The present invention relates generally to a cleaning device and, more specifically, to an agitator having features for removing dirt and debris from the agitator.
It is well known in the art of cleaning devices to use agitators to clean surfaces such as carpets, upholstery, and bare floors. These agitators can function in a variety of ways and appear in many forms. One typical embodiment of an agitator is a tube that rotates around its longitudinal axis and has one or more features that agitate the surface as it rotates. Such features typically include one or more bristle tufts, flexible flaps, bumps, and so on. The agitator moves or dislodges dirt from the surface, making it easier to collect by the cleaning device. Agitators are useful in a variety of cleaning devices including vacuum cleaners, sweepers, wet extractors, and so on. In a sweeper, the agitator typically moves or throws the dirt directly into a receptacle. In a vacuum cleaner or similar device, the dirt may be entrained in an airflow generated by a vacuum within the cleaning device and thereby conveyed to a filter bag, cyclone separator or other kind of dirt collection device in the vacuum cleaner. U.S. Pat. No. 4,372,004, which reference is incorporated herein, provides an example of such an agitator.
In one exemplary aspect, the present invention may provide a cleaning device agitator system having an agitator and one or more cleaning members. The agitator includes a spindle having a first end, a second end, and a longitudinal axis extending between the first end and the second end. One or more agitating devices project from the spindle to a first radial height, and one or more friction surfaces project from the spindle to a second radial height. The one or more cleaning members are positioned adjacent at least a portion of the agitator. The cleaning members are adapted to move between a first position in which the cleaning members do not engage the friction surfaces, and a second position in which the cleaning members engage the friction surfaces to clean debris from the agitator.
In another exemplary aspect, the present invention may provide a cleaning head for a cleaning device. The cleaning head includes an inlet nozzle, an agitator chamber adjacent and in fluid communication with the inlet nozzle, an agitator, one or more cleaning members adjacent at least a portion of the agitator, and an engagement mechanism. The agitator includes a spindle having a first end, a second end, and a longitudinal axis extending between the first end and the second end. The spindle is rotatably mounted in the agitator chamber. One or more agitating devices project from the spindle to a first radial height, and are of sufficient radial height to extend through the inlet nozzle during rotation of the spindle. One or more friction surfaces project from the spindle to a second radial height. The activation mechanism is adapted to move the one or more cleaning members between a first position in which the one or more cleaning members do not engage the one or more friction surfaces, and a second position in which the one or more cleaning members engage the one or more friction surfaces to clean debris from the agitator.
In another exemplary aspect, the present invention may provide a rotary cleaner having an agitator, a motor adapted to apply a torque to the agitator to rotate the agitator about a rotating axis, one or more cleaning members positioned adjacent at least a portion of the agitator, and an overload protection device adapted to terminate the application of torque to the agitator when the torque exceeds a threshold value. The agitator includes a spindle having a first end, a second end, and a longitudinal axis extending between the first end and the second end, and one or more agitating devices projecting from the spindle to a first radial height. The one or more cleaning members are movable between a first position in which the one or more cleaning members are spaced a first distance from a rotating axis of the spindle, and a second position in which the one or more cleaning members are spaced a second distance from the rotating axis. The one or more cleaning members clean debris from the agitator in at least the second position.
Various exemplary aspects of the invention will be readily understood from the following detailed description and the accompanying drawings, which are exemplary only, and not intended to limit the invention.
It has been found that rotating agitators used in vacuum cleaners, floor sweepers and the like can collect a significant amount of various kinds of dirt and debris on the agitator itself. For example, the debris may include human and animal hairs, strings, threads, carpet fibers and other elongated objects that wrap around or otherwise cling to the agitator. It has also been found that accumulated debris can reduce the performance of the agitator in a variety of ways. For example, debris may cover the agitation bristles and diminish the agitator's ability to agitate a surface. Further, debris on the agitator may impede the rotation of the agitator by wrapping around the axle or by creating additional friction with the cleaning head. If not removed, such debris can also accumulate on or migrate to the ends of the agitator and enter the bearing areas where they may cause binding, remove bearing lubrication, or otherwise generate high friction, excessive heat, or other undesirable conditions that can damage the bearings or mounting structure. In addition, debris collected on the agitator may create an imbalance in the agitator that may result in sound and/or vibrations when the agitator rotates.
