The invention relates to a brush, in particular a toothbrush, as claimed in claims 1 and 2, and to an associated production method as claimed in claim 17.
Disposable toothbrushes are known which, in various ways, already contain toothpaste. In U.S. Pat. No. 5,346,324 and U.S. Pat. No. 5,909,977, a very liquid toothpaste is located in a reservoir in the handle area and is forced by a plunger into the head area, where it emerges through openings into the area of the bristles. Disadvantages of this are the difficult dosing of the toothpaste, the need to use very liquid toothpaste, the unwieldy handle, the frequent drying-up and therefore blocking of the fluid channel, and the difficult to impossible refilling of the reservoir.
Toothbrushes are also known in which a predetermined amount of toothpaste is located in a cavity in the head area and is squeezed out of the head area by manual deformation before cleaning the teeth. In U.S. Pat. No. 1,947,720, deformation of the head area causes a slit-like and initially closed aperture to break open, such that the toothpaste can emerge. Repeated use by refilling is not possible, nor is exact dosing possible. Release of the toothpaste also requires application of considerable force. Similar examples in which toothpaste is squeezed out manually are disclosed in FR 2,583,625 or U.S. Pat. No. 5,865,195. In U.S. Pat. No. 5,490,530, the outlet openings can be closed again by a slide. The toothpaste is squeezed out by pressing a button which is arranged on the underside of the head part and which decreases the volume of the toothpaste reservoir. Exact dosing of the toothpaste is also difficult here. Refilling of the reservoir is impossible. In U.S. Pat. No. 5,366,310, the toothpaste is located in a sealed capsule which is pushed into the brush head. After the seal is removed, the toothpaste is released by squeezing it out manually. Although refilling is in principle possible in this case, exact dosing is still difficult.
In all the examples mentioned, the user has to act manually on the brush in order to release any toothpaste. Since a certain force is needed for this, and since a certain dexterity is required for the desired dosing, the known toothbrushes are not easy to handle for everyone.
In WO 2004/021914, a disposable toothbrush contains an encapsulated portion of liquid dentifrice in the area of the bristles. The capsule is broken open by contact with the teeth. The problem with this, in addition to the fact that it is limited to a single use, is that the dentifrice can emerge even when the toothbrush is not used properly. In addition, there is a certain risk of damage to the palate and gums at the non-defined rupture points of the capsule.
The invention is therefore based on the object of making available a brush, in particular a toothbrush, with an active substance, which brush or toothbrush is suitable for repeated use and/or for refilling of the active substance and permits simple handling and simple dosing of the active substance. Moreover, a method for producing such a brush is also to be made available.
The object is achieved by a brush with the features of claims 1 and 2, and by a method with the features of claim 17. Advantageous developments are set out in the dependent claims, the description and the drawings.
In a brush, in particular a toothbrush, with a cavity which is arranged in the head part or neck part and which has at least one outlet opening for an active substance, said cavity according to the invention contains an active substance element which is composed of a carrier material and of an active substance bound in the latter. The carrier material releases the active substance in a controlled manner upon contact with water. The carrier material is preferably solid, but can also be a high-viscosity paste. Preferably, it is to a large extent dimensionally stable when not in contact with water.
Alternatively, or in addition to this, the cavity is adapted to the shape of the active substance element with a defined external form. The volume of the cavity is greater, in particular 1-2 times greater, and not more than 4 times greater, than the volume of the active substance element. The active substance can also protrude from the head in order to form a sufficient contact surface for the release of active substances. This ensures that water washes sufficiently round the active substance element during use.
The release of the active substance takes place in a purely passive way, by means of water washing round the active substance element, and no manual action on the brush is necessary. The brush would therefore already release active substances if it were to be placed in water at temperatures of 15° Celsius or higher. The movement involved in cleaning the teeth can of course additionally assist the migration of the active substance through the improved circulation of liquid, but the aim 1s to ensure that the brush releases active substances in connection with water without mechanical actions. The dosing can be adapted and predetermined by suitable choice of the solubility or break-up of the active substance element, or its ability to release the active substance, and the size of the outlet openings, and the dosing does not therefore depend on the dexterity of the user.
