Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery

Information

  • Patent Grant
  • 8282810
  • Patent Number
    8,282,810
  • Date Filed
    Wednesday, June 3, 2009
    15 years ago
  • Date Issued
    Tuesday, October 9, 2012
    11 years ago
Abstract
A variety of methods and systems are disclosed herein, including, in one embodiment, a method comprising: providing a stream comprising halogenated alkanes; forming synthesis products comprising hydrocarbons and hydrogen bromide from synthesis reactants comprising at least a portion of the halogenated alkanes; and recovering at least a portion of the bromine, the recovering comprising electrolysis.
Description
BACKGROUND

The present invention relates to conversion of gaseous alkanes to liquid hydrocarbons and, more particularly, in one or more embodiments, to a method and system that includes bromination of alkanes followed by conversion of the brominated alkanes to hydrocarbons wherein bromine recovery includes electrolysis.


Natural gas which primarily comprises methane and other light alkanes has been discovered in large quantities throughout the world. Many of the locales in which natural gas has been discovered are far from populated regions which have significant gas pipeline infrastructure or market demand for natural gas. Due to the low density of natural gas, its transportation in gaseous form by pipeline or as compressed gas in vessels is expensive. Accordingly, practical and economic limits exist to the distance over which natural gas may be transported in gaseous form. Cryogenic liquefaction of natural gas (LNG) is often used to more economically transport natural gas over large distances. However, this LNG process may be expensive and there are limited regasification facilities in only a few countries that are equipped to import LNG.


A number of techniques may be used to convert alkanes found in natural gas to liquids that may be more easily transported and, thus, generate additional value from natural gas. One technique for this conversion is a bromine-based process that may include bromination of alkanes to form brominated alkanes, and conversion of the brominated alkanes to hydrocarbons over an appropriate catalyst. An undesirable by-product from both the bromination and conversion steps in this process is hydrogen bromide. Before the hydrocarbons produced in this bromine-based process may be recovered as a liquid product, the hydrogen bromide may need to be separated from the hydrocarbons. The bromine may then be recovered from the hydrogen bromide and recycled within the process. In one instance, an aqueous technique may be used that includes scrubbing the hydrogen bromide from the hydrocarbon stream with an aqueous stream followed by neutralization of the dissolved hydrogen bromide to form a metal bromide salt. The metal bromide salt may then be oxidized to recover the bromine. In another instance, a dry technique may be used that includes reaction of the hydrogen bromide with a metal oxide to form a metal bromide salt, which may then be oxidized to recover the bromine.


SUMMARY

The present invention relates to conversion of gaseous alkanes to liquid hydrocarbons and, more particularly, in one or more embodiments, to a method and system that includes bromination of alkanes followed by conversion of the brominated alkanes to hydrocarbons wherein bromine recovery includes electrolysis.


An embodiment includes a method comprising: providing a stream comprising halogenated alkanes; forming synthesis products comprising hydrocarbons and hydrogen bromide from synthesis reactants comprising at least a portion of the halogenated alkanes; and recovering at least a portion of the bromine, the recovering comprising electrolysis.


Another embodiment includes a method comprising: providing a stream comprising a hydrogen halide; converting at least a portion of the hydrogen halide to at least molecular halogen using gas phase electrolysis; providing a stream comprising hydrocarbons; and forming halogenation products comprising halogenated alkanes and hydrogen halide by reacting at least a portion of the molecular halogen with at least a portion of the hydrocarbons.


Still another embodiment includes a method comprising: providing a stream comprising halogenated alkanes; forming synthesis products comprising hydrocarbons and hydrogen halide from synthesis reactants comprising at least a portion of the halogenated alkanes; separating the at least a portion of the hydrogen halide from the synthesis products; and converting at least a portion of the separated hydrogen halide to at least molecular halogen using liquid phase electrolysis.


The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.



FIG. 1 is an example block diagram of a process for the production of liquid hydrocarbons that includes bromination and uses electrolysis for bromine recovery, in accordance with one embodiment of the present invention.



FIG. 2 is an example block diagram of another process for the production of liquid hydrocarbons that includes bromination and uses electrolysis for bromine recovery, in accordance with one embodiment of the present invention.



FIG. 3 is an illustration of an example electrolysis cell that may be used for bromine recovery, in accordance with one embodiment of the present invention.



FIG. 4 is an illustration of another example electrolysis cell that may be used for bromine recovery, in accordance with one embodiment of the present invention.



FIG. 5 is an illustration of yet another example electrolysis cell that may be used for bromine recovery, in accordance with one embodiment of the present invention.





DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to conversion of gaseous alkanes to liquid hydrocarbons and, more particularly, in one or more embodiments, to a method and system that includes bromination of alkanes followed by conversion of the brominated alkanes to hydrocarbons wherein bromine recovery includes electrolysis.


There may be many potential advantages to the methods and systems of the present invention, only some of which are alluded to herein. One of the many potential advantages may be that bromine may be recovered and recycled using electrolysis in a bromine-based process for the production of liquid hydrocarbons. As previously mentioned, hydrogen bromide is generally an undesired byproduct in the bromine-based process for producing liquid hydrocarbons. In accordance with embodiments of the present invention, electric energy may be used to electrolyze the produced hydrogen bromide to form hydrogen and bromine. Accordingly, the bromine may be recovered and recycled within the process.


Referring to FIG. 1, an example block diagram of a process for the production of liquid hydrocarbons that includes liquid-phase electrolysis for bromine recovery is illustrated, in accordance with one embodiment of the present invention. In the illustrated embodiment, the process includes bromination reactor 2, synthesis reactor 4, hydrogen bromide separator unit 6, product recovery unit 8, and liquid-phase electrolysis unit 10. As will be discussed in more detail below, in certain embodiments, liquid-phase electrolysis unit 10 may be used to electrolyze the hydrogen bromide produced in the process, thereby recovering bromine. Accordingly, bromine may be recovered and recycled within the process. In addition, the embodiment of FIG. 1 also may produce hydrogen as a separate product.


As illustrated, gaseous feed stream 12 comprising alkanes may be combined with bromine stream 14, and the resulting mixture may be introduced into bromination reactor 2. While FIG. 1 illustrates the combination of gaseous feed stream 12 and bromine stream 14 prior to bromination reactor 2, those of ordinary skill in the art, with the benefit of this disclosure, should appreciate that gaseous feed stream 12 and bromine stream 14 may be combined in bromination reactor 2. Gaseous feed stream 12 generally comprises alkanes and may be at a pressure, for example, in the range of about 1 atm to about 100 atm and, alternatively, about 1 atm to about 30 atm. The alkanes present in gaseous feed stream 12 may include, for example, lower molecular weight alkanes. As used herein, the term “lower molecular weight alkanes” refers to methane, ethane, propane, butane, pentane, or mixtures thereof. By way of example, the lower molecular weight alkanes present in gaseous feed stream may be methane. Also, gaseous feed stream 12 used in embodiments of the present invention may be any source of gas containing lower molecular weight alkanes whether naturally occurring or synthetically produced. Examples of suitable gaseous feeds that may be used in embodiments of the process of the present invention include, but are not limited to, natural gas, coalbed methane, regasified liquefied natural gas, gas derived from gas hydrates, chlathrates or both, gas derived from anaerobic decomposition of organic matter or biomass, synthetically produced natural gas or alkanes, and mixtures thereof. In certain embodiments, gaseous feed stream 12 may include a feed gas plus a recycled gas stream. In certain embodiments, gaseous feed stream 12 may be treated to remove sulfur compounds and carbon dioxide. In any event, in certain embodiments, small amounts of carbon dioxide, e.g., less than about 2 mol %, may be present in gaseous feed stream 12.


Bromine stream 14 generally comprises bromine and may be at a pressure, for example, in the range of about 1 atm to about 100 atm and, alternatively, of about 1 atm to about 30 atm. In certain embodiments, the bromine may be dry, in that it is substantially free of water vapor. In certain embodiments, the bromine present in bromine stream 14 may be in a gaseous state, a liquid state, or a mixture thereof. As illustrated, bromine stream 14 contains bromine from liquid-phase electrolysis unit 10 that is recovered and recycled within the process. While not illustrated in FIG. 1, additional bromine may also be introduced into the process in the form of a make-up stream. Additionally, while not illustrated, in certain embodiments, the mixture of gaseous feed stream 12 and bromine stream 14 may be passed to a heat exchanger for evaporation of the bromine prior to introduction into bromination reactor 2.


As previously mentioned, gaseous feed stream 12 and bromine stream 14 may be combined and introduced into bromination reactor 2. The mole ratio of the alkanes in gaseous feed stream 12 to the bromine in bromine stream 14 may be, for example, in excess of 2.5:1. While not illustrated, in certain embodiments, bromination reactor 2 may have an inlet pre-heater zone for heating the mixture of the alkanes and bromine to a reaction initiation temperature, for example, in the range of about 250° C. to about 400° C.


In bromination reactor 2, the alkanes may be reacted with the bromine to form brominated alkanes and hydrogen bromide. By way of example, methane may react in bromination reactor 2 with bromine to form brominated methane and hydrogen bromide. In the case of methane reacting with bromine, the formation of mono-brominated methane occurs in accordance with the following general reaction:

CH4+Br2→CH3Br+HBr  (1)

This reaction generally occurs with a fairly high selectivity to mono-brominated methane. For instance, in the case of the non-catalyzed bromination of methane operated with excess methane in the range of about 4:1 to about 9:1, the reaction selectivity generally may be in the range of about 70% to about 80% mono-brominated methane and about 20% to about 30% di-brominated methane, on a molar basis. To improve the selectivity with respect to mono-brominated methane, the bromination reaction may be run with a larger excess of methane. In general, it is believed that only very small amounts of tri-brominated methane and tetra-brominated methane should also be formed in the bromination reaction. Higher alkanes, such as ethane, propane, and butane, may also be readily also readily brominated resulting in mono- and multi-brominated alkanes, such as brominated ethane, brominated propane, and brominated butane.


In certain embodiments, the bromination reaction in bromination reactor 2 occurs exothermically, for example, at a temperature in the range of about 250° C. to about 600° C. and at a pressure in the range of about 1 atm to about 100 atm and, alternatively, of about 1 atm to about 30 atm. The upper limit of this temperature range may be greater than the upper limit of the reaction initiation temperature range to which the feed mixture may be heated due to the exothermic nature of the bromination reaction. As will be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, the reaction in bromination reactor 2 may be a homogeneous gas phase reaction or a heterogeneous (catalytic) reaction. Examples of suitable catalysts that may be utilized in bromination reactor 10 include, but are not limited to, platinum, palladium, or supported non-stoichiometric metal oxy-halides such as FeOxBry or FeOxCly or supported stoichiometric metal oxy-halides such as TaOF3, NbOF3, ZrOF2, SbOF3 as described in Olah, et al, J. Am. Chem. Soc. 1985, 107, 7097-7105.


