The description relates to a brush motor, and in particular, a brush system for a brush motor.
In a typical brush motor, a commutator may rotate in two directions, for example, a clockwise direction and a counter clockwise direction. Brushes of the brush motor may be held in a brush guide and positioned radially to the commutator. The brushes are spaced along an outer circumference of commutator and are configured to contact the commutator. The brushes may be urged into contact with the commutator with springs.
The brush motor uses the brushes to allow current to flow through dedicated windings that are wrapped on the commutator. These windings create an electric field that will create a torque in the magnetic field maintained through permanent magnets. The electric field is switched as the commutator turns to maintain a useful torque. Due to the switching, or commutation, the torque may have some variation. This variation may be tolerable when the commutation is done appropriately. The variations may be deterministic when the motor is running at high speeds. However, when the speeds are reduced to, for example, less than 10 rpm, additional unwanted torque variations become apparent.
The variations of torque may arise from a change or changes in contact conditions between brushes and commutator during rotation. The contact conditions may change due to the position of commutator rails with respect to each brush (due to rotation) and due to the orientation of the brush within the brush guide. The springs urging the brushes into contact with the commutator have been used in an effort to improve contact conditions. However, the use of such springs is limited by an amount of force that may be applied to the brushes without resulting in excess friction between brushes and commutator.
Accordingly, it is desirable to provide a brush motor assembly with stable contact conditions.
According to one aspect, there is provided a brush motor for an electric power steering system, the brush motor including a commutator rotatable about an axis, a brush guide positioned about the commutator, at least one brush disposed in the brush guide and positioned proximate to a radially outer edge of the commutator, and a spring supported by the brush guide urging the at least one brush into contact with the commutator. The at least one brush includes a contact end having at least one flat portion configured to contact the commutator.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring now to the Figures, where the invention will be described with reference to specific embodiments, without limiting same, a brush motor substructure 20 includes a brush guide 30, a brush 40, a spring 50, and a commutator 60.
With reference to
Referring to
The spring 50 is supported by the brush guide 30. The spring 50 is configured to apply a spring force to the mounting end 44 of the brush 40 to urge the brush 40 into contact with the commutator 60.
In an exemplary embodiment, four brushes 40 may positioned incorporated in the brush motor substructure 20. The four brushes 40 are positioned along a radially outer portion of the commutator 60 and spaced about an outer circumference of the commutator 60. A spring 50 is included to provide the spring force to the respective brushes 40. That is, each brush 40 may be urged toward the commutator 60 by a separate spring 50. It is understood that the invention is not limited to the configuration above, and the brush motor substructure 20 may include any number of brushes 40 and springs 50 depending on the particular application.
In an exemplary embodiment, the brush motor substructure may be used in a steering system. However, a steering system implementation creates additional characteristics in brush motor designs that were not observed in traditional brush motor applications. One such characteristic is the stability of the brush 40 contact with the commutator 60. The term stability, as used herein, refers to a maintainable contact pattern that can be achieved regardless of the turning direction of the commutator. If this stability is not maintained there may be incremental torque variations at certain locations that may be amplified. The invention, according to the exemplary embodiments described herein, may stabilize the contact between the brush 40 and the commutator 60, as well as the brushes and the respective pockets where the brushes operate.
In use, the brush 40 should contact the commutator leads 62 in a synchronous manner while the commutator 60 is rotating. The resistance produced at a contact ‘C’ between the brush 40 and the commutator 60 results from a stable contact pattern regardless of the direction of rotation of the commutator 60. The terminology “stable contact” refers to a stable contact area as well as a reasonable amount of stable pressure at the contact ‘C’. This allows for less contact resistance variation.
In addition, with reference to
The flat portions 46, 47 are angled relative to one another. Accordingly, in an exemplary embodiment, the contact end 42 may be formed in a substantially ‘V’ shape. With this geometry, the contact ‘C’ between the commutator 60 and the brush 40 may be moved toward outer edges, i.e., away from a center area, on the brush 40 such that there are two contacts ‘C’ on opposite side of the longitudinal axis ‘L’. Such a configuration may allow for robustness when a force direction applied to the brush 40 varies due to a direction and velocity of rotation of the commutator, as discussed further below.
In the examples shown in
Referring to
The brush 40 also includes a cutout 48 formed at one side 49 of the brush. The cutout 48 extends from a position along a length of brush 40 to the mounting end 44. The brush guide force FB1 is applied at a point to the one side 49 of the brush.
In addition, with further reference to
In the exemplary embodiment described above, preload applied by the spring 50 may be reduced while allowing a voltage drop across the brush-commutator interface. Thus a performance advantage compared to previous configurations may be realized. The stable brush contact also helps reduce possible noise generation resulting from variable or unstable contact between components of the brush motor substructure.
In addition, the brush motor described in the exemplary embodiment above may be used in an electric power steering system. In such an application, the commutator 60 rotates in different directions based on a direction of rotation of a steering wheel or steering shaft of a steering column.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.
This patent application claims priority to U.S. Provisional Patent Application Ser. No. 61/545,753 filed Oct. 11, 2011, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61545753 | Oct 2011 | US |