In an advantageous development, the brush is flexible, at least in the area of the cavity, in such a way that, when the brush is used as intended, i.e. for cleaning the teeth, the cavity deforms in such a way that water is sucked into the cavity and forced out again. In contrast to the prior art in which a pasty composition is squeezed out by manual pressure before cleaning the teeth, the invention makes use of a pump/suction effect on the water, permitted by the flexibility of the cavity. In this way, the intake of water into the cavity and the washing-out of the active substance can be intensified without the user first having to manipulate the brush. The cavity is for this purpose preferably adapted to the shape of the active substance element, such that the latter is spaced apart at least partially from the inner wall and water washes round it during use. Advantageously, the cavity is at least partially enclosed by thin-walled boundary elements with a wall thickness of less than 3 mm, preferably of less than 1.5 mm, made of elastomeric soft material, in order to generate said pump effect even upon the slightest contact.
In addition to the flexible cavity, it is also possible for the entire brush head to have flexible, movable partial areas, e.g. a flexible front part of the brush head. The flexible deflection of this partial area also influences the volume of the cavity and, once again, the above-described pump/suction effect is produced. The flexibility of the brush head is preferably formed at the location where the cavity takes up the greatest proportion of the cross section of the brush head. This has the advantage that only a small proportion of the cross section of the head has to be made flexible. This can be done by targeted weakening of the material, for example a film hinge, lateral tunnel, etc., in the hard component, or by means of a combination of the hard and soft component. It is also possible for the flexible zone to be made completely from soft material.
The active substance element is preferably a solid body or a highly viscous and dimensionally stable paste, but it can also be formed by an encapsulated liquid, pasty or particulate substance with a water-soluble envelope. By suitable choice of the solubility or break-up of the active substance element or of its envelope, it is possible to achieve a dosing that is well defined and that may permit a uniform release of active substance throughout a teeth-cleaning procedure. In the case of a solid body or a highly viscous paste, multiple use of the same active substance element is possible if the latter is dimensioned, and its solubility or break-up chosen, such that it lasts for several typical cleaning procedures. Depending on their intended purpose, the active substances are released before, during or after the teeth-cleaning procedure. In this case, there is no danger of the openings drying up and clogging, because any residues can be easily washed away after use.
In another embodiment variant, the active substance element comprises a substantially dimensionally stable carrier from which the active substance is washed out, but which maintains its original shape. It preferably contains an indicator by which it changes color or fades over the period of use or in line with the number of uses.
In an advantageous development of the invention, the active substance element can be refilled via a recloseable insertion opening. In this way, it is possible to complete the step from a simply designed disposable brush to a high-quality cleaning product.
The active substances perform the following tasks for example:
The brush is composed of a head part with a cleaning structure, generally bristles, and with a neck part and a handle part. All the component elements can be made from at least one hard component and one or more soft components. Examples of hard components that can be used are polystyrene (PS), styrene-acrylo-nitrile (SAN), polyester (PET), polyethylene (PE), polymethylmethacrylate (PMMA), acryl-butadiene-styrene (ABS), etc., preferably polypropylene (PP). Examples of a soft component that can be used are an elastomeric material such as polyurethane (PUR) or polyethylene (PE), preferably a thermoplastic elastomer (TPE or TPU). In the brush head, hardnesses of below 70 Shore A are used, preferably of below 40 Shore A. The bristle region is preferably formed at least partially with conventional bristles, e.g. of polyamide (PA) or polyester (PBT) and, optionally, with elastomeric cleaning or massaging elements. The conventional bristles have, for example, a cylindrical geometry with a diameter of less than 0.25 mm, preferably of between 0.1 mm and 0.2 mm, and are gathered into bundles. The elastomeric massaging or cleaning elements usually have greater diameters, with the smallest dimensions in the cross section of 0.5 to 5 mm, preferably 0.5 to 2 mm.
Cleaning elements, in particular bristles and/or pliable elements, are preferably arranged in direct proximity to the outlet openings, and their mechanical properties, e.g. dimensions, flexibility, material, are adapted to the action that is to be achieved with the active substance that is to be introduced. Examples in toothbrushes are
The cavity offers space for at least one active substance element. The cavity preferably offers additional space such that water can wash round the active substance element and, in this way, the active substance is able to exert its action by means of being partially or completely dissolved. To permit sufficient circulation of water in the cavity, provision is preferably made for the volume of the cavity to be designed not more than four times greater, particularly preferably one to two times greater, than the size (the volume in the original size) of the active substance element. In toothbrushes, the cavity has a volume of from 5 to 1500 mm3, preferably 100 to 500 m3.