As set forth above, the bromine fed into bromination reactor 2 may be dry, in certain embodiments of the present invention. Elimination of substantially all water vapor from the bromination reaction in bromination reactor 2 should substantially eliminate the formation of unwanted carbon dioxide, thereby increasing the selectivity of the alkane bromination to brominated alkanes and potentially eliminating the large amount of waste heat generated in the formation of carbon dioxide from alkanes. Further, elimination of substantially all water vapor should minimize hydrothermal degradation of downstream catalysts that may be used, in certain embodiments of the present invention.


As illustrated in FIG. 1, brominated stream 16 may be withdrawn from bromination reactor 2 and introduced into synthesis reactor 4. In general, brominated stream 16 withdrawn from bromination reactor 2 comprises brominated alkanes and hydrogen bromide. The brominated alkanes present in brominated stream 16 may comprise mono- and multi-brominated alkanes. While not illustrated at least a portion of brominated stream 16 may be processed to form brominated alkanes with fewer bromine substituents. For example, at least a portion of brominated stream 16 may be treated to convert di-brominated alkanes to mono-brominated alkanes. Examples of this processing may include reaction of the di-brominated alkanes with lower molecular weight alkanes (such as methane, ethane, propane, or butanes) or reaction of the di-brominated alkanes with hydrogen. These reactions may occur, for example, in the presence of a catalyst such as a metal bromide or metal oxy-halide catalyst. While also not illustrated, brominated stream 16 may be cooled in a heat exchanger to a temperature in the range of about 150° C. to about 450° C. before being introduced to synthesis reactor 4.


In synthesis reactor 4, the brominated alkanes may be reacted exothermically in the presence of a catalyst to form product hydrocarbons and additional hydrogen bromide. The reaction may occur, for example, at a temperature in the range of about 150° C. to about 500° C. and a pressure in the range of about 1 atm to 100 atm and, alternatively of about 1 atm to about 30 atm. The product hydrocarbons generally may include, for example, C3, C4, and C5+ gasoline-range and heavier hydrocarbon, including, for example, alkanes and aromatics, as well as olefins, such as ethylene, propylene, and the like. Example processes for the production of product hydrocarbons that include bromination followed by a synthesis reaction are described in more detail in U.S. Pat. No. 7,244,867, U.S. Pat. No. 7,348,464, and U.S. Patent Pub. No. 2006/0100469, the entire disclosures of which incorporated herein by reference.


The catalyst may be any of a variety of suitable materials for catalyzing the conversion of the brominated alkanes to higher molecular weight hydrocarbons. In certain embodiments, synthesis reactor 4 may comprise a fixed bed of the catalyst. A fluidized-bed of synthesis catalyst may also be used in certain circumstances, particularly in larger applications and may have certain advantages, such as constant removal of coke and a steady selectivity to product composition. Examples of suitable catalysts include a fairly wide range of materials that have the common functionality of being acidic ion-exchangers and which also contain a synthetic crystalline alumino-silicate oxide framework. In certain embodiments, a portion of the aluminum in the crystalline alumino-silicate oxide framework may be substituted with magnesium, boron, gallium and/or titanium. In certain embodiments, a portion of the silicon in the crystalline alumino-silicate oxide framework may be optionally substituted with phosphorus. The crystalline alumino-silicate catalyst generally may have a significant anionic charge within the crystalline alumino-silicate oxide framework structure which may be balanced, for example, by cations of elements selected from the group H, Li, Na, K or Cs or the group Mg, Ca, Sr or Ba. Although zeolitic catalysts may be commonly obtained in a sodium form, a protonic or hydrogen form (via ion-exchange with ammonium hydroxide, and subsequent calcining) is preferred, or a mixed protonic/sodium form may also be used. The zeolite may also be modified by ion exchange with other alkali metal cations, such as Li, K, or Cs, with alkali-earth metal cations, such as Mg, Ca, Sr, or Ba, or with transition metal cations, such as Ni, Cu, Fe, Mn, V, and W or with rare-earth metal cations such as La or Ce. Such subsequent ion-exchange, may replace the charge-balancing counter-ions, but furthermore may also partially replace ions in the oxide framework resulting in a modification of the crystalline make-up and structure of the oxide framework. The crystalline alumino-silicate or substituted crystalline alumino-silicate may include a microporous or mesoporous crystalline aluminosilicate, but, in certain embodiments, may include a synthetic microporous crystalline zeolite, and, for example, being of the MFI structure such as ZSM-5. Moreover, the crystalline alumino-silicate or substituted crystalline alumino-silicate, in certain embodiments, may be subsequently impregnated with an aqueous solution of a Mg, Ca, Sr, or Ba, La or Ce salt. In certain embodiments, the salts may be a halide salt, such as a bromide salt, such as MgBr2 or CeBr3. Optionally, the crystalline alumino-silicate or substituted crystalline alumino-silicate may also contain between about 0.1 to about 1 weight % Pt, about 0.1 to 5 weight % Pd, or about 0.1 to about 5 weight % Ni in the metallic state. Although, such materials are primarily initially crystalline, it should be noted that some crystalline catalysts may undergo some loss of crystallinity either due to initial ion-exchange or impregnation or due to operation at the reaction conditions or during regeneration and hence may also contain significant amorphous character, yet still retain significant, and in some cases improved activity.


The particular catalyst used in synthesis reactor 4 will depend, for example, upon the particular product hydrocarbons that are desired. For example, when product hydrocarbons having primarily C3, C4 and C5+ gasoline-range aromatic compounds and heavier hydrocarbon fractions are desired, a ZSM-5 zeolite catalyst may be used. When it is desired to produce product hydrocarbons comprising a mixture of olefins and C5+ products, an X-type or Y-type zeolite catalyst or SAPO zeolite catalyst may be used. Examples of suitable zeolites include an X-type, such as 10-X, or Y-type zeolite, although other zeolites with differing pore sizes and acidities, may be used in embodiments of the present invention.


The temperature at which synthesis reactor 4 is operated is one parameter in determining the selectivity of the reaction to the particular product hydrocarbons desired. Where, for example, an X-type or Y-type zeolite or SAPO zeolite catalyst is used and it is desired to produce olefins, synthesis reactor 4 may be operated at a temperature within the range of about 250° C. to about 500° C. Temperatures above about 450° C. in synthesis reactor 4 may result in increased yields of light hydrocarbons, such as undesirable methane and also deposition of coke, whereas lower temperatures generally should increase yields of ethylene, propylene, butylene and heavier molecular weight hydrocarbons. In the case of the alkyl bromide reaction over the 10 X zeolite catalyst, for example, it is believed that cyclization reactions also may occur such that the C7+ fractions contain substantial substituted aromatics. At increasing temperatures approaching about 400° C., for example, it is believed that brominated methane conversion generally should increase towards about 90% or greater; however, selectivity towards C5+ hydrocarbons generally should decrease with increased selectivity toward lighter products, such as olefins. At temperatures exceeding about 550° C., for example, it is believed that a high conversion of brominated methane to methane and carbonaceous coke occurs. In the temperature range of between about 300° C. and about 450° C., as a byproduct of the reaction, a lesser amount of coke probably will build up on the catalyst over time during operation, causing a decline in catalyst activity over a range of hours, up to hundreds of hours, depending on the reaction conditions and the composition of the feed gas. Conversely, temperatures at the lower end of the range (e.g., below about 300° C.), may also contribute to coking due to a reduced rate of desorption of heavier products from the catalyst. Hence, operating temperatures within the range of about 250° C. to about 500° C., but preferably in the range of about 350° C. to about 450° C. in synthesis reactor 4 should generally balance increased selectivity of the desired olefins and C5+ hydrocarbons and lower rates of deactivation due to carbon formation, against higher conversion per pass, which should minimize the quantity of catalyst, recycle rates and equipment size required.


Where, for example, the product hydrocarbons desired are primarily C3, C4, and C5+ gasoline-range and heavier hydrocarbon fractions, synthesis reactor 4 may be operated at a temperature within the range of about 150° C. to about 450° C. Temperatures above about 300° C. in synthesis reactor 4 may result in increased yields of light hydrocarbons, whereas lower temperatures generally may increase yields of heavier molecular weight hydrocarbons. By way of example, at the low end of the temperature range with brominated methane reacting over the ZSM-5 zeolite catalyst at temperatures as low as about 150° C., significant brominated methane conversion on the order of about 20% may occur, with a high selectivity towards C5+ hydrocarbons. In the case of the brominated methane reaction over the ZSM-5 zeolite catalyst, for example, cyclization reactions also occur such that the C7+ fractions may be primarily comprise substituted aromatics. At increasing temperatures approaching about 300° C., for example, brominated methane conversion generally should increase towards about 90% or greater; however, selectivity towards C5+ hydrocarbons generally may decrease and selectivity towards lighter products, particularly undesirable methane, may increase. Surprisingly, benzene, ethane or C2-C3 olefin components are not typically present, or present in only very small quantities, in the reaction effluent, in accordance with certain embodiments, such as when a ZSM-5 catalyst is used at temperatures of about 390° C. However, at temperatures approaching about 450° C., for example, almost complete conversion of brominated methane to methane and carbonaceous coke may occur. In the operating temperature range of between about 350° C. and about 420° C., as a byproduct of the reaction, a small amount of carbon may build up on the catalyst over time during operation, potentially causing a decline in catalyst activity over a range of hours, up to several days, depending on the reaction conditions and the composition of the feed gas. It is believed that higher reaction temperatures (e.g., above about 420° C.), associated with the formation of methane, favor the thermal cracking of brominated alkanes and formation of carbon or coke and hence an increase in the rate of deactivation of the catalyst. Conversely, temperatures at the lower end of the range (e.g., below about 350° C.) may also contribute to coking due to a reduced rate of desorption of heavier products from the catalyst. Hence, operating temperatures within the range of about 150° C. to about 450° C., but preferably in the range of about 350° C. to about 420° C., and most preferably, in the range of about 370° C. to about 400° C., in synthesis reactor 4 should generally balance increased selectivity of the desired C5+ hydrocarbons and lower rates of deactivation due to carbon formation, against higher conversion per pass, which minimizes the quantity of catalyst, recycle rates and equipment size required.


The catalyst may be periodically regenerated in situ, by isolating synthesis reactor 4 from the normal process flow and purging with an inert gas, for example, at a pressure in a range of about 1 atm to about 5 atm bar at an elevated temperature in the range of about 400° C. to about 650° C. to remove unreacted material adsorbed on the catalyst insofar as is practical. Then, the deposited heavy products, coke, or both may be oxidized to CO2, CO, and H2O by addition of air or inert gas-diluted oxygen to synthesis reactor 4, for example, at a pressure in the range of about 1 atm to about 5 atm at an elevated temperature in the range of about 400° C. to about 650° C. The oxidation products and residual air or inert gas may be vented from synthesis reactor 4 during the regeneration period. However, as the regeneration off-gas may contain small amounts of bromine-containing species, as well as excess unreacted oxygen, the regeneration gas effluent may be directed into the oxidation portion of the process, wherein the bromine-containing species may be converted to elemental bromine and recovered for re-use within the process.