Debris that has collected on an agitator is often difficult to remove because it has wrapped tightly around the agitator and intertwined with the bristles. Users of a cleaning device often must invert the device and remove the debris with manual tools such as knives, scissors or other implements. Manual removal can be unsanitary, time consuming and, if the user fails to follow instructions to deactivate the vacuum, may expose the user to contact with a moving agitator.
The present invention generally provides an agitator having features for removing dirt and debris from the agitator. The cleaning feature may include one or more surfaces on the agitator body and one or more cleaning members or other devices adapted to move towards the surfaces to engage to cut, abrade, strip or otherwise remove debris that has become wrapped around the agitator. Embodiments of the invention may be used with any type of cleaning device, such as upright vacuums, canister vacuums, central vacuum systems, powder or fluid extractors, or sweepers. For example, in one embodiment, shown in
As shown in
The exemplary agitator 100 mounts in the cleaning head 102 by one or more bearings, bushings or similar devices. The agitator 100 may be mounted at each end, but it also may be mounted by intermediate bearings or bushings located along its length. In the exemplary embodiment, the agitator 100 mounts to the cleaning head 102 by a pair of mounting assemblies 110 that permit the agitator to rotate relative to the cleaning head 102. Such mounting assemblies 110 are known in the art.
The exemplary agitator 100 is also fitted with one or more friction surfaces 112 that protrude radially from the spindle 104. The exemplary agitator 100 may have two friction surfaces 112 that are formed as helical ridges that wrap around the spindle 104 and run approximately the entire length of the spindle 104. The helical arrangement of the friction surfaces 112 distributes the friction surfaces 112 around the circumference and along the length of the rotatable agitator 100. The friction surface 112 may be a separate part that is attached to the spindle 104 by screws or other attachment mechanisms, such as tongue-and-groove fitment, adhesives, and so on. Alternatively, the frictions surfaces 112 may be formed or molded as part of the spindle 104, and have a radial height that is greater than the radial height of the remaining portions of the spindle 104 from which the bristles 106 or other agitating devices project.
As shown in
The blade 202 may remain in the operating position shown in
The downward movement of the blade 202 compresses the spring 206 against the support surface 304, and therefore continued downward force 310 is necessary to keep the blade 202 adjacent the friction surface 112. If desired, a lock or other mechanism may be provided to hold the blade in this position without requiring the continued application of force on the button 302. When the user ceases to apply force 310, the springs 206 move the blade 202 upwards and away from the agitator 100 and out of contact with the agitator bristles 106, thus deactivating the cleaning mechanism.
As shown in
In the exemplary embodiment, the bristles 106 extend further from the spindle axis than the friction surfaces 112, and thus they bend as they pass beneath the blade 202. Adequate circumferential spacing between the bristles 106 and the friction surface 112 prevents the bristles 106 from being pinched between the friction surface 112 and blade 202 when they are bent over. The blade 202 may abrade the bristles 106 to some degree as it bends them over, but it has been found that such abrasion may be minimal or tolerable considering the expected lifetime of the device or the bristles. As shown in
It will be appreciated that excessive abrasion and impedance to the agitator's rotation may be reduced by modifying the flexibility of the bristles 106 and/or blade 202, or by changing the various dimensions of the bristles 106, blade 202 and friction surfaces 112. For example, the flexibility of the bristles 106 may be modified by changing their physical composition, by increasing the height of the bristles from the surface of the spindle 104.