The active substance element can be clamped laterally or vertically in the cavity. To ensure that water is able to circulate around it to the greatest possible extent, projections or other geometric elements are preferably formed for this purpose in the soft and/or hard component in the cavity. This ensures that, during the cleaning procedure, the active substance element cannot be struck back and forward within the cavity and cannot break apart too early. However, the active substance element can also protrude outward through recesses in the boundary of the cavity and can extend out of the brush head laterally or on the face supporting the bristles.
The cavity is preferably generally designed such that the active substance element is positioned in a stable manner in the cavity despite the continuous break-up. For this purpose, the cavity is provided with a flexible element which is made from soft material and which exerts a kind of spring action on the active substance element, for example by an outer wall of the cavity being curved outward upon insertion of the active substance element. The active substance element in the original size is fixed in the cavity with a certain pretensioning. Except for the above-mentioned projections, the inner shape of the cavity essentially follows the geometric shape of the active substance element, preferably with a predefined distance. This preferably results in a substantially spherical or ellipsoid geometry of the cavity, adapted to spherical or ellipsoid active substance elements. In an alternative embodiment variant, the cavity can be designed as a slit into which a plate-shaped or film-shaped active substance element can be inserted. In another embodiment variant, the active substance element can be inserted in a rod-shaped or cylindrical geometry into a correspondingly shaped cavity.
In a plan view of the cleaning structure, the cavity lies preferably inside the bristle region, if conventional bristles are present. This means that the cavity can be produced with a thin wall, but a sufficient number of bristles can still be anchored all round the cavity, with a certain anchoring depth required for technical reasons. Cleaning elements made from a soft component, which require less head volume and anchoring depth than conventional bristles, are preferably formed directly over the cavity. In addition, for secure anchoring, conventional bristles require the hard component. Since the cavity on the face of the brush head supporting the bristles is preferably delimited by a membrane of soft material, it is technically very difficult to anchor conventional bristles in this area.
The cavity is delimited by a wall of hard and/or soft component, but preferably at least in some areas also by soft component, since the aforementioned flexibility can easily be achieved in this way.
It is advantageous, as regards the anchoring of the bristles, if the cavity is positioned in an area which adjoins the brush head, for example in the brush neck or in the transition between brush neck and brush head, and which comes into contact with water. This design has the advantage that the cavity does not have to be taken into consideration in anchoring the bristles within the brush head. The fact that the active substance does not emerge where it generally exerts the optimum effect, that is to say in the head area, is taken into account.
The cavity comprises at least one outlet opening for the entry of water, for the emergence of the active substance dissolved in the water, and for washing out the cavity under a tap after use. In variants with a refill option, at least one insertion opening for insertion of the active substance element by the user is additionally provided. The insertion opening, in the opened state, is larger than an outlet opening. The insertion opening is preferably located on the rear face of the brush head, and the outlet opening on the front face of the brush head. Alternative embodiment variants have the insertion opening on the side of the brush head. Alternatively or in addition, the outlet openings can be placed on the side and/or rear face of the brush head.
The insertion opening can preferably be reclosed. However, it can also serve as an outlet opening and must not completely seal off the cavity. The insertion opening can be formed by means of a cover or closure piece which is either removable or integrated into the head, for example by means of a film hinge injection-molded directly onto the head. Particularly preferably, the recloseable element is a membrane made from soft material and having a suitable opening which, for example, comprises one or more intersecting slits and corresponds to the size of the active substance element. The membrane can at the same time constitute a flexible wall of the cavity and/or serve as a support for cleaning/massaging elements. As an alternative to slits, other geometric elements can be provided which permit insertion of the active substance element and as far as possible prevent its escape, for example an expandable hole formed in the membrane and smaller than the active substance element.
In the case of a membrane, the latter has a thickness of less than 3 mm, preferably a thickness of 0.7-1.5 mm. Preferably, 2 to 6 slits are used as the insertion opening. The length of the slits is 3-15 mm, preferably about 6-10 mm, for toothbrushes.
The insertion opening can have a safety device which prevents the active substance element from falling out during use, or at least makes this difficult. For example, the membrane is formed with slits or a funnel in such a way that the active substance is inserted with little pressure (e.g. 10 to 300 g), but falling out requires more pressure, by virtue, for example, of a funnel-shaped geometry in the area of the opening. It is less preferable, but still possible, to provide additional closure elements or securing elements.