As illustrated in FIG. 1, synthesis outlet stream 18 may be withdrawn from synthesis reactor 4. In general, synthesis outlet stream 18 may comprise product hydrocarbons and the additional hydrogen bromide generated in synthesis reactor 4. Synthesis outlet stream 18 further may comprise the hydrogen bromide generated in bromination reactor 2. For example, synthesis outlet stream 18 may include C3, C4, and C5+ gasoline-range and heavier hydrocarbons, including, for example, alkanes and aromatics, as well as olefins, such as ethylene, propylene, and the like. By way of further example, synthesis outlet stream 18 may comprise C3, C4 and C5+ gasoline-range and heavier hydrocarbon fractions, as well as the additional hydrogen bromide. In certain embodiments, the C7+ fraction of the hydrocarbons present in synthesis outlet stream 18 may primarily comprise substituted aromatics.


As set forth above, the process of FIG. 1 further includes hydrogen bromide separator unit 6. In the illustrated embodiment, synthesis outlet stream 18 may be introduced to hydrogen bromide separator unit 6. In hydrogen bromide separator unit 6, at least a portion of the hydrogen bromide present in synthesis outlet stream 18 may be separated from the product hydrocarbons. In certain embodiments, greater than about 98%, and up to nearly 100% of the hydrogen bromide may be separated from the product hydrocarbons. An example of a suitable process for use in hydrogen bromide separator unit 6 may include contacting synthesis outlet stream 18, which may be a gas, with a liquid. Hydrogen bromide present in synthesis outlet stream 18 may be dissolved in the liquid and the mixture may be removed from hydrogen bromide separator unit 6 via electrolysis feed stream 20. As described in more detail below, hydrocarbon stream 22 that may comprise the product hydrocarbons may be removed from hydrogen bromide separator unit 6.


One example of a suitable liquid that may be used to scrub the hydrogen bromide from the product hydrocarbons includes water. In these embodiments, the hydrogen bromide dissolves into the water and is at least partially ionized, forming an aqueous acid solution. Another example of a suitable liquid that may be used to scrub the hydrogen bromide from the product hydrocarbons includes an aqueous partially oxidized metal bromide salt solution containing metal hydroxide species, metal oxy-bromide species, metal oxide species, or mixtures thereof. The hydrogen bromide dissolved in the partially oxidized metal bromide salt solution should be neutralized to form metal bromide salt in electrolysis feed stream 20 that may be removed from hydrogen bromide separator unit 6. Examples of suitable metals of the bromide salt include Fe(III), Cu(II), and Zn(II), as these metals may be less expensive and may be oxidized at lower temperatures, for example, in the range of about 120° C. to about 200° C. However, other metals that form oxidizable bromide salts may also be used. In certain embodiments, alkaline earth metals which may also form bromide salts and hydroxides, such as Ca(II) or Mg(II) may be used.


As noted above, hydrocarbon stream 22 comprising the product hydrocarbons may be removed from hydrogen bromide separator unit 6. In general, hydrocarbon stream 22 comprises the excess unreacted alkanes and the product hydrocarbons from which the hydrogen bromide was separated. As illustrated in FIG. 1, hydrocarbon stream 22 may be introduced to product recovery unit 8 to recover, for example, the C5+ hydrocarbons as liquid product stream 24. Liquid product stream 24 may comprise, for example, C5+ hydrocarbons, including alkanes and substituted aromatics. In certain embodiments, liquid product stream 24 may comprise olefins, such as ethylene, propylene, and the like. In certain embodiments, liquid product stream 24 may comprise various hydrocarbons in the liquefied petroleum gas and gasoline-fuels range, which may include a substantial aromatic content, significantly increasing the octane value of the hydrocarbons in the gasoline-fuels range. While not illustrated, in certain embodiments, product recovery unit 8 may include dehydration and liquids recovery. Any conventional method of dehydration and liquids recovery, such as solid-bed dessicant adsorption followed by refrigerated condensation, cryogenic expansion, or circulating absorption oil or other solvent, as used to process natural gas or refinery gas streams, and to recover product hydrocarbons, may be employed in embodiments of the present invention.


At least a portion of the residual vapor effluent from product recovery unit 8 may be recovered as alkane recycle stream 26. Alkane recycle stream 26 may comprise, for example, methane and possibly other unreacted lower molecular weight alkanes. As illustrated, alkane recycle stream 26 may be recycled and combined with gaseous feed stream 12. In certain embodiments, alkane recycle stream 26 that is recycled may be at least 1.5 times the feed gas molar volume. While not illustrated in FIG. 1, in certain embodiments, another portion of the residual vapor effluent from product recovery unit 8 may be used as fuel for the process. Additionally, while also not illustrated in FIG. 1, in certain embodiments, another portion of the residual vapor effluent from product recovery unit 8 may be recycled and used to dilute the brominated alkane concentration introduced into synthesis reactor 4. Where used to dilute the brominated alkane concentration, the residual vapor effluent generally should be recycled at a rate to absorb the heat of reaction such that synthesis reactor 4 is maintained at the selected operating temperature, for example, in the range of about 150° C. to about 500° C. in order to maximize conversion versus selectivity and to minimize the rate of catalyst deactivation due to the deposition of carbonaceous coke. Thus, the dilution provided by the recycled vapor effluent should permit selectivity of bromination in bromination reactor 2 to be controlled in addition to moderating the temperature in synthesis reactor 4.


As set forth above, the hydrogen bromide may be separated from the product hydrocarbons in hydrogen bromide separator unit 6. As illustrated in FIG. 1, electrolysis feed stream 20 may be withdrawn from hydrogen bromide separator unit 6 and supplied to liquid-phase electrolysis unit 10. In certain embodiments, electrolysis feed stream 20 may contain water and the separated hydrogen bromide dissolved therein. In certain embodiments, electrolysis feed stream 20 may contain water and the neutralized hydrogen bromide in the form of a metal bromide salt dissolved therein. The metal bromide salt may be present in electrolysis feed stream 20, for example, in the embodiments wherein the hydrogen bromide is neutralized in the liquid used to scrub the hydrogen bromide from the product hydrocarbons.


In liquid-phase electrolysis unit 10, bromine may be recovered from the hydrogen bromide or the metal bromide salt present in electrolysis feed stream 20. Electric energy may be used, in the hydrogen bromide electrolysis embodiments, to electrolyze at least a portion of the hydrogen bromide to form elemental bromine and hydrogen and, in the metal bromide salt electrolysis embodiments, to electrolyze at least a portion of the metal bromide to form the elemental bromine and the metal, metal ion in the reduced state or metal hydroxide. The presence of a reducible metal ion in solution may have the advantage of reducing the cathodic overpotential required, hence minimizing power requirements as compared to the electrolysis of aqueous acid. In the electrolysis of an aqueous hydrochloric acid solution (HCl), the Uhde process may be used and may also possibly be adapted for the electrolysis of the aqueous hydrobromic acid, e.g., the hydrogen bromide dissolved in electrolysis feed stream 20.


While not illustrated in FIG. 1, one or more electrolysis cells may be included in liquid phase electrolysis unit 10. Those of ordinary skill in the art, with the benefit of this disclosure, will appreciate that the electrolysis cells may be operated in parallel or series, in accordance with certain embodiments of the present invention. In the electrolysis of hydrogen bromide embodiments, electric energy may be passed through electrolysis feed stream 20 that comprises water and hydrogen bromide dissolved therein with the production of bromine at the anode and hydrogen at the cathode of the electrolysis cells. In the electrolysis of the metal bromide salt, electric energy may be passed through electrolysis feed stream 20 that comprises water and the metal bromide salt dissolved therein with the production of bromine at the anode and the metal, metal ion in the reduce state or metal hydroxide at the cathode of the electrolysis cells. While not illustrated, the energy required to separate the hydrogen and the bromine may be provided by an electrical power supply.


By way of example, the electrolysis of hydrogen bromide may occur in an aqueous hydrobromic acid solution in the substantial absence of a metal ion, in accordance with the following general half-reactions occurring at the anode and cathode electrodes, respectively, of the electrolysis cells:

2Br(−)→Br2+2e  (2)
2H(+)+2e→H2  (3)


By way of further example, the electrolysis of a metal bromide salt (e.g., Fe(III)Br3) may occur in accordance with the following general half-reactions occurring at the anode and cathode electrodes, respectively, of the electrolysis cells:

2Br(−)→Br2+2e  (4)
2Fe(+3)+2e→2Fe(+2)  (5)
and 2H2O+2e−=H2+2OH(−)

Where Fe(+3) and Fe(+2) may further react with OH(−) to form iron hydroxides.


Accordingly, bromine may be generated in liquid-phase electrolysis unit 10, in accordance with embodiments of the present invention. Bromine stream 14 comprising the bromine may be removed from liquid-phase electrolysis unit 10 and supplied to bromination reactor 2. Accordingly, bromide may be recovered and recycled within the process, in accordance with embodiments of the present invention. Furthermore, dependent upon whether hydrogen bromide, a metal bromide salt, or both is supplied to liquid-phase electrolysis unit, a reduced metal ion, hydroxyl ion, or metal hydroxide, a hydrogen, or two or more of these should also be generated in liquid-phase electrolysis unit 10. Accordingly, hydrogen/reduced metal ion stream 28 comprising the hydrogen, the reduced metal ion, hydroxyl ion or metal hydroxide, or two or more of these may also be removed from liquid-phase electrolysis unit 10. Among other uses, the hydrogen may be recycled within the process or used in additional processes, such as petroleum refining or chemical synthesis. Furthermore, water stream 30 comprising the water in which the hydrogen bromide (or metal bromide salt) is electrolyzed may also be removed from liquid-phase electrolysis unit 10.


In one embodiment, one or more of the electrolysis cells in liquid-phase electrolysis unit 10 may be operated in an air-depolarized mode in which air is passed over the cathode. In the air-depolarized mode embodiments, hydrogen bromide electrolysis should produce water at the cathode and metal bromide salt electrolysis should produce a metal hydroxide or metal oxide at the cathode. By way of example, the electrolysis of hydrogen bromide in air-depolarized mode embodiments may produce water at the cathode and partially depolarize the electrode according to the following reaction:











2


H


(
+
)



+


1
2



O
2


+

2


e
-






H
2


O





(
6
)








The air-depolarized embodiments may be particularly useful where there is no local need for hydrogen. In certain embodiments, two or more electrolysis cells may be used in parallel with one or more operated with an air-depolarized cathode producing water rather than hydrogen.


By way of further example, the electrolysis of a metal bromide salt (e.g., Fe(III)Br3) in air-depolarized mode embodiments may produce free hydroxide and partially depolarize the electrode according to the following overall reaction:

Fe(+3a)+3/2O2+3H(+)+6e−=Fe(OH)3  (7)


Referring to FIG. 2, an example block diagram of a process for the production of product hydrocarbons that includes vapor-phase electrolysis for bromine recovery is illustrated, in accordance with one embodiment of the present invention. In the illustrated embodiment, the process includes bromination reactor 2, synthesis reactor 4, product recovery unit 8, and vapor-phase electrolysis unit 32. As will be discussed in more detail below, in certain embodiments, vapor-phase electrolysis unit 32 may be used to electrolyze the hydrogen bromide produced in the process, thereby recovering bromine. Accordingly, bromine may be recovered and recycled within the process.