The invention can include any number of embodiments in addition to the above-described exemplary embodiment. For example, the friction surface 112 may comprise an uneven ridge or discrete bumps that extend at any suitable radial distance or distances from the longitudinal axis of the spindle 104. In some embodiments, the friction surface 112 extends a greater radial distance from the spindle 104 than the bristles 106. In other embodiments, the friction surface 112 may protrude only a short distance from the spindle 104. Further, the friction surface 112 may comprise helical ridges that are not continuous over the full length of the agitator 100. The latter arrangement may be used, for example, to enable a drive belt to contact the spindle 104 at a pulley located at an intermediate location along the spindle 104.
While the exemplary embodiment of
It will also be understood that other embodiments of the invention may use any suitable alternatives to the exemplary cutting blade. For example, alternative embodiments may have a number of blades. Also, while the blade 202 of
It will be understood that the blade 202 may comprise any resilient material, and the blade 202 need not resemble a sharpened edge or a simple planar structure. The blade 202 may comprise a variety of materials, preferably materials that are heat resistant and durable enough to generate and withstand sufficient friction to efficiently remove entangled articles. The blade 202 also may be selected or modified (such as by polishing) to reduce or minimize the amount of wear on the bristles 106. The invention may also use an abrasive surface as a cleaning member instead of a blade 202, or the blade 202 may be treated or shaped to enhance its abrasiveness. It will also be understood that the blade 202 is just one example of a cleaning member that may be used with embodiments of the invention. For example, the blade 202 comprise or be replaced by a round bar having a small or large diameter that is moved into contact with the friction surfaces.
It will also be understood that the geometry of the blade 202 or blades and the friction surface(s) 112 can determine the engagement pattern between the friction surface 112 and the blade 202. In the illustrated embodiment, the blade 202 and friction surface 112 are adjacent one another at least two points, regardless of the orientation of the agitator 100, due to the fact that the friction surfaces 112 extend around the circumference of the spindle 104 in a helical pattern. This prevents the blade 202 from becoming unbalanced and tipping closer to the agitator 100 on one side of the friction surface 112 than the other. Alternatively, this may not be necessary where it is found to not cause any problems during operation. In other embodiments, rings of material may be provided around the agitator 100 to control the movement of the blade 202 towards the agitator 100. For example, as shown in
The blade 202 preferably is shaped to contact the friction surface 112 along the entire length of the friction surface 112 to keep from missing spots during cleaning. For example, the blade 202 may be generally straight and the friction surface 112 may have a generally constant radial height to help ensure that they come into contact along the entire length of both the blade 202 and the friction surface 112. As noted above, the blade 202 may actually contact the friction surface 112, or it may be retained a short distance from the friction surface 112. The invention may alternatively be practiced using any variety of other engagement patterns ranging from one intermittent engagement point between the cleaning member and the friction surface to a constant swath across the entire agitator.
The engagement pattern may affect a number of aspects of the device's operation, including the thoroughness of debris reduction and the resistance created by the cleaning member to the rotation of the agitator. In some cases, a sparse engagement pattern may adequately remove debris while not excessively resisting the rotation of the agitator. In other cases, it may be preferable for the cleaning member or cleaning members to apply significant pressure to the friction surface in order to remove tightly wound debris. In some embodiments, the engagement pattern covers only a portion of the agitator's length, such as at locations where debris is likely to accumulate, or the cleaning member may be shorter than the length of the agitator, but movable along the length of the agitator to press against it where necessary to remove debris. Also, multiple cleaning members may be provided along the length of the agitator, which cleaning members can be individually operated to clean select portions of the agitator. In embodiments where the cleaning member creates greater resistance to the rotation of the agitator, the drive motor may be selected to ensure that the agitator can continue to rotate when the cleaning member is engaged. These and other embodiments will be readily apparent to persons of ordinary skill in the art in view of the present disclosure.
