1) anthocyanin coloration of leaf blade: absent;
(2) anthocyanin coloration of petiole: absent;
(3) intensity of anthocyanin coloration of head: weak;
(4) number of leaves: many;
(5) length of stem: short;
(6) firmness of head: firm;
(7) number of lobes: many;
(8) depth of lobe: deep;
(9) time of harvest: late; and
(10) self-incompatibility gene: SRK18 gene and SLG18 gene.
A broccoli plant produced by growing the seed of the broccoli plant according to Supplementary Note 26.
A seed produced by the method according to Supplementary Note 25, having at least 50% allele of the broccoli plant according to Supplementary Note 9, wherein
the broccoli plant grown from the seed has at least one SNP selected from the group consisting of SNP7, SNP8, SNP20, SNP21, SNP75, SNP78, SNP81, SNP84, SNP90, SNP142, SNP165, and SNP177.
A broccoli plant produced by growing the seed of the broccoli plant according to Supplementary Note 28.
A method for introducing at least one new characteristic into the broccoli plant according to Supplementary Note 9, including the steps of:
(a) crossing a broccoli variety Takii 12, which is a seed of a broccoli plant deposited under Accession No. FERM BP-22393, with a broccoli plant having at least one new characteristic to produce a progeny(s);
(b) selecting a progeny having at least one new characteristic;
(c) crossing the progeny with the broccoli variety Takii 12 to produce a backcross progeny(s);
(d) selecting a backcross progeny having at least one new characteristic and having essentially all physiological and morphological characteristics of the broccoli variety Takii 12; and
(e) optionally repeating steps (c) and (d) one or more times to produce a broccoli plant(s) having at least one new characteristic and having essentially all physiological and morphological characteristics of the broccoli variety Takii 12, wherein the broccoli plant in step (c) is a backcross progeny that has been selected in step (d).
A broccoli plant produced by the method according to Supplementary Note 30.
A method for producing a broccoli plant derived from a broccoli variety Takii 12 having at least one new characteristic, including the step of:
transferring a mutation or a transgene that imparts at least one characteristic into a broccoli variety Takii 12, which is a seed of a broccoli plant deposited under Accession No. FERM BP-22393.
A broccoli plant produced by the method according to Supplementary Note 32.
A method for producing a flower head of a broccoli as a food, including the step of:
harvesting a flower head or the flower head and a peduncle of the broccoli plant according to Supplementary Note 9.
A processed product of the broccoli plant according to Supplementary Note 9, including:
a cut, sliced, ground, pureed, dried, canned, bottled, washed, packaged, frozen and/or heat-treated flower head.
A method for determining a genotype of the broccoli plant according to Supplementary Note 9 or a progeny line thereof, including the steps of:
(a) obtaining a nucleic acid sample from the broccoli plant according to Supplementary Note 9 or a progeny line thereof, and
(b) detecting a polymorphism in the nucleic acid sample.
A tissue culture of regenerable cells or protoplasts derived from the broccoli plant according to Supplementary Note 9.
The culture tissue according to Supplementary Note 37, wherein
the cells or protoplasts are derived from leaves, pollens, embryos, cotyledons, hypocotyls, meristematic cells, roots, root tips, anthers, flowers, seeds, or stems.
A broccoli plant regenerated from the tissue culture according to Supplementary Note 38.
The broccoli plant according to Supplementary Note 39, having essentially all physiological and morphological characteristics of a broccoli variety Takii 12, which is a seed of a broccoli plant deposited under Accession No. FERM BP-22393.
A method for vegetative propagation of the broccoli plant according to Supplementary Note 9, including the steps of:
(a) collecting a propagatable tissue from a broccoli plant of a broccoli variety Takii 12, which is a seed of a broccoli plant deposited under Accession No. FERM BP-22393;
(b) culturing the tissue to obtain a grown shoot;
(c) rooting the grown shoot to obtain a rooted plantlet; and
(d) optionally growing a plant from the rooted plantlet.
A broccoli plantlet or a plant produced by the method according to Supplementary Note 41, having essentially all physiological and morphological characteristics of a broccoli variety Takii 12, which is a seed of a broccoli plant deposited under Accession No. FERM BP-22393.
A broccoli plant including a broccoli plant identified by Accession No. FERM BP-22393.
A broccoli plant including a progeny line of the broccoli plant according to Supplementary Note 43, wherein
the progeny line has the following characteristics (1) through (10):
(1) anthocyanin coloration of leaf blade: absent;
(2) anthocyanin coloration of petiole: absent;
(3) intensity of anthocyanin coloration of head: weak;
(4) number of leaves: many;
(5) length of stem: short;
(6) firmness of head: firm;
(7) number of lobes: many;
(8) depth of lobe: deep;
(9) time of harvest: late; and
(10) self-incompatibility gene: SRK18 gene and SLG18 gene.
A broccoli plant including:
a hybrid first-generation line of the broccoli plant according to Supplementary Note 43 or 44.
The broccoli plant according to any one of Supplementary Notes 43 to 45, wherein
the broccoli plant is a plant body or a part thereof
The broccoli plant according to any one of Supplementary Notes 43 to 46, wherein
the broccoli plant is a seed.
A method for producing a broccoli plant, including the step of:
self-crossing the broccoli plant according to any one of Supplementary Notes 43 to 47.
A method for producing a broccoli plant, including the step of:
crossing the broccoli plant according to any one of Supplementary Notes 43 to 47 with another broccoli plant.
The method for producing a broccoli plant according to Supplementary Note 48 or 49, including the step of:
gathering a seed(s).
As described above, according to the present invention, a new broccoli plant can be provided. For this reason, the present invention is extremely useful in an agricultural field such as breeding, for example.
Number | Date | Country | Kind |
---|---|---|---|
2020-136913 | Aug 2020 | JP | national |