As illustrated in FIG. 2, gaseous feed stream 12 comprising alkanes may be combined with recycle stream 34 and the resulting mixture may be introduced into bromination reactor 2. As will be discussed in more detail below, recycle stream 34 may comprise unreacted lower molecular weight alkanes and recovered bromine from vapor-phase electrolysis unit 32. While not illustrated, additional bromine may also be introduced into the process in the form of a make-up stream. In bromination reactor 2, the alkanes may be reacted with the bromine to form brominated alkanes and hydrogen bromide. Brominated stream 16 may be withdrawn from bromination reactor 2 and supplied to synthesis reactor 4. In general, brominated stream 16 withdrawn from bromination reactor 2 comprises halogenated alkanes and hydrogen halide. In synthesis reactor 4, the brominated alkanes may be reacted exothermically in the presence of a catalyst to form product hydrocarbons and additional hydrogen bromide. Synthesis outlet stream 18 may be withdrawn from synthesis reactor 4. In general, synthesis outlet stream 18 may comprise product hydrocarbons and the additional hydrogen bromide generated in synthesis reactor 4. Synthesis outlet stream 18 further may comprise the hydrogen bromide generated in bromination reactor 2.


In the illustrated embodiment, synthesis outlet stream 18 may be introduced to product recovery unit 8 to recover, for example, the product hydrocarbons as liquid product stream 24. Liquid product stream 24 may comprise, for example, C5+ hydrocarbons, including alkanes and substituted aromatics. In certain embodiments, liquid product stream 32 may comprise olefins, such as ethylene, propylene, and the like. In certain embodiments, liquid product stream 24 may comprise various hydrocarbons in the liquefied petroleum gas and gasoline-fuels range, which may include a substantial aromatic content, significantly increasing the octane value of the hydrocarbons in the gasoline-fuels range.


Vapor effluent stream 22 from product recovery unit 8 may be supplied to vapor-phase electrolysis unit 32. In certain embodiments, vapor effluent stream 22 may comprise methane and possibly other unreacted lower molecular weight alkanes. In addition, in the embodiment illustrated in FIG. 2, vapor effluent stream 22 further may comprise hydrogen bromide that was present in synthesis outlet stream 30 that was introduced to product recovery unit 8. This hydrogen bromide may have been generated in bromination reactor 2 and synthesis reactor 4.


In vapor-phase electrolysis unit 32, bromine may be recovered from the hydrogen bromide present in vapor effluent stream 22. Electric energy may be used to electrolyze at least a portion of the hydrogen bromide to form elemental bromine and hydrogen. The electrolysis of hydrogen bromide may generally occur in accordance with the half-reactions illustrated previously in equations (2) and (3). An example process for the vapor-phase electrolysis of hydrogen bromide is described in U.S. Pat. No. 5,411,641, the entire disclosure of which is incorporated herein by reference. While not illustrated in FIG. 2, one or more electrolysis cells may be included in vapor-phase electrolysis unit 32. In certain embodiments, one or more of the electrolysis cells in vapor-phase electrolysis unit 32 may be operated in an air-depolarized mode in which air is passed over the cathode. In the air-depolarized mode embodiments, hydrogen bromide electrolysis should produce water at the cathode in accordance with the half-reaction illustrated by equation (6) above. The air-depolarized embodiments may be particularly useful where there is no local need for hydrogen. In certain embodiments, two or more electrolysis cells may be used in parallel with one or more operated with an air-depolarized cathode producing water rather than hydrogen.


Accordingly, bromine may be recovered in vapor-phase electrolysis unit 32, in accordance with embodiments of the present invention. Recycle stream 34 may be removed from vapor-phase electrolysis unit 32. Recycle stream 34 may comprise, for example, the recovered bromine as well as methane and potentially other unreacted lower molecular weight alkanes that were not recovered in product recovery unit 8. As illustrated recycled stream 34 may be recycled and combined with gaseous feed stream 12. In certain embodiments, recycle stream 34 that is recycled may contain alkanes in an amount that is at least 1.5 times the feed gas molar volume. While not illustrated in FIG. 1, in certain embodiments, another portion of recycle stream 34 may be used as fuel for the process. Additionally, while also not illustrated in FIG. 1, in certain embodiments, another portion of recycle stream 34 may be recycled and used to dilute the brominated alkane concentration introduced into synthesis reactor 4. Where used to dilute the brominated alkane concentration, the portion of recycle stream 34 generally should be recycled at a rate to absorb the heat of reaction such that synthesis reactor 4 is maintained at the selected operating temperature, for example, in the range of about 150° C. to about 500° C. in order to maximize conversion versus selectivity and to minimize the rate of catalyst deactivation due to the deposition of carbonaceous coke. Thus, the dilution provided by the recycled vapor effluent should permit selectivity of bromination in bromination reactor 2 to be controlled in addition to moderating the temperature in synthesis reactor 4.


As noted above, hydrogen also should be produced in vapor-phase electrolysis unit 32. Accordingly, hydrogen stream 36 comprising the hydrogen may also be removed from vapor-phase electrolysis unit 32. Among other uses, the hydrogen may be recycled within the process or used in additional processes, such as petroleum refining or chemical synthesis. In certain embodiments, if one or more cells of vapor-phase electrolysis unit 32 are operating in an air-depolarized mode, the produced water also may be removed from vapor-phase electrolysis unit 32.


As set forth above with respect to FIGS. 1 and 2, liquid-phase electrolysis unit 10 and vapor-phase electrolysis unit 32 may be used to recover bromine from hydrogen bromide, metal bromide salts, or a combination thereof, in accordance with embodiments of the present invention. Those of ordinary skill in the art, with the benefit of this disclosure, will recognize that a variety of different electrochemical cells, and arrangements thereof, may be used in accordance with embodiments of the present invention for the vapor-phase or liquid-phase electrolysis of hydrogen bromide. FIGS. 3-5 illustrate electrolysis cells that may be used in accordance with embodiments of the present invention.


Referring to FIG. 3, an example electrolysis cell that may be used for bromine recovery is illustrated, in accordance with one embodiment of the present invention. In the illustrated embodiment, electrolysis cell 38 includes anode side 40, cathode side 42, and cation-transporting membrane 44, wherein anode side 40 and cathode side 42 are each disposed on opposite sides of cation-transporting membrane 44. Examples of suitable cation-transporting membranes include a cationic membrane that comprise fluoro or perfluoromonomers, such as a copolymer of two or more fluro or perfluoromonomers at least one of which contains pendant sulfonic acid groups. Another example of a suitable cation-transporting membrane includes proton-conducting ceramics, such as beta-alumina. In the illustrated embodiment, feed stream 46 comprising, for example, hydrogen bromide, may be introduced through an inlet of electrolysis cell 38 on anode side 40 of cation-transporting membrane 44. In electrolysis cell 38, electric energy may be used to reduce molecules of the hydrogen bromide to produce bromide anions and hydrogen cations. The bromide anions may form bromine on the anode side 40 of electrolysis cell 38. As illustrated, the hydrogen cations may be transported through cation-transporting membrane 44 to cathode side 42 where the hydrogen cations may combine with electrons to form hydrogen gas. Hydrogen stream 48 and bromine stream 50 may be withdrawn from electrolysis cell 38.


Referring to FIG. 4, another example of electrolysis cell 38 that may be used for bromine recovery is illustrated, in accordance with one embodiment of the present invention. In the illustrated embodiment, electrolysis cell 38 is operated in an air-depolarized mode. As illustrated, oxygen stream 50 may be introduced into cathode side 42 of cation-transporting membrane 44, such that the oxygen combines with the hydrogen cations in accordance with the half-reaction illustrated by equation (6) above to form water, which may be withdrawn from electrolysis cell 38 via water stream 52.