The relative orientation of the friction surface 112 and the cleaning member may produce a variety of physical consequences. For example, the interaction of the helically-shaped friction surface 112 in the exemplary embodiment of
As shown in
The blade 502 may be moved along the agitator 100 by any suitable method or means. For example, in one embodiment, the user can manually side the blade assembly 650 back and forth along the track 504. Alternatively, an electric motor may move the blade assembly 650 along the track 504. To this end, the track 504 may comprise, for example, a screw thread that engages a corresponding threaded bore through the slide 660 to move it back and forth. Alternatively, a portion of the track 504 to which the blade assembly 650 mounts may move longitudinally along the agitator 100. Other suitable methods and mechanisms for moving the blade along the agitator will be understood by persons of ordinary skill in the art in view of the present disclosure.
It will also be understood that any other suitable modifications may be made to the embodiment of
The agitator cleaning feature shown in
As noted above, the agitator cleaning features described herein may be operated manually or by operation of motors or other mechanical or electrical devices. For example, the button used to operate the cleaning feature described in
In embodiments in which the user can manually operate the cleaning feature, any suitable interface and/or control module may be used to allow the user to activate the cleaning feature. For example, electrical or mechanical buttons, levers or switches may be used, and such controls may be located anywhere on the cleaning device. For example, a control button may be provided on the handle of an upright vacuum cleaner or on the floor-engaging cleaning head. Of course, numerous variations on the foregoing embodiments will be apparent to persons of ordinary skill in the art in view of the present disclosure, and such embodiments are within the scope of the present invention.
Referring to
As shown in the Figures, the agitator 1102 includes friction surfaces 1112 and bristles 1114, such as described previously herein or otherwise constructed. The bristles 1114 may extend through the opening 1108 to agitate the underlying surface. The bristles 1114 may straddle the ribs 1110, or the ribs 1110 may simply pass through the fibers forming each bristle 1114. The friction surfaces 1112 also may have a radial height that equals or exceeds the distance from the rotating axis of the agitator 1102 to the ribs 1110. In such a case, the ribs 1110 may have to be moved or contoured to avoid contact with the frictions surfaces 1112, or the friction surfaces 1112 may be grooved to avoid contact with the ribs 1110 (or both). In other embodiments, the frictions surfaces 1112 may not have sufficient radial height to contact the ribs 1110.
It may be desirable to maintain a distance, for example a distance of about 2 mm, between the friction surfaces 1112 and the ribs 1110. Also, it may be desirable for the bristles 1114 to extend about 2.5 mm past the bottom edge of the opening 1108, or more, to provide more favorable cleaning performance. Where a steel rib having a thickness of about 1.5 mm is used, one possible arrangement is to have bristles 1116 that are about 10 mm long, and friction surfaces that are about 4 mm tall relative to a cylindrical agitator spindle 1118. Other variations, however, are certainly possible, and the exemplary dimensions described in this paragraph are not to be understood as limiting the claimed invention unless numerical values for such dimensions are specifically recited in the appended claims.
The exemplary embodiment of
The use of leaf springs 1140 or other flexible or compressible members to transmit movement of the user-operated blade actuating mechanism (in this example, the foot pedal 1124) helps prevent the user from applying excessive force to the blade 1120 and frictions surfaces 1112. Such force can unnecessarily increase wear, increase the torque on the agitator drive components, or even damage parts. As shown in
The foregoing exemplary embodiment provides just one example of a flexible member that is used to convey the user-generated operating force to the blade. In other embodiments, the flexible member may comprise other kinds of springs, such as coil springs, a pneumatic or hydraulic cylinder, elastomers such as open- or closed-cell foam blocks, rubber, and so on. In addition, the flexible member may operate in compression, as a cantilevered member (as shown), or in tension. For example, the link arm 1130 may comprise a coil spring that operates in tension. It will also be understood that other kinds of linkage may be used to transmit force from the user (or from an automated actuation member, such as a solenoid) to the blade.
