The invention relates to a hearing instrument comprising a part to be worn behind the ear of a user (i.e. a Behind-The-Ear (BTE) part) comprising a loop antenna.
In general, different types of antennas may be used with BTE hearing instruments.
WO 2012/059302 A2 relates to an antenna known as “inverted-L antenna”, which may be used in e.g. in a BTE hearing aid and which is a vertical antenna having a short vertical element prolonged by a wire parallel to a conductive ground plane. The antenna operates like a monopole folded by 90° and creates a capacitive effect causing the overall length of the antenna to be slightly shorter than λ/4. Typically, such antennas are used on the short wave frequencies, below 10 MHz.
EP 2 458 675 A2 relates to an antenna for a BTE hearing aid having a first L-shaped part placed on one side of the hearing aid housing and a second part having the form of a meander line and being placed on the opposite side of the housing, with a conductive part connecting the two parts. The antenna excitation point is between the first part and the conductive part.
EP 2 723 101 A2 relates to a BTE hearing aid having a balanced antenna for use at 2.4 GHz, which comprises a first resonant structure located on one side of the housing and a second resonant structure symmetric with regard to the first resonant structure and located on the opposite side of the housing, with a conductive segment providing a current bridge between the two resonant structures, wherein each resonant structure is fed through a transmission line. The resonant structures may have the form of a straight line, a meander line, a sheet or a closed oval line. EP 2 871 860 A1 relates to a variant of such antenna type, wherein the first resonant structure is fed through a transmission line, and the feeding point of the second resonant structure is connected to the ground plane of the hearing aid electronic module.
US 2016/0183015 A1 relates to a BTE hearing aid comprising an antenna having two arms which are separated by a slot and extend in parallel along the length of the upper side of the housing. The arms comprise loading wings angled by about 90° with regard to the arms and extending along the sides of the housing adjacent to the upper side of the housing.
WO 2016/130590 A1 relates to a BTE hearing aid comprising an antenna with two arms, each of which extends along one of the lateral sides of the housing, with the arms being connected at one end by a conducting bridge. In one example, the free ends of the arms comprise a tuning stub which is angled by 90° with regard to the arm and is located in the same plane as the arm.
U.S. Pat. No. 9,466,876 B2 relates to an antenna for a BTE hearing aid which comprises two arc-shaped conducting elements extending along the sides of the housing parallel to the user's skin and being connected by a conducting bridge in a middle portion.
WO 2007/112838 A1 relates to an RF receiver device which may be connected to a BTE hearing aid via a three pin plug connector and which comprises a magnetic loop antenna on a flexible printed circuit board (PCB) comprising two parts which are oriented at an angle of about 90° relative to each other.
It is an object of the invention to provide for a hearing instrument comprising a part to be worn behind the ear of a user and including an antenna which should be efficient both for wireless communication via a binaural link and for wireless communication with remote devices.
According to the invention, this object is achieved by a hearing instrument as defined in claim 1.
The invention is beneficial in that, by providing the loop antenna with a U-shaped contour comprising two legs connected by a base portion and with a tuning capacitor comprising a first capacitor plate at the free end of one of the legs and a second capacitor plate at the free end of the other leg, with the capacitor plates being located at a second side and third side of the housing, respectively, adjacent to the first side of the housing where the U-shaped contour is located, and with the free ends of the legs being located closer to a battery of the BTE part than the base portion, a resonant loop antenna can be realized at frequencies from 1 to 6 GHz despite the typically relatively small BTE housing; in particular, the antenna enables high radiation efficiency along the head surface, while keeping good performance for a communication with wireless companion devices located at a certain distance from the BTE part. Further, the antenna performance is substantially insensitive to the orientation placement of the BTE part behind the head.
Preferred embodiments of the invention are defined in the dependent claims.
Hereinafter, examples of the invention will be illustrated by reference to the attached drawings, wherein:
The BTE part 10 comprises a housing (not shown) and has a first side substantially parallel to the user's skin when the housing is worn behind the ear, a second side substantially parallel to the first side and a third side connecting the first side and the second side and oriented substantially upwardly when the housing is worn behind the ear. The BTE part 10 further comprises a radio circuit 12 acting as an RF transmitter or transceiver, a first microphone 14, a second microphone 16, a battery 18, a frame 20 made of plastic material for supporting components of the BTE part, electronic circuitry 22 and an antenna 24 placed on the upper side of the hearing instrument. Typically, the BTE part 10 includes additional components which are not shown in the Figures, such as a user interface with at least one push button, a speaker, etc.