Referring to FIG. 5, another example electrolysis cell that may be used for bromine recovery is illustrated, in accordance with one embodiment of the present invention. In the illustrated embodiment, alternative electrolysis cell 54 includes anode side 56, cathode side 58, and anion-transporting membrane 60, wherein anode side 56 and cathode side 58 are each disposed on opposite sides of anion-transporting membrane 60. An example of a suitable anion-transporting membrane includes a molten-salt saturated membrane. In the illustrated embodiment, feed stream 46 comprising, for example, hydrogen bromide, may be introduced through an inlet of alternative electrolysis cell 54 on cathode side 58 of anion-transporting membrane 60. In alternative electrolysis cell 54, electric energy may be used to reduce molecules of the hydrogen bromide to produce bromide anions and hydrogen cations. On the cathode side 58, the hydrogen cations may combine with electrons to form hydrogen. As illustrated, the bromide anions may be transported through anion-transporting membrane 60 to anode side 56 where the bromide anions may combine yielding electrons and forming bromine. Hydrogen stream 48 and bromine stream 50 may be withdrawn from alternative electrolysis cell 54.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified, and all such variations are considered within the scope and spirit of the present invention. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values, and set forth every range encompassed within the broader range of values. Moreover, the indefinite articles “a” or “an”, as used in the claims, are defined herein to mean one or more than one of the element that it introduces. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims
  • 1. A method comprising: providing a stream comprising halogenated alkanes;forming synthesis products comprising hydrocarbons and hydrogen bromide from synthesis reactants comprising at least a portion of the halogenated alkanes;separating the synthesis products into at least a liquid product stream comprising C5+ hydrocarbons and a vapor stream comprising hydrogen bromide and methane; andrecovering bromine from the hydrogen bromide in an electrolysis unit.
  • 2. The method of claim 1 further comprising: forming the halogenated alkanes by reacting an alkane stream and a halogen stream.
  • 3. The method of claim 2 wherein the alkane stream may be at a pressure in the range of about 1 atm to about 100 atm.
  • 4. The method of claim 2 wherein the alkane stream comprise at least one alkane selected from the group consisting of: methane, ethane, propane, butane, pentane, natural gas, coalbed methane, regasified liquefied natural gas, gas derived from gas hydrates, gas derived from chlathrates, gas derived from anaerobic decomposition of organic matter, gas derived from anaerobic decomposition of biomass, or synthetically produced alkanes.
  • 5. The method of claim 2 wherein the forming of the halogenated alkanes occurs in the presence of a catalyst.
  • 6. The method of claim 1 wherein the forming synthesis products occurs at a temperature in the range of about 150° C. to about 500° C. and at a pressure in the range of about 1 atm to 100 atm.
  • 7. The method of claim 1 wherein the electrolysis unit comprises an electrolysis cell, wherein the electrolysis cell comprises an anode side, a cathode side, and a ion-transporting membrane, wherein the anode side and the cathode side are each disposed on opposite sides of the ion-transporting membrane.
  • 8. The method of claim 7 wherein the ion-transporting membrane comprises a cation-transporting membrane, wherein the cation-transporting membrane comprises at least one material selected from the group consisting of: a fluoromonomer, perfluoromonomer, a copolymer of two or more fluoro or perfluoromonomers at least one of which contains pendant sulfonic acid groups, a proton-conducting ceramic, or a derivative thereof.
  • 9. The method of claim 1 wherein hydrogen is formed in the electrolysis unit.
  • 10. The method of claim 1 wherein the forming synthesis products occurs in the presence of a catalyst.
  • 11. The method of claim 10 wherein the catalyst comprises a synthetic crystalline alumino-silicate catalyst.
  • 12. A method comprising: forming synthesis products comprising hydrocarbons and hydrogen bromide from synthesis reactants comprising brominated alkanes;separating the synthesis products into at least a liquid product stream comprising C5+ hydrocarbons and a vapor stream comprising hydrogen bromide and methane; andconverting at least a portion of the hydrogen bromide to at least molecular bromine using as phase electrolysis;providing a stream comprising hydrocarbons; andforming bromination products by reacting at least a portion of the molecular bromine with at least a portion of the hydrocarbons.
  • 13. The method of claim 12 wherein the forming of the bromination products occurs at a temperature in the range of about 250° C. to about 600° C. and at a pressure in the range of about 1 atm to about 100 atm.
  • 14. The method of claim 12 wherein the forming of the bromination products occurs in the presence of a catalyst.
  • 15. The method of claim 14 wherein the catalyst comprises at least one catalytic material selected from the group consisting of platinum, palladium, unsupported oxy halides of the formula FeOxBry, unsupported oxy halides of the formula FeOxCly, TaOF3, NbOF3, ZrOF2, SbOF3.
  • 16. The method of claim 12 wherein the electrolysis occurs in an electrolysis cell operated in an air-depolarized mode.
  • 17. The method of claim 12 wherein hydrogen is formed in the gas phase electrolysis.
  • 18. The method of claim 12 wherein the forming synthesis products occurs in the presence of a catalyst.
  • 19. The method of claim 18 wherein the catalyst comprises a synthetic crystalline alumino-silicate catalyst.
  • 20. A method comprising: reacting at least a gaseous feed stream comprising lower molecular weight hydrocarbons with bromine in a bromination reactor to form at least hydrogen bromide and brominated alkanes;reacting at least a portion of the brominated alkanes in the presence of synthetic crystalline alumino-silicate catalyst in a synthesis reactor to form at least product hydrocarbons comprising hydrocarbons having three or more carbons and additional hydrogen bromide;feeding at least a portion of the product hydrocarbons and the additional hydrogen bromide from the synthesis reactor to a product recovery unit;recovering a liquid product stream from the product recovery unit, the liquid product stream comprising hydrocarbons having five or more hydrocarbons;recovering a vapor stream from the product recovery unit, the vapor stream comprising hydrogen bromide; andconverting at least a portion of the hydrogen bromide from the vapor stream to at least molecular bromine using a gas phase electrolysis unit.
  • 21. The method of claim 20 further comprising recycling at least methane from the product recovery unit to the bromination reactor.
  • 22. The method of claim 20 wherein the lower molecular weight alkanes comprise methane.
  • 23. The method of claim 20 wherein the lower molecular weight alkanes comprise at least one gaseous feed selected from the group consisting of natural gas, coalbed methane, regasified liquefied natural gas, gas derived from gas hydrates, gas derived from chlathrates, gas derived from anaerobic decomposition of organic matter, gas derived from anaerobic decomposition of biomass, synthetically produced natural gas, synthetically produced alkanes, and any combinations thereof.
  • 24. The method of claim 20 wherein the brominated alkanes comprise monobrominated alkanes.
  • 25. The method of claim 20 wherein a mole ratio of lower molecular weight alkanes to the bromine in the gaseous feed is in excess of 2.5:1.
  • 26. The method of claim 20 wherein the synthetic crystalline alumino-silicate comprises a ZSM-5 zeolite catalyst.
  • 27. The method of claim 20 wherein the gas phase electrolysis unit comprises an electrolysis cell operated in an air-depolarized mode.
  • 28. The method of claim 27 further comprising recovering water from the phase electrolysis unit.
  • 29. The method of claim 20 further comprising recovering hydrogen from the gas phase electrolysis unit.
  • 30. The method of claim 20 wherein the liquid product stream comprises C5+ gasoline-range hydrocarbons.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is based on and claims priority to U.S. Provisional Patent Application No. 61/061,475, filed Jun. 13, 2008, the entire contents of which are incorporated by reference herein.