Referring back to
For example, a typical overload mechanism for a vacuum cleaner agitator may have a microcontroller that monitors the running current of the motor using a load resistor. At a present trip current, such as 3.15 amps, the microcontroller will break the circuit to the motor. This current is selected to prevent damage from high heats that occur when the motor is operated over a sustained period at a higher than expected torque value. In typical applications, this can happen quickly, such as when there is an obstruction that stops the agitator, or gradually, such as when the agitator is operated on dense carpet for a sustained period of time. During agitator cleaning, it has been found that a typical motor might experience current values exceeding 3.15 amps by as much as 0.65 amps. To accommodate this, the microcontroller can be programmed to allow excessive current for the relatively short period of time it takes to clean the brushroll. It has been found that about 2.12 grams of hair can be cleaned from a brushroll is as little as 10 seconds. Since the cleaning duration is so short, it is believed that the motor can be safely operated at the necessary current during cleaning without materially increasing wear or damage to the motor or other parts. A person of ordinary skill in the art will readily understand how to create logic circuits to accomplish the foregoing, examples of circuit breakers that operate at one threshold level during normal operation, and at another threshold level during agitator cleaning operations. Examples of circuit breakers used in various cleaners include those in U.S. Pat. Nos. 4,370,777; 6,042,656; and 6,351,872, which references are incorporated herein.
In addition, some vacuum cleaners may use overload protection devices that mechanically disengage the motor from the agitator when an overload condition is detected. For example, a clutch requiring a certain threshold torque may be used to disengage the agitator from the motor. In one experiment, it was found that an overload mechanism may require a torque of about 830 milliNewton·meters (mNm) to disengage. It is believed that embodiments of the present invention can be operated at a torque value of about 190 mNm, which should be sufficiently low to operate even in conjunction with mechanical clutch overload members. Examples of a agitator clutches are shown in U.S. Pat. Nos. 4,317,253; 4,702,122; and 7,228,593 and U.S. Publication No. 2008/0105510, which references are incorporated herein.
As noted above, in one exemplary embodiment, an agitator cleaning device may be provided as a separate part that is attached to the cleaning head when it is desired to perform cleaning, and removed when it is not in use. An example of such a device is shown in
The agitator cleaner 1216 may be installed into the opening 1212 when it is desired to clean the agitator 1202. The agitator cleaner 1216 may comprise any construction, such as those previously described in the various exemplary embodiments described herein. In the shown exemplary embodiment, the agitator cleaner 1216 comprises a blade 1222 that slides in a housing 1224. The blade 1222 includes two end springs 1226, such as those shown in
Of course, the foregoing embodiment is only one example of a removable cleaning device, and other configurations and arrangements for removable cleaning devices will be apparent to persons of ordinary skill in the art in view of the present disclosure. For example, in another embodiment, the cleaning device 1216 may be adapted to install on the chamber inlet 1210. This may be readily accomplished by inverting the cleaning device 1216, providing cutouts in the blade 1222 to accommodate any ribs 1236 in the inlet 1210, and providing clips or other fasteners to mount the cleaning device 1216 in the inlet 1210.