The insertion opening can still be closed at the time of the first use (tamper-evident safety means or seal). The first time the active substance element is inserted, the tamper-evident safety means can be broken by the user, for example by severing thin residual connections within the prefabricated slits.
The outlet openings permit a continuous but limited emergence of the active substance dissolved in water. The number of openings and their size (total surface area of the outlet opening) and the water-solubility of the active substance element or of the carrier material determine the actual emergence of the active substance dissolved or dispersed in water. Since the water-solubility of the active substance tends to represent a resultant parameter, the outlet openings (number and size) are adapted to the water-solubility of the active substance, in order to determine the range of the active substance during use. In this way, the dissolving of the active substance element can also serve as a time indicator for the (total) cleaning period that has hitherto elapsed.
An individual outlet opening is preferably not less than a minimum surface area of 0.05 mm2. This is because smaller openings can easily soil and thus impair the exchange of liquid. In addition, it is advantageous if the user can see through the outlet openings to assess the amount of active substance element still remaining in the cavity and can decide whether the active substance should be topped up. For these reasons, surface areas of 0.05-100 mm2, preferably 1-20 mm2, are preferably used for the outlet openings. This ensures precise dosing and prevents the active substance or fragments of the active substance element from being able to leave the cavity in an uncontrolled manner.
The individual outlet openings on a brush head can have different sizes (surface areas) in order to weight the released amount and the site of release. Preferably, individual groups of outlet openings are arranged at specific locations on the brush head. In this way, the release of the active substances at different sites of the bristle region can be controlled in terms of quantity and location. As has been mentioned above, there is preferably an interplay between the active substance and the active bristles specifically provided in combination with it. One to five groups (clusters) of outlet openings are preferably formed. These groups of outlet openings can also be positioned on the brush head asymmetrically with respect to the longitudinal axis. The different groups of outlet openings are preferably produced from the same material in one operating step. Particularly if the outlet openings are formed in the elastomeric material, this is done from one injection point for all groups, i.e. these groups are materially connected to one another. The outlet openings can be designed with geometric elements that increase the surface area in proximity to the outlet opening, in order to keep the active substance as much as possible in the area of the brush head. For example, a substantially funnel-shaped geometry can be used, or a geometry at least opening toward the outside. This also makes it easy to clean the cavity under a tap after use. Additional cleaning and massaging elements in the area of the outlet openings have the same advantage. For the same reason, however, as an alternative design element, sponge-like or perforated, soft elements can be positioned in the area of the outlet openings and likewise contribute to better retention of the active substance.
The outlet openings can be formed in the hard material and/or in the soft material of the brush head. However, they are preferably integrated into the above-described membrane made from soft material. In this case, the latter preferably has a thickness of less than 3 mm, preferably of 0.7-1.5 mm.
As has been described above, the cavity is preferably delimited by a membrane or membranes of soft material. Said membrane or membranes are flexible in order to adapt to the surrounding environment (gums, teeth, oral cavity, etc.) during use, and in order to exert a certain pump/suction effect on the cavity under the pressure exerted on the membrane by the cleaning procedure. These effects can be intensified by a curved shape of the membrane. Together with the outlet openings, the membrane can form a kind of expandable mesh structure. As has been described above, this mesh structure can have minimal outlet openings with a surface area of at least 0.05 mm2. Of course, mesh structures can be arranged on all sides of the brush head. To increase the surface area and thus maximize the cavity, they preferably have a convex U-shaped or cup-shaped outer geometry. The crosspieces of the mesh have a diameter of 0.1-2 mm, preferably of 0.2-0.5 man, and are made from soft material (e.g. TPE or PE).
Said membrane or membranes with the openings preferably form recognizably separate geometric elements within the brush head which are visible to the user and which in particular are also distinguished in color from the rest of the brush head. The user can therefore quickly see where the active substances emerge from the brush head. In different embodiment variants, the following geometric elements for the membranes can be used:
Moreover, cleaning and massaging elements made from soft material are preferably formed integrally on the flexible membranes delimiting the cavity. This partial aspect of the invention, that of designing a part of the brush head with a flexible membrane and of designing the latter with cleaning and/or massaging elements made from soft material, can advantageously also be used for brushes that do not have a cavity for active substances, but for example only have an empty cavity or no cavity at all. The membrane and the cleaning and/or massaging elements are preferably produced in one operating step, particularly by the injection-molding technique. This permits production of a brush with a particular elastic suspension of the cleaning/massaging structure. Unless specifically relating to the cavity, the following preferred designs also apply to brushes without a cavity, but with a membrane provided with a cleaning/massaging structure.