US Referenced Citations (713)
Number Name Date Kind
2168260 Heisel et al. Aug 1939 A
2246082 Vaughan et al. Jun 1941 A
2320257 Beekhuis May 1943 A
2488083 Gorin et al. Nov 1949 A
2536457 Mugdan Jan 1951 A
2666024 Low et al. Jan 1954 A
2677598 Crummett et al. May 1954 A
2941014 Rothweiler et al. Jun 1960 A
3076784 Schulte-Huermann et al. Feb 1963 A
3172915 Borkowski et al. Mar 1965 A
3246043 Rosset et al. Apr 1966 A
3254023 Miale et al. May 1966 A
3273964 Rosset Sep 1966 A
3291708 Juda Dec 1966 A
3294846 Livak et al. Dec 1966 A
3310380 Lester Mar 1967 A
3314762 Hahn Apr 1967 A
3346340 Louvar et al. Oct 1967 A
3353916 Lester Nov 1967 A
3353919 Stockman Nov 1967 A
3379506 Massonne et al. Apr 1968 A
3468968 Baker et al. Sep 1969 A
3496242 Berkowitz et al. Feb 1970 A
3562321 Borkowski et al. Feb 1971 A
3598876 Bloch Aug 1971 A
3615265 Gartner Oct 1971 A
3657367 Blake et al. Apr 1972 A
3670037 Dugan Jun 1972 A
3673264 Kuhn Jun 1972 A
3679758 Schneider Jul 1972 A
3702886 Argauer et al. Nov 1972 A
3705196 Turner Dec 1972 A
3799997 Schmerling Mar 1974 A
3816599 Kafes Jun 1974 A
3865886 Schindler et al. Feb 1975 A
3876715 McNulty et al. Apr 1975 A
3879473 Stapp Apr 1975 A
3879480 Riegel et al. Apr 1975 A
3883651 Woitun et al. May 1975 A
3886287 Kobayashi et al. May 1975 A
3894103 Chang et al. Jul 1975 A
3894104 Chang et al. Jul 1975 A
3894105 Chang et al. Jul 1975 A
3894107 Butter et al. Jul 1975 A
3907917 Forth Sep 1975 A
3919336 Kurtz Nov 1975 A
3920764 Riegel et al. Nov 1975 A
3923913 Antonini et al. Dec 1975 A
3928483 Chang et al. Dec 1975 A
3965205 Garwood et al. Jun 1976 A
3974062 Owen et al. Aug 1976 A
3987119 Kurtz et al. Oct 1976 A
3992466 Plank et al. Nov 1976 A
4006169 Anderson et al. Feb 1977 A
4011278 Plank et al. Mar 1977 A
4025571 Lago May 1977 A
4025572 Lago May 1977 A
4025575 Chang et al. May 1977 A
4025576 Chang et al. May 1977 A
4035285 Owen et al. Jul 1977 A
4035430 Dwyer et al. Jul 1977 A
4039600 Chang Aug 1977 A
4044061 Chang et al. Aug 1977 A
4046825 Owen et al. Sep 1977 A
4049734 Garwood et al. Sep 1977 A
4052471 Pearsall Oct 1977 A
4052472 Givens et al. Oct 1977 A
4058576 Chang et al. Nov 1977 A
4060568 Rodewald Nov 1977 A
4071753 Fulenwider et al. Jan 1978 A
4072733 Hargis et al. Feb 1978 A
4087475 Jordan May 1978 A
4088706 Kaeding May 1978 A
4092368 Smith May 1978 A
4105755 Darnell et al. Aug 1978 A
4110180 Nidola et al. Aug 1978 A
4117251 Kaufhold et al. Sep 1978 A
4129604 Tsao Dec 1978 A
4133838 Pearson Jan 1979 A
4133966 Pretzer et al. Jan 1979 A
4138440 Chang et al. Feb 1979 A
4143084 Kaeding et al. Mar 1979 A
4156698 Dwyer et al. May 1979 A
4169862 Eden Oct 1979 A
4172099 Severino Oct 1979 A
4187255 Dodd Feb 1980 A
4191618 Coker et al. Mar 1980 A
4194990 Pieters et al. Mar 1980 A
4197420 Ferraris et al. Apr 1980 A
4219604 Kakimi et al. Aug 1980 A
4219680 Konig et al. Aug 1980 A
4249031 Drent et al. Feb 1981 A
4252687 Dale et al. Feb 1981 A
4270929 Dang Vu et al. Jun 1981 A
4272338 Lynch et al. Jun 1981 A
4282159 Davidson et al. Aug 1981 A
4300005 Li Nov 1981 A
4300009 Haag et al. Nov 1981 A
4301253 Warren Nov 1981 A
4302619 Gross et al. Nov 1981 A
4307261 Beard, Jr. et al. Dec 1981 A
4308403 Knifton Dec 1981 A
4311865 Chen et al. Jan 1982 A
4317800 Sloterdijk et al. Mar 1982 A
4317934 Seemuth Mar 1982 A
4317943 Knifton Mar 1982 A
4320241 Frankiewicz Mar 1982 A
4333852 Warren Jun 1982 A
4347391 Campbell Aug 1982 A
4350511 Holmes et al. Sep 1982 A
4356159 Norval et al. Oct 1982 A
4371716 Paxson et al. Feb 1983 A
4373109 Olah Feb 1983 A
4376019 Gamlen et al. Mar 1983 A
4380682 Leitert et al. Apr 1983 A
4384159 Diesen May 1983 A
4389391 Dunn, Jr. Jun 1983 A
4410714 Apanel Oct 1983 A
4412086 Beard, Jr. et al. Oct 1983 A
4418236 Cornelius et al. Nov 1983 A
4431856 Daviduk et al. Feb 1984 A
4433189 Young Feb 1984 A
4433192 Olah Feb 1984 A
4439409 Puppe et al. Mar 1984 A
4440871 Lok et al. Apr 1984 A
4443620 Gelbein et al. Apr 1984 A
4462814 Holmes et al. Jul 1984 A
4465884 Degnan et al. Aug 1984 A
4465893 Olah Aug 1984 A
4467130 Olah Aug 1984 A
4467133 Chang et al. Aug 1984 A
4489210 Judat et al. Dec 1984 A
4489211 Ogura et al. Dec 1984 A
4492657 Heiss Jan 1985 A
4496752 Gelbein et al. Jan 1985 A
4497967 Wan Feb 1985 A
4499314 Seddon et al. Feb 1985 A
4506105 Kaufhold Mar 1985 A
4509955 Hayashi Apr 1985 A
4513092 Chu et al. Apr 1985 A
4513164 Olah Apr 1985 A
4523040 Olah Jun 1985 A
4524227 Fowles et al. Jun 1985 A
4524228 Fowles et al. Jun 1985 A
4524231 Fowles et al. Jun 1985 A
4538014 Miale et al. Aug 1985 A
4538015 Miale et al. Aug 1985 A
4540826 Banasiak et al. Sep 1985 A
4543434 Chang Sep 1985 A
4544781 Chao et al. Oct 1985 A
4547612 Tabak Oct 1985 A
4550217 Graziani et al. Oct 1985 A
4550218 Chu Oct 1985 A
4568660 Klosiewicz Feb 1986 A
4579977 Drake Apr 1986 A
4579992 Kaufhold et al. Apr 1986 A
4579996 Font Freide et al. Apr 1986 A
4587375 Debras et al. May 1986 A
4588835 Torii et al. May 1986 A
4590310 Townsend et al. May 1986 A
4599474 Devries et al. Jul 1986 A
4605796 Isogai et al. Aug 1986 A
4605803 Chang et al. Aug 1986 A
4621161 Shihabi Nov 1986 A
4621164 Chang et al. Nov 1986 A
4633027 Owen et al. Dec 1986 A
4634800 Withers, Jr. et al. Jan 1987 A
4642403 Hyde et al. Feb 1987 A
4642404 Shihabi Feb 1987 A
4652688 Brophy et al. Mar 1987 A
4654449 Chang et al. Mar 1987 A
4655893 Beale Apr 1987 A
4658073 Tabak Apr 1987 A
4658077 Kolts et al. Apr 1987 A
4665259 Brazdil et al. May 1987 A
4665267 Barri May 1987 A
4665270 Brophy et al. May 1987 A
4675410 Feitler et al. Jun 1987 A
4690903 Chen et al. Sep 1987 A
4695663 Hall et al. Sep 1987 A
4696985 Martin Sep 1987 A
4704488 Devries et al. Nov 1987 A
4704493 Devries et al. Nov 1987 A
4709108 Devries et al. Nov 1987 A
4720600 Beech, Jr. et al. Jan 1988 A
4720602 Chu Jan 1988 A
4724275 Hinnenkamp et al. Feb 1988 A
4735747 Ollivier et al. Apr 1988 A
4737594 Olah Apr 1988 A
4748013 Saito et al. May 1988 A
4762596 Huang et al. Aug 1988 A
4769504 Noceti et al. Sep 1988 A
4774216 Kolts et al. Sep 1988 A
4775462 Imai et al. Oct 1988 A
4777321 Harandi et al. Oct 1988 A
4781733 Babcock et al. Nov 1988 A
4783566 Kocal et al. Nov 1988 A
4788369 Marsh et al. Nov 1988 A
4788377 Chang et al. Nov 1988 A
4792642 Rule et al. Dec 1988 A
4795732 Barri Jan 1989 A
4795737 Rule et al. Jan 1989 A
4795843 Imai et al. Jan 1989 A
4795848 Teller et al. Jan 1989 A
4804797 Minet et al. Feb 1989 A
4804800 Bortinger et al. Feb 1989 A
4808763 Shum Feb 1989 A
4814527 Diesen Mar 1989 A
4814532 Yoshida et al. Mar 1989 A
4814535 Yurchak Mar 1989 A
4814536 Yurchak Mar 1989 A
4849562 Buhs et al. Jul 1989 A
4849573 Kaeding Jul 1989 A
4851602 Harandi et al. Jul 1989 A
4851606 Ragonese et al. Jul 1989 A
4886925 Harandi Dec 1989 A
4886932 Leyshon Dec 1989 A
4891463 Chu Jan 1990 A
4895995 James, Jr. et al. Jan 1990 A
4899000 Stauffer Feb 1990 A
4899001 Kalnes et al. Feb 1990 A
4899002 Harandi et al. Feb 1990 A
4902842 Kalnes et al. Feb 1990 A
4925995 Robschlager May 1990 A
4929781 James, Jr. et al. May 1990 A
4939310 Wade Jul 1990 A
4939311 Washecheck et al. Jul 1990 A
4939314 Harandi et al. Jul 1990 A
4945175 Hobbs et al. Jul 1990 A
4950811 Doussain et al. Aug 1990 A
4950822 Dileo et al. Aug 1990 A
4956521 Volles Sep 1990 A
4962252 Wade Oct 1990 A
4973776 Allenger et al. Nov 1990 A
4973786 Karra Nov 1990 A
4982024 Lin et al. Jan 1991 A
4982041 Campbell Jan 1991 A
4988660 Campbell Jan 1991 A
4990696 Stauffer Feb 1991 A
4990711 Chen et al. Feb 1991 A
5001293 Nubel et al. Mar 1991 A
5004847 Beaver et al. Apr 1991 A
5013424 James, Jr. et al. May 1991 A
5013793 Wang et al. May 1991 A
5019652 Taylor et al. May 1991 A
5026934 Bains et al. Jun 1991 A
5026937 Bricker Jun 1991 A
5026944 Allenger et al. Jun 1991 A
5034566 Ishino et al. Jul 1991 A
5043502 Martindale et al. Aug 1991 A
5055235 Brackenridge et al. Oct 1991 A
5055625 Neidiffer et al. Oct 1991 A
5055633 Volles Oct 1991 A
5055634 Volles Oct 1991 A
5059744 Harandi et al. Oct 1991 A
5068478 Miller et al. Nov 1991 A
5071449 Sircar Dec 1991 A
5071815 Wallace et al. Dec 1991 A
5073656 Chafin et al. Dec 1991 A
5073657 Warren Dec 1991 A
5082473 Keefer Jan 1992 A
5082816 Teller et al. Jan 1992 A
5085674 Leavitt Feb 1992 A
5087779 Nubel et al. Feb 1992 A
5087786 Nubel et al. Feb 1992 A
5087787 Kimble et al. Feb 1992 A
5093533 Wilson Mar 1992 A
5093542 Gaffney Mar 1992 A
5096469 Keefer Mar 1992 A
5097083 Stauffer Mar 1992 A
5099084 Stauffer Mar 1992 A
5105045 Kimble et al. Apr 1992 A
5105046 Washecheck Apr 1992 A
5107032 Erb et al. Apr 1992 A
5107051 Pannell Apr 1992 A
5107061 Ou et al. Apr 1992 A
5108579 Casci Apr 1992 A
5118899 Kimble et al. Jun 1992 A
5120332 Wells Jun 1992 A
5132343 Zwecker et al. Jul 1992 A
5138112 Gosling et al. Aug 1992 A
5139991 Taylor et al. Aug 1992 A
5146027 Gaffney Sep 1992 A
5157189 Karra Oct 1992 A
5160502 Kimble et al. Nov 1992 A
5166452 Gradl et al. Nov 1992 A
5175382 Hebgen et al. Dec 1992 A
5178748 Casci et al. Jan 1993 A
5185479 Stauffer Feb 1993 A
5188725 Harandi Feb 1993 A