It will be recognized and understood that the embodiments described above are not intended to limit the inventions set forth in the appended claims. Various modifications may be made to these embodiments without departing from the spirit of the invention and the scope of the claims. For example, in alternative embodiments the agitator cleaning feature may be modified by reversing the locations of the friction surface and the blade. It will also be understood that embodiments may be used with vacuum cleaners or other cleaning devices having rotary cleaning components, such as sweepers that do not use a vacuum to aid with removal of dirt and debris. It will also be understood that the disclosure of particular values for dust recovery, current measurement, torque and the like, are likely to vary under different circumstances and are provided as non-limiting examples. These and other modifications are included within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
804213 | Chaplin | Nov 1905 | A |
969441 | Backer | Sep 1910 | A |
1999696 | Kitto | Apr 1935 | A |
2642601 | Saffioti | Jun 1953 | A |
2642617 | Lilly | Jun 1953 | A |
2960714 | Senne | Nov 1960 | A |
3470575 | Larson et al. | Oct 1969 | A |
3536977 | Porter | Oct 1970 | A |
3683444 | Schaefer et al. | Aug 1972 | A |
3722018 | Fisher | Mar 1973 | A |
3862467 | Krickovich | Jan 1975 | A |
4020526 | Johansson | May 1977 | A |
4173054 | Ando | Nov 1979 | A |
4193710 | Pietrowski | Mar 1980 | A |
4209872 | Maier | Jul 1980 | A |
4317253 | Gut | Mar 1982 | A |
4352221 | Revells et al. | Oct 1982 | A |
4370777 | Woerwag | Feb 1983 | A |
4372004 | Vermillion | Feb 1983 | A |
4373228 | Dyson et al. | Feb 1983 | A |
4426751 | Nordeen | Jan 1984 | A |
4702122 | Richard | Oct 1987 | A |
4802254 | Lahndorff et al. | Feb 1989 | A |
4847944 | Lackner | Jul 1989 | A |
4875246 | MacGregor | Oct 1989 | A |
4989293 | Bashyam | Feb 1991 | A |
5115538 | Cochran et al. | May 1992 | A |
5121592 | Jertson | Jun 1992 | A |
5203047 | Lynn | Apr 1993 | A |
5287581 | Lo | Feb 1994 | A |
5394588 | Kweon et al. | Mar 1995 | A |
5452490 | Brundula et al. | Sep 1995 | A |
5482562 | Abernathy | Jan 1996 | A |
5657504 | Khoury | Aug 1997 | A |
5974975 | Seefried | Nov 1999 | A |
6042656 | Knutson | Mar 2000 | A |
6131238 | Weber et al. | Oct 2000 | A |
6170119 | Conrad et al. | Jan 2001 | B1 |
6266838 | Caruso | Jul 2001 | B1 |
6351872 | McCormick | Mar 2002 | B1 |
6502277 | Petersson et al. | Jan 2003 | B1 |
6539575 | Cohen | Apr 2003 | B1 |
6539577 | Okuda et al. | Apr 2003 | B1 |
6810559 | Mertes et al. | Nov 2004 | B2 |
6883201 | Jones et al. | Apr 2005 | B2 |
6892420 | Haan et al. | May 2005 | B1 |
7143461 | Spooner | Dec 2006 | B2 |
7159276 | Omoto et al. | Jan 2007 | B2 |
7163568 | Sepke et al. | Jan 2007 | B2 |
7171723 | Kobayashi et al. | Feb 2007 | B2 |
7228593 | Conrad | Jun 2007 | B2 |
7237298 | Reindie et al. | Jul 2007 | B2 |
7293326 | Hawkins et al. | Nov 2007 | B2 |
7731618 | Burlington et al. | Jun 2010 | B2 |
20050015922 | Lim et al. | Jan 2005 | A1 |
20050091788 | Forsberg et al. | May 2005 | A1 |
20060037170 | Shimizu | Feb 2006 | A1 |
20060162121 | Naito et al. | Jul 2006 | A1 |
20060272122 | Butler et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
649625 | Apr 1995 | EP |
1415583 | May 2004 | EP |
1642520 | Apr 2006 | EP |
2273906 | Jan 2011 | EP |
2000963 | Jan 1979 | GB |
2231778 | Nov 1990 | GB |
5095868 | Apr 1993 | JP |
5305044 | Nov 1993 | JP |
6086743 | Mar 1994 | JP |
Entry |
---|
European Search Report for EP 09 72 1677, Oct. 30, 2012. |
Number | Date | Country | |
---|---|---|---|
20130192021 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61037167 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12405761 | Mar 2009 | US |
Child | 13826400 | US |