In the toothbrushes according to the invention, the fact that cleaning and/or massaging elements made from soft material are formed integrally on a flexible membrane has the following advantages:
The cleaning or massaging elements in the area of the outlet openings preferably have a bristle-shaped, lobe-shaped, lamella-shaped or nipple-shaped geometry. These elements are preferably formed conically and are preferably formed from the same material as the membrane in the same operating step. The following structures are possible, for example:
From the production point of view, it is preferable if the cleaning and/or massaging elements located in the area of the outlet openings are oriented parallel to the de-molding direction of the brush head. It is more complicated in manufacturing terms, but more effective during use, to provide cleaning or massaging elements that are oriented at a defined angle, preferably substantially at right angles, to the curved membrane surface.
The cleaning or massaging elements located in the area of the outlet openings are preferably less long than the conventional bristles in their proximity, with the result that, during use, a kind of reservoir for the active substance dissolved in water can form in the end area of the cleaning or massaging elements.
In addition to the outlet openings of the membranes, the cleaning and massaging elements themselves can also have outlet openings, which is the case, for example, in straw-shaped bristles, lamellas and nipples with holes. These have the advantage of being able to bring the active substance directly to the site of use. The active substance can in this case cover a relatively long distance by means of a capillary action.
In another possible embodiment variant, the membrane itself can release or allow the passage of active substances in the submicroscopic range, for example as a result of microporosity or semi-permeability.
The active substance element is preferably a solid body which at least partially dissolves in water during use. The active substance element in the form of a solid body is shaped as a tablet, pill, rod-shaped element, plate or film to match the cavity. Alternatively, and less preferably, it is possible to use a paste or ductile composition with a dynamic viscosity higher than that of conventional and commercially available pastes (toothpastes). A spatially defined structure can thus be produced, and the active substance can be held as long as possible in the cavity. After its introduction into the cavity, the paste can harden, in order to release the active substance in diverse applications.
The active substance can be easily portioned by the user. The solid body is already pre-portioned in the package in which it is sold. The paste can be easily portioned by the consumer, by virtue of the predefined volume of the cavity.
The active substances can be used together with conventional cleaning agents or independently of these. The brush can generally also be used without active substances, and with conventional cleaning agents.
The active substance element can have several phases with different active substances which can be released in a time sequence according to their structure. The following alternatives are possible:
A distinction can be made between the following types of active substances which, together with a suitable carrier material, form the active substance element:
Examples of carrier materials that can be used are biodegradable substances based on starch or plastics that do not chemically react with the active substances. A preferred carrier material is Polyox® from Dow Chemicals, a water-soluble synthetic resin based on polyethylene oxide polymers, which is suitable for formation of a matrix or carrier for an active substance and which, because of its thermoplastic properties, can also be processed in a variety of ways, for example cast, injected or extruded.
In principle, both single use and also multiple use of an active substance element are possible. In single use, one application of the brush uses up one active substance element. The active substance element can be inserted again before each application or can also just be used occasionally. In the case of multiple use, one application of the brush uses up only some of the active substance element. The user knows when the active substance is used up and can then refill the brush by means of a new active substance element. It will be appreciated that the concentration and amount of the active substance will be much lower for single use than for multiple use. In single use, the concentration corresponds approximately to the concentration of the active substances of conventional pastes. In multiple use, the corresponding concentration is increased by several times. In addition to the concentration, the range/period of use of the active substance element is also influenced by the water-solubility and water circulation/openings.
In single use and multiple use, the system, cavity, openings and water solubility of the active substance element can be set such that a certain period of use can be indicated to the user (time indicator). For example, in single use, the properties are chosen such that the active substance is used up after 3 minutes' cleaning time. In multiple use, the active substance is, for example, used up after a typical period of use of 3 months, by which it is possible to indicate that the entire brush should be replaced because of wear. An inscription (for example “Change”) can even be concealed under or in the active substance element and becomes exposed after the active substance has been used up, such that it becomes visible to the user and draws the user's attention to the imminent need to replace the active substance element or to the recommended replacement of the brush.
To increase the surface area that water washes around, the active substance element can be provided with additional recesses and concave or convex elements on the surface.
The color of the active substance element is preferably chosen such that it is clearly distinguished from the brush head and the user can easily assess how much active substance has been used up.