5191142 Marshall et al. Mar 1993 A
5194244 Brownscombe et al. Mar 1993 A
5202506 Kirchner et al. Apr 1993 A
5202511 Salinas, III et al. Apr 1993 A
5208402 Wilson May 1993 A
5210357 Kolts et al. May 1993 A
5215648 Zones et al. Jun 1993 A
5223471 Washecheck Jun 1993 A
5228888 Gmelin et al. Jul 1993 A
5233113 Periana et al. Aug 1993 A
5237115 Makovec et al. Aug 1993 A
5243098 Miller et al. Sep 1993 A
5243114 Johnson et al. Sep 1993 A
5245109 Kaminsky et al. Sep 1993 A
5254772 Dukat et al. Oct 1993 A
5254790 Thomas et al. Oct 1993 A
5264635 Le et al. Nov 1993 A
5268518 West et al. Dec 1993 A
5276226 Horvath et al. Jan 1994 A
5276240 Timmons et al. Jan 1994 A
5276242 Wu Jan 1994 A
5284990 Peterson et al. Feb 1994 A
5300126 Brown et al. Apr 1994 A
5306855 Periana et al. Apr 1994 A
5316995 Kaminsky et al. May 1994 A
5319132 Ozawa et al. Jun 1994 A
5334777 Miller et al. Aug 1994 A
5345021 Casci et al. Sep 1994 A
5354916 Horvath et al. Oct 1994 A
5354931 Jan et al. Oct 1994 A
5366949 Schubert Nov 1994 A
5371313 Ostrowicki Dec 1994 A
5382704 Krespan et al. Jan 1995 A
5382743 Beech, Jr. et al. Jan 1995 A
5382744 Abbott et al. Jan 1995 A
5385650 Howarth et al. Jan 1995 A
5385718 Casci et al. Jan 1995 A
5395981 Marker Mar 1995 A
5399258 Fletcher et al. Mar 1995 A
5401890 Parks Mar 1995 A
5401894 Brasier et al. Mar 1995 A
5406017 Withers, Jr. Apr 1995 A
5411641 Trainham et al. May 1995 A
5414173 Garces et al. May 1995 A
5430210 Grasselli et al. Jul 1995 A
5430214 Smith et al. Jul 1995 A
5430219 Sanfilippo et al. Jul 1995 A
5433828 van Velzen et al. Jul 1995 A
5436378 Masini et al. Jul 1995 A
5444168 Brown Aug 1995 A
5446234 Casci et al. Aug 1995 A
5453557 Harley et al. Sep 1995 A
5456822 Marcilly et al. Oct 1995 A
5457255 Kumata et al. Oct 1995 A
5464799 Casci et al. Nov 1995 A
5465699 Voigt Nov 1995 A
5470377 Whitlock Nov 1995 A
5480629 Thompson et al. Jan 1996 A
5486627 Quarderer, Jr. et al. Jan 1996 A
5489719 Le et al. Feb 1996 A
5489727 Randolph et al. Feb 1996 A
5500297 Thompson et al. Mar 1996 A
5510525 Sen et al. Apr 1996 A
5523503 Funk et al. Jun 1996 A
5525230 Wrigley et al. Jun 1996 A
5538540 Whitlock Jul 1996 A
5563313 Chung et al. Oct 1996 A
5565092 Pannell et al. Oct 1996 A
5565616 Li et al. Oct 1996 A
5571762 Clerici et al. Nov 1996 A
5571885 Chung et al. Nov 1996 A
5599381 Whitlock Feb 1997 A
5600043 Johnston et al. Feb 1997 A
5600045 Van Der Aalst et al. Feb 1997 A
5609654 Le et al. Mar 1997 A
5633419 Spencer et al. May 1997 A
5639930 Penick Jun 1997 A
5653956 Zones Aug 1997 A
5656149 Zones et al. Aug 1997 A
5661097 Spencer et al. Aug 1997 A
5663465 Clegg et al. Sep 1997 A
5663474 Pham et al. Sep 1997 A
5674464 Van Velzen et al. Oct 1997 A
5675046 Ohno et al. Oct 1997 A
5675052 Menon et al. Oct 1997 A
5679134 Brugerolle et al. Oct 1997 A
5679879 Mercier et al. Oct 1997 A
5684213 Nemphos et al. Nov 1997 A
5693191 Pividal et al. Dec 1997 A
5695890 Thompson et al. Dec 1997 A
5698747 Godwin et al. Dec 1997 A
5705712 Frey et al. Jan 1998 A
5705728 Viswanathan et al. Jan 1998 A
5705729 Huang Jan 1998 A
5708246 Camaioni et al. Jan 1998 A
5720858 Noceti et al. Feb 1998 A
5728897 Buysch et al. Mar 1998 A
5728905 Clegg et al. Mar 1998 A
5734073 Chambers et al. Mar 1998 A
5741949 Mack Apr 1998 A
5744669 Kalnes et al. Apr 1998 A
5750801 Buysch et al. May 1998 A
5770175 Zones Jun 1998 A
5776871 Cothran et al. Jul 1998 A
5780703 Chang et al. Jul 1998 A
5782936 Riley Jul 1998 A
5798314 Spencer et al. Aug 1998 A
5814715 Chen et al. Sep 1998 A
5817904 Vic et al. Oct 1998 A
5821394 Schoebrechts et al. Oct 1998 A
5847224 Koga et al. Dec 1998 A
5849978 Benazzi et al. Dec 1998 A
5866735 Cheung et al. Feb 1999 A
5882614 Taylor, Jr. et al. Mar 1999 A
5895831 Brasier et al. Apr 1999 A
5898086 Harris Apr 1999 A
5905169 Jacobson May 1999 A
5906892 Thompson et al. May 1999 A
5908963 Voss et al. Jun 1999 A
5928488 Newman Jul 1999 A
5952538 Vaughn et al. Sep 1999 A
5959170 Withers, Jr. et al. Sep 1999 A
5968236 Bassine Oct 1999 A
5969195 Stabel et al. Oct 1999 A
5977402 Sekiguchi et al. Nov 1999 A
5983476 Eshelman et al. Nov 1999 A
5986158 Van Broekhoven et al. Nov 1999 A
5994604 Reagen et al. Nov 1999 A
5998679 Miller Dec 1999 A
5998686 Clem et al. Dec 1999 A
6002059 Hellring et al. Dec 1999 A
6015867 Fushimi et al. Jan 2000 A
6018088 Olah Jan 2000 A
6022929 Chen et al. Feb 2000 A
6034288 Scott et al. Mar 2000 A
6056804 Keefer et al. May 2000 A
6068679 Zheng May 2000 A
6072091 Cosyns et al. Jun 2000 A
6087294 Klabunde et al. Jul 2000 A
6090312 Ziaka et al. Jul 2000 A
6093306 Hanrahan et al. Jul 2000 A
6096932 Subramanian Aug 2000 A
6096933 Cheung et al. Aug 2000 A
6103215 Zones et al. Aug 2000 A
6107561 Thompson Aug 2000 A
6117371 Mack Sep 2000 A
6124514 Emmrich et al. Sep 2000 A
6127588 Kimble et al. Oct 2000 A
6130260 Hall et al. Oct 2000 A
6143939 Farcasiu et al. Nov 2000 A
6169218 Hearn et al. Jan 2001 B1
6180841 Fatutto et al. Jan 2001 B1
6187871 Thompson et al. Feb 2001 B1
6187983 Sun Feb 2001 B1
6203712 Bronner et al. Mar 2001 B1
6207864 Henningsen et al. Mar 2001 B1
6225517 Nascimento et al. May 2001 B1
6248218 Linkous et al. Jun 2001 B1
6265505 McConville et al. Jul 2001 B1
6281405 Davis et al. Aug 2001 B1
6320085 Arvai et al. Nov 2001 B1
6337063 Rouleau et al. Jan 2002 B1
6342200 Rouleau et al. Jan 2002 B1
6368490 Gestermann Apr 2002 B1
6369283 Guram et al. Apr 2002 B1
6372949 Brown et al. Apr 2002 B1
6376731 Evans et al. Apr 2002 B1
6380328 McConville et al. Apr 2002 B1
6380423 Banning et al. Apr 2002 B2
6380444 Bjerrum et al. Apr 2002 B1
6395945 Randolph May 2002 B1
6403840 Zhou et al. Jun 2002 B1
6406523 Connor et al. Jun 2002 B1
6423211 Randolph et al. Jul 2002 B1
6426441 Randolph et al. Jul 2002 B1
6426442 Ichikawa et al. Jul 2002 B1
6452058 Schweizer et al. Sep 2002 B1
6455650 Lipian et al. Sep 2002 B1
6462243 Zhou et al. Oct 2002 B1
6465696 Zhou et al. Oct 2002 B1
6465699 Grosso Oct 2002 B1
6472345 Hintermann et al. Oct 2002 B2
6472572 Zhou et al. Oct 2002 B1
6475463 Elomari et al. Nov 2002 B1
6475464 Rouleau et al. Nov 2002 B1
6479705 Murata et al. Nov 2002 B2
6482997 Petit-Clair et al. Nov 2002 B2
6486368 Zhou et al. Nov 2002 B1
6491809 Briot et al. Dec 2002 B1
6495484 Holtcamp Dec 2002 B1
6509485 Mul et al. Jan 2003 B2
6511526 Jagger et al. Jan 2003 B2
6514319 Keefer et al. Feb 2003 B2
6518474 Sanderson et al. Feb 2003 B1
6518476 Culp et al. Feb 2003 B1
6525228 Chauvin et al. Feb 2003 B2
6525230 Grosso Feb 2003 B2
6528693 Gandy et al. Mar 2003 B1
6538162 Chang et al. Mar 2003 B2
6540905 Elomari Apr 2003 B1
6545191 Stauffer Apr 2003 B1
6547958 Elomari Apr 2003 B1
6548040 Rouleau et al. Apr 2003 B1
6552241 Randolph et al. Apr 2003 B1
6566572 Okamoto et al. May 2003 B2
6572829 Linkous et al. Jun 2003 B2
6585953 Roberts et al. Jul 2003 B2
6616830 Elomari Sep 2003 B2
6620757 McConville et al. Sep 2003 B2
6632971 Brown et al. Oct 2003 B2
6635793 Mul et al. Oct 2003 B2
6641644 Jagger et al. Nov 2003 B2
6646102 Boriack et al. Nov 2003 B2
6669846 Perriello Dec 2003 B2
6672572 Werlen Jan 2004 B2
6679986 Da Silva et al. Jan 2004 B1
6680415 Gulotty, Jr. et al. Jan 2004 B1
6692626 Keefer et al. Feb 2004 B2
6692723 Rouleau et al. Feb 2004 B2
6710213 Aoki et al. Mar 2004 B2
6713087 Tracy et al. Mar 2004 B2
6713655 Yilmaz et al. Mar 2004 B2
RE38493 Keefer et al. Apr 2004 E
6723808 Holtcamp Apr 2004 B2
6727400 Messier et al. Apr 2004 B2
6740146 Simonds May 2004 B2
6753390 Ehrman et al. Jun 2004 B2
6765120 Weber et al. Jul 2004 B2
6797845 Hickman et al. Sep 2004 B1
6797851 Martens et al. Sep 2004 B2
6821924 Gulotty, Jr. et al. Nov 2004 B2
6822123 Stauffer Nov 2004 B2
6822125 Lee et al. Nov 2004 B2
6825307 Goodall Nov 2004 B2
6825383 Dewkar et al. Nov 2004 B1
6831032 Spaether Dec 2004 B2
6838576 Wicki et al. Jan 2005 B1
6841063 Elomari Jan 2005 B2
6852896 Stauffer Feb 2005 B2
6866950 Connor et al. Mar 2005 B2
6869903 Matsunaga Mar 2005 B2
6875339 Rangarajan et al. Apr 2005 B2
6878853 Tanaka et al. Apr 2005 B2
6888013 Paparatto et al. May 2005 B2
6900363 Harth et al. May 2005 B2
6902602 Keefer et al. Jun 2005 B2
6903171 Rhodes et al. Jun 2005 B2
6909024 Jones et al. Jun 2005 B1
6921597 Keefer et al. Jul 2005 B2
6933417 Henley et al. Aug 2005 B1
6946566 Yaegashi et al. Sep 2005 B2
6953868 Boaen et al. Oct 2005 B2
6953870 Yan et al. Oct 2005 B2
6953873 Cortright et al. Oct 2005 B2
6956140 Ehrenfeld Oct 2005 B2
6958306 Holtcamp Oct 2005 B2
6984763 Schweizer et al. Jan 2006 B2
7001872 Pyecroft et al. Feb 2006 B2
7002050 Santiago Fernandez et al. Feb 2006 B2
7011811 Elomari Mar 2006 B2
7019182 Grosso Mar 2006 B2
7026145 Mizrahi et al. Apr 2006 B2
7026519 Santiago Fernandez et al. Apr 2006 B2
7037358 Babicki et al. May 2006 B2
7045670 Johnson et al. May 2006 B2
7049388 Boriack et al. May 2006 B2
7053252 Boussand et al. May 2006 B2
7057081 Allison et al. Jun 2006 B2
7060865 Ding et al. Jun 2006 B2
7064238 Waycuilis Jun 2006 B2
7064240 Ohno et al. Jun 2006 B2
7067448 Weitkamp et al. Jun 2006 B1