The solubility or break-up of the active substance and of the carrier material depends on the water temperature used. The user can control the release of the amount of active substance by regulating the water temperature. With a temperature increase from 10° C. to 40° C., the amount of active substance released increases significantly.
In an advantageous development, the active substance is bound into an effervescent tablet or into a paste with an effervescent action as carrier material. This additional function allows the user to ascertain, during use, whether the active substance is already used up or is still present in the cavity, without removing the brush from the mouth.
The brush is preferably packaged in such a way that the pack clearly shows the consumer the brush and the active substance element. The active substance element is preferably positioned next to the brush head. The active substance element is preferably provided in a part of the pack independent of the opening for the brush. In this way, the active substance element remains hygienically closed until the intended portion is opened. A first active substance element is preferably already positioned in the cavity of the brush head inside the retail pack. The brush head is positioned in the pack in such a way that the insertion openings and outlet openings can be shown. This can be done in particular using a so-called double blister pack, which allows the user to see both sides of the brush head. In addition to the purchase of whole brushes with active substance, it is also possible for just the active substance element to be provided as a refill pack. As an alternative design variant, the active substance in a suitable carrier material can also be provided in a dispenser for portioned delivery. As an alternative to inserting the active substance element by hand, the brush head in this design variant can be introduced into the dispenser, and the active substance can then be dispensed mechanically through the insertion opening and into the cavity.
The cavity can be formed by the following injection-molding techniques:
Since suitable carrier materials can be relatively expensive compared to the other materials used, it is proposed that the active substance element be injected on in the brush head or in the brush neck. The injection point is preferably situated on the rear face of the brush head. In this embodiment variant, the active substance element is brought by injection molding into a tablet shape or pill shape or into another above-described shape. The active substance element is preferably arranged in a kind of sandwiched position between two materials used in the head, for example a hard material and a soft material, or two possibly identical hard materials. In this case, the hard material is advantageously first injected, then the active substance element is formed or injected, and then the active substance element is at least partially covered with the soft or hard material. Alternatively, the carrier material can also be a component part of the bristles or of any elastomeric cleaning and massaging elements, or the latter can be coated with it. Of course, different active substance elements with different active substances can also be formed on or in the toothbrush head at different locations. A different color is then advantageously used for the different elements. With the production of the active substance element by means of injection molding, water can only partially wash round the active substance element, but optimal undercuts can be formed for anchoring the active substance element.
For all the variants discussed, it is possible for the active substance and the carrier material to be introduced into the brush head in a different state of aggregation than in later use. The active substance can, for example, be cast or injected into the cavity in liquid form (for example by heating or with addition of a solvent). After hardening, the active substance element is obtained which, during use with water, releases the corresponding active substances. The active substance element is preferably introduced into the cavity before the application of the cleaning elements, such as bristles, etc.
Any cleaning and massaging elements can be injected onto the membrane before or after the insertion of the conventional bristles.
The slits for the insertion opening can be produced by the following methods:
The injection points for the membranes, and for any cleaning or massaging elements placed on the latter, are as far as possible to be chosen inside the head or in the neck area of the brush. Areas of soft material in the handle of the toothbrush can be produced in the same operating step and with the same material.
The cleaning or massaging elements arranged in the area of the membranes are preferably produced with the same material and in the same operating step with the membrane. By choosing a soft component with a Shore A hardness of less than 70, preferably less than 40, a compromise can be found between the functionality of the membrane ((a) flexibility: pump effect, cleaning support, introduction of the active substance, (b) adherence to the hard material, etc,.)) and stiffness of the cleaning or massaging elements (cleaning action, massaging action). The membranes made from soft material are preferably bound to the hard component of the brush head in the multi-component injection molding technique. To ensure optimal adherence of the membrane to the hard component, care must be taken to ensure that the membrane is not injected edge to edge onto the hard component, and that a bevel/recess is instead provided in the hard component to increase the common surface area between hard component and soft component. For this purpose, a geometric element of 0.1-2 mm depth/length is formed preferably over most of the join of the membrane to the hard component, in order to permit better binding of the membrane.
The first insertion of the active substance element into the brush head can be done by the consumer at the first time of use, or it can be done during the production of the brush. With a two-part brush head, this can be done especially by means of AFT. In the AFT method, the active substance element is positioned in the toothbrush head before the bristled AFT plate is welded non-releasably to the handle of the toothbrush. The AFT method is generally recommended for positioning an additional structural part or element between the bristled AFT plate and the handle of the toothbrush.
Illustrative embodiments of the invention are described below and are shown purely schematically in the drawings, in which:
In the drawings, elements with the same functions are in each case provided with the same reference numbers.
Instead of a soft material, the membranes 26, 28 can also be produced from a hard component with suitably small wall thickness in order to achieve the necessary flexibility. However, the use of a soft component has advantages insofar as the anchoring of cleaning elements in a thin layer of hard material is problematic from the production point of view, whereas the simultaneous injection of pliable elements onto a soft membrane does not cause problems. Alternatively, a combination of hard and soft materials can also form the membrane. In this case, the flexible elements of the membrane and cleaning elements are made from soft material. The hard component only forms structuring and stabilizing elements of the membrane, or it is used only as a material connection required for production reasons.
As is shown in
In the examples from
In the examples according to
In
In the example from
In the example shown in
In all the examples in
In the example from
In
In
In all the examples, the flexibility of the wall of the cavity 22 is achieved through the choice of a wall material having a certain elasticity, particularly by at least one membrane made of soft material 32 being present, and/or through the existing overall flexural elasticity of the brush made of hard and/or soft material. As long as sufficient contact with water is guaranteed, or sufficient dissolving of the active substance, it suffices if the pump/suction effect, or the change in volume of the cavity due to the cleaning pressure, is only slight or is even non-existent.
The embodiment variants described above can of course also be used on electric toothbrushes. The mechanical movement or vibration of at least part of the brush head additionally favors the exchange of liquid into and out of the cavity. If the brush head is divided into a movable brush-head segment and a non-movable brush-head segment, the cavity, in the above-described variants, is preferably accommodated in the non-movable segment.
Combinations of elements from the examples shown also come within the scope of the invention.
A brush with a flexible membrane which is provided in the head part, and which supports cleaning and/or massaging elements, has advantages even without a cavity situated below it, and even without an active substance element inserted in the cavity, particularly because of the flexible suspension of the cleaning and/or massaging elements. All the examples shown can be accordingly modified, for example by no cavity being provided, or by providing a cavity that does not communicate with the outside. For this purpose, the examples shown in
Number | Date | Country | Kind |
---|---|---|---|
04022614 | Sep 2004 | EP | regional |
This is a Continuation of application Ser. No. 11/662,486 filed Apr. 4, 2007, which in turn is a National Stage of PCT/EP2005/009615 filed Sep. 7, 2005, which claims priority to European Application No. 04022614.4 filed Sep. 22, 2004. The disclosures of the prior applications are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1797946 | Eichel | Mar 1931 | A |
1944067 | Collins | Jan 1934 | A |
1947720 | Laub | Feb 1934 | A |
1995374 | Young | Mar 1935 | A |
2262982 | Wolcott | Nov 1941 | A |
2739328 | Bernier | Mar 1956 | A |
2778045 | Bly et al. | Jan 1957 | A |
5061106 | Kent | Oct 1991 | A |
5066155 | English et al. | Nov 1991 | A |
5346324 | Kuo | Sep 1994 | A |
5366310 | Armelles Flors | Nov 1994 | A |
5392482 | Drulias et al. | Feb 1995 | A |
5490530 | Snowden | Feb 1996 | A |
5865195 | Carter | Feb 1999 | A |
5909977 | Kuo | Jun 1999 | A |
6602013 | Clark | Aug 2003 | B2 |
7331731 | Hohlbein et al. | Feb 2008 | B2 |
Number | Date | Country |
---|---|---|
1001993 | May 1990 | BE |
297 18 117 | Jan 1998 | DE |
1 138 223 | Oct 2001 | EP |
1 190 643 | Mar 2002 | EP |
2 554 331 | May 1985 | FR |
2 583 625 | Dec 1986 | FR |
2 629 989 | Oct 1989 | FR |
2 646 068 | Oct 1990 | FR |
491140 | Aug 1938 | GB |
2 323 026 | Sep 1998 | GB |
2 343 619 | May 2000 | GB |
A 9 400 631 | Dec 1995 | NL |
WO 8801839 | Mar 1988 | WO |
WO 9303648 | Mar 1993 | WO |
WO 9713427 | Apr 1997 | WO |
WO 0053053 | Sep 2000 | WO |
WO 02058508 | Aug 2002 | WO |
WO 2004021914 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20120121312 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11662486 | US | |
Child | 13341212 | US |