7083714 Elomari Aug 2006 B2
7084308 Stauffer Aug 2006 B1
7091270 Zilberman et al. Aug 2006 B2
7091387 Fong et al. Aug 2006 B2
7091391 Stauffer Aug 2006 B2
7094936 Owens et al. Aug 2006 B1
7098371 Mack et al. Aug 2006 B2
7105710 Boons et al. Sep 2006 B2
7138534 Forlin et al. Nov 2006 B2
7141708 Marsella et al. Nov 2006 B2
7145045 Harmsen et al. Dec 2006 B2
7148356 Smith, III et al. Dec 2006 B2
7148390 Zhou et al. Dec 2006 B2
7151199 Martens et al. Dec 2006 B2
7161050 Sherman et al. Jan 2007 B2
7169730 Ma et al. Jan 2007 B2
7176340 Van Broekhoven et al. Feb 2007 B2
7176342 Bellussi et al. Feb 2007 B2
7182871 Perriello Feb 2007 B2
7193093 Murray et al. Mar 2007 B2
7196239 Van Egmond et al. Mar 2007 B2
7199083 Zevallos Apr 2007 B2
7199255 Murray et al. Apr 2007 B2
7208641 Nagasaki et al. Apr 2007 B2
7214750 McDonald et al. May 2007 B2
7220391 Huang et al. May 2007 B1
7226569 Elomari Jun 2007 B2
7226576 Elomari Jun 2007 B2
7230150 Grosso et al. Jun 2007 B2
7230151 Martens et al. Jun 2007 B2
7232872 Shaffer et al. Jun 2007 B2
7238846 Janssen et al. Jul 2007 B2
7244795 Agapiou et al. Jul 2007 B2
7244867 Waycuilis Jul 2007 B2
7250107 Benazzi et al. Jul 2007 B2
7250542 Smith, Jr. et al. Jul 2007 B2
7252920 Kurokawa et al. Aug 2007 B2
7253327 Janssens et al. Aug 2007 B2
7253328 Stauffer Aug 2007 B2
7265193 Weng et al. Sep 2007 B2
7267758 Benazzi et al. Sep 2007 B2
7268263 Frey et al. Sep 2007 B1
7271303 Sechrist et al. Sep 2007 B1
7273957 Bakshi et al. Sep 2007 B2
7282603 Richards Oct 2007 B2
7285698 Liu et al. Oct 2007 B2
7304193 Frey et al. Dec 2007 B1
7342144 Kaizik et al. Mar 2008 B2
7348295 Zones et al. Mar 2008 B2
7348464 Waycuilis Mar 2008 B2
7357904 Zones et al. Apr 2008 B2
7361794 Grosso Apr 2008 B2
7365102 Weissman Apr 2008 B1
7390395 Elomari Jun 2008 B2
7560607 Waycuilis Jul 2009 B2
7674941 Waycuilis et al. Mar 2010 B2
7713510 Harrod et al. May 2010 B2
7880041 Waycuilis Feb 2011 B2
8008535 Waycuilis Aug 2011 B2
8173851 Waycuilis et al. May 2012 B2
8198495 Waycuilis et al. Jun 2012 B2
8232441 Waycuilis Jul 2012 B2
20020102672 Mizrahi Aug 2002 A1
20020193649 O'Rear et al. Dec 2002 A1
20020198416 Zhou et al. Dec 2002 A1
20030004380 Grumann Jan 2003 A1
20030065239 Zhu Apr 2003 A1
20030069452 Sherman et al. Apr 2003 A1
20030078456 Yilmaz et al. Apr 2003 A1
20030120121 Sherman et al. Jun 2003 A1
20030125589 Grosso Jul 2003 A1
20030166973 Zhou et al. Sep 2003 A1
20040006246 Sherman et al. Jan 2004 A1
20040062705 Leduc Apr 2004 A1
20040152929 Clarke Aug 2004 A1
20040158107 Aoki Aug 2004 A1
20040158108 Snoble Aug 2004 A1
20040171779 Matyjaszewski et al. Sep 2004 A1
20040187684 Elomari Sep 2004 A1
20040188271 Ramachandraiah et al. Sep 2004 A1
20040188324 Elomari Sep 2004 A1
20040220433 Van Der Heide Nov 2004 A1
20050027084 Clarke Feb 2005 A1
20050038310 Lorkovic et al. Feb 2005 A1
20050042159 Elomari Feb 2005 A1
20050047927 Lee et al. Mar 2005 A1
20050148805 Jones Jul 2005 A1
20050171393 Lorkovic Aug 2005 A1
20050192468 Sherman et al. Sep 2005 A1
20050215837 Hoffpauir Sep 2005 A1
20050234276 Waycuilis Oct 2005 A1
20050234277 Waycuilis Oct 2005 A1
20050245771 Fong et al. Nov 2005 A1
20050245772 Fong Nov 2005 A1
20050245777 Fong Nov 2005 A1
20050267224 Herling Dec 2005 A1
20060025617 Begley Feb 2006 A1
20060100469 Waycuilis May 2006 A1
20060135823 Jun Jun 2006 A1
20060138025 Zones Jun 2006 A1
20060138026 Chen Jun 2006 A1
20060149116 Slaugh Jul 2006 A1
20060229228 Komon et al. Oct 2006 A1
20060229475 Weiss et al. Oct 2006 A1
20060270863 Reiling Nov 2006 A1
20060288690 Elomari Dec 2006 A1
20070004955 Kay Jan 2007 A1
20070078285 Dagle Apr 2007 A1
20070100189 Stauffer May 2007 A1
20070129584 Basset Jun 2007 A1
20070142680 Ayoub Jun 2007 A1
20070148067 Zones Jun 2007 A1
20070148086 Zones Jun 2007 A1
20070149778 Zones Jun 2007 A1
20070149789 Zones Jun 2007 A1
20070149819 Zones Jun 2007 A1
20070149824 Zones Jun 2007 A1
20070149837 Zones Jun 2007 A1
20070197801 Bolk Aug 2007 A1
20070197847 Liu Aug 2007 A1
20070213545 Bolk Sep 2007 A1
20070238905 Arredondo Oct 2007 A1
20070238909 Gadewar et al. Oct 2007 A1
20070276168 Garel Nov 2007 A1
20070284284 Zones Dec 2007 A1
20080022717 Yoshida et al. Jan 2008 A1
20080152555 Wang et al. Jun 2008 A1
20080171898 Waycuilis Jul 2008 A1
20080183022 Waycuilis Jul 2008 A1
20080188697 Lorkovic Aug 2008 A1
20080200740 Waycuilis Aug 2008 A1
20080275284 Waycuilis Nov 2008 A1
20080314758 Grosso et al. Dec 2008 A1
20090005620 Waycuilis et al. Jan 2009 A1
20090163749 Li et al. Jun 2009 A1
20090247796 Waycuilis et al. Oct 2009 A1
20090270655 Fong et al. Oct 2009 A1
20090306443 Stark et al. Dec 2009 A1
20090312586 Waycuilis et al. Dec 2009 A1
20090326292 Waycuilis Dec 2009 A1
20100030005 Sauer et al. Feb 2010 A1
20100087686 Fong et al. Apr 2010 A1
20100096588 Gadewar et al. Apr 2010 A1
20100099930 Stoimenov et al. Apr 2010 A1
20100105972 Lorkovic Apr 2010 A1
20100234637 Fong et al. Sep 2010 A1
20110015458 Waycuilis et al. Jan 2011 A1
20110071326 Waycuilis Mar 2011 A1
20110218372 Waycuilis et al. Sep 2011 A1
20110218374 Waycuilis Sep 2011 A1
20120141356 Brickey et al. Jun 2012 A1
Foreign Referenced Citations (172)
Number Date Country
1099656 Apr 1981 CA
1101441 May 1981 CA
1202610 Apr 1986 CA
2542857 May 2005 CA
2236126 Aug 2006 CA
2203115 Sep 2006 CA
2510093 Dec 2006 CA
0164798 Dec 1985 EP
0418971 Mar 1991 EP
0418974 Mar 1991 EP
0418975 Mar 1991 EP
0510238 Oct 1992 EP
0526908 Feb 1993 EP
0346612 Aug 1993 EP
0560546 Sep 1993 EP
0976705 Jul 1998 EP
1186591 Mar 2002 EP
1253126 Oct 2002 EP
1312411 May 2003 EP
1235769 May 2004 EP
1440939 Jul 2004 EP
1235772 Jan 2005 EP
1661620 May 2006 EP
1760057 Mar 2007 EP
1689728 Apr 2007 EP
1808227 Jul 2007 EP
1837320 Sep 2007 EP
5125 Jan 1912 GB
156122 Mar 1922 GB
294100 Jun 1929 GB
363009 Dec 1931 GB
402928 Dec 1933 GB
474922 Nov 1937 GB
536491 May 1941 GB
553950 Jun 1943 GB
586483 Mar 1947 GB
775590 May 1957 GB
793214 Apr 1958 GB
796048 Jun 1958 GB
796085 Jun 1958 GB
883256 Nov 1961 GB
883256 Nov 1961 GB
930341 Jul 1963 GB
950975 Mar 1964 GB
950976 Mar 1964 GB
991303 May 1965 GB
995960 Jun 1965 GB
1015033 Dec 1965 GB
1104294 Feb 1968 GB
1133752 Nov 1968 GB
1172002 Nov 1969 GB
1212240 Nov 1970 GB
1233299 May 1971 GB
1253618 Nov 1971 GB
1263806 Feb 1972 GB
1446803 Aug 1976 GB
1542112 Mar 1979 GB
2095243 Sep 1982 GB
2095245 Sep 1982 GB
2095249 Sep 1982 GB
2116546 Sep 1982 GB
2120249 Nov 1983 GB
2185754 Jul 1987 GB
2191214 Dec 1987 GB
694483 Oct 1979 SU
8300859 Mar 1983 WO
8504863 Nov 1985 WO
8504867 Nov 1985 WO
9008120 Jul 1990 WO
9008752 Aug 1990 WO
9118856 Dec 1991 WO
9203401 Mar 1992 WO
9212946 Aug 1992 WO
9316798 Sep 1993 WO
9622263 Jul 1996 WO
9744302 Nov 1997 WO
9812165 Mar 1998 WO
9907443 Feb 1999 WO
0007718 Feb 2000 WO
0009261 Feb 2000 WO
0114300 Mar 2001 WO
0138275 May 2001 WO
0144149 Jun 2001 WO
02094749 Nov 2002 WO
02094750 Nov 2002 WO
02094751 Nov 2002 WO
02094752 Nov 2002 WO
03000635 Jan 2003 WO
03002251 Jan 2003 WO
03018524 Mar 2003 WO
03020676 Mar 2003 WO
03022827 Mar 2003 WO
03043575 May 2003 WO
03051813 Jun 2003 WO
03062143 Jul 2003 WO
03062172 Jul 2003 WO
03078366 Sep 2003 WO
2004018093 Mar 2004 WO
2004067487 Aug 2004 WO
2005014168 Feb 2005 WO
2005019143 Mar 2005 WO
2005021468 Mar 2005 WO
2005035121 Apr 2005 WO
2005037758 Apr 2005 WO
2005054120 Jun 2005 WO
2005056525 Jun 2005 WO
2005058782 Jun 2005 WO
2005090272 Sep 2005 WO
2005095310 Oct 2005 WO
2005104689 Nov 2005 WO
2005105709 Nov 2005 WO
2005105715 Nov 2005 WO
2005110953 Nov 2005 WO
2005113437 Dec 2005 WO
2005113440 Dec 2005 WO
2006007093 Jan 2006 WO
2006015824 Feb 2006 WO
2006019399 Feb 2006 WO
2006020234 Feb 2006 WO
2006036293 Apr 2006 WO
2006039213 Apr 2006 WO
2006039354 Apr 2006 WO
2006043075 Apr 2006 WO
2006053345 May 2006 WO
2006-067155 Jun 2006 WO
2006067188 Jun 2006 WO
2006067190 Jun 2006 WO
2006067191 Jun 2006 WO
2006067192 Jun 2006 WO
2006067193 Jun 2006 WO
2006069107 Jun 2006 WO
2006071354 Jul 2006 WO
2006076942 Jul 2006 WO
2006083427 Aug 2006 WO
2006-100312 Sep 2006 WO
2006104909 Oct 2006 WO
2006104914 Oct 2006 WO
2006111997 Oct 2006 WO
2006113205 Oct 2006 WO
2006118935 Nov 2006 WO
2007001934 Jan 2007 WO
2007017900 Feb 2007 WO
2007044139 Apr 2007 WO
2007046986 Apr 2007 WO
2007050745 May 2007 WO
2007071046 Jun 2007 WO
2007079038 Jul 2007 WO
2007091009 Aug 2007 WO
2007094995 Aug 2007 WO
2007107031 Sep 2007 WO
2007111997 Oct 2007 WO
2007114479 Oct 2007 WO
2007125332 Nov 2007 WO
2007130054 Nov 2007 WO
2007130055 Nov 2007 WO
2007141295 Dec 2007 WO
2007142745 Dec 2007 WO
2008036562 Mar 2008 WO
2008036563 Mar 2008 WO
2008106319 Sep 2008 WO
2008157043 Dec 2008 WO
2008157044 Dec 2008 WO
2008157045 Dec 2008 WO
2008157046 Dec 2008 WO
2008157047 Dec 2008 WO
2009152403 Dec 2009 WO
2009152405 Dec 2009 WO
2009152408 Dec 2009 WO
2010009376 Jan 2010 WO
2011008573 Jan 2011 WO
2011109244 Sep 2011 WO
2011159490 Dec 2011 WO
Related Publications (1)
Number Date Country
20090308759 A1 Dec 2009 US
Provisional Applications (1)
Number Date Country
61061475 Jun 2008 US