The transmitter/transceiver 12 is designed for transmission at frequencies from 1 to 6 GHz, preferably from 2.40 to 2.48 GHz. For example, at a frequency of 2.4 GHz, a “full-size” loop antenna would require a periphery of 62 mm, which would be too large for a typical BTE housing. Simply reducing the size of the antenna would result in degradation of antenna efficiency. In order to avoid such degradation, in the example of
The antenna 24, in addition to the tuning capacitor 26, comprises a loop conductor 32 having a U-shaped contour comprising a first leg 34 and a second leg 36 which are connected by a base portion 38, with the tuning capacitor 26 being provided at the free ends of the legs 34, 36, i.e. the first capacitor plate 28 is located at and connected to the free end of the first leg 34, and the second capacitor plate 30 is located at and connected to the free end of the second leg 36. The loop conductor 32 is located at the upper side of the BTE part 10, i.e. it is located at and substantially parallel to the upwards oriented third side of the housing.
The legs 34, 36 are parallel to each other and preferably extend over most (typically at least two thirds) of the length of the third side of the housing. The distance between the legs 34, 36 typically is at least 1.5 mm and the width of each leg 34, 36 preferably is from 0.2 to 1.0 mm, typically 0.6 mm.
The free ends of the legs 34, 36, together with the tuning capacitor 26, are located closer to the battery 18 than the base portion 38 of the loop conductor 32, i.e. free ends of the legs 34, 36 with the tuning capacitor 26 are oriented towards the battery 18 which is connected by a battery contact 80.
The structure of the antenna 24 is differential, so that it does not require any ground plane to work properly. The antenna 24 may be fed by a bifilar transmission line 40 which is connected to the loop conductor 32 through a matching network 41, thereby forming a differential feed structure 42 connected to each of the legs 34, 36 at a feed point 44 and 46, respectively. Preferably, each feed point 44, 46 is located at a position within that half of the respective leg 34, 36 which is closer to the base portion 38. Preferably, the feed points 44, 46 are arranged mirror-symmetric with regard to each other. Typically, the entire antenna structure is mirror-symmetric with regard to a plane extending in the longitudinal direction of the BTE part 10.
As illustrated in the example of
According to the example of
As shown in the example of
As can be seen in
According to one example, the loop conductor 32 may have a substantially planar configuration (within 5 degrees). However, the legs 34, 36 preferably are curved or angled along their length between the free end connected to the respective capacitor plate 28, 30 and the end connected to the base portion 38 by more than 5° and less than 20° in order to allow for a curvature of the respective side of the housing.
The feed structure 42 typically comprises a matching circuit/network 41 configured to match the impedance of the antenna 24 to that of the transmission line 40. As illustrated in
As illustrated in
Preferably, the capacitor plates 28, 30 are placed on a metal-free zone of the BTE part 10.
As already mentioned above, the length of the legs 34, 36 is limited by the length of the BTE housing. Such length limitation may reduce the inductance value of the antenna, which reduction could be compensated by providing for an increased terminating capacitance which is provided by the tuning capacitor 26. However, since the dimensions of the tuning capacitor 26 and the capacity value should not be too high (an increased capacitance of the tuning capacitor results in reduced radiated electric field), discrete inductors may be provided as a tuning element 70 in each of the legs 34, 36 so as to “replace” at least part of the “missing” length. This provides for an overall antenna size reduction while keeping the dimensions of the radiating tuning capacitor 26 the same. In addition, when using serial discrete inductors as the tuning element 70, fine tuning of the antenna resonance frequency is enabled.
The principle of the length reduction of the antenna legs 34, 36 by inductors 70 is illustrated in
In general, antenna performance depends on the antenna length, the capacitor geometry and its surrounding. Best performance is obtained if the space between the capacitor plates 28, 30 is large and also if the parasitic capacitances between the capacitor plates 28, 30 and other conductive elements of the BTE part 10, like the battery 18 and electronic circuitry 12, 22, are kept as small as possible, thereby enhancing the amplitude of the electric field generated outside the BTE part 10. Accordingly, the radiating tuning capacitor 26 is placed close to the battery compartment which typically is the place where the BTE part 10 is the thickest, so that the maximum of space between the radiating plates 28, 30 is obtained. Such placement also ensures that the capacitor 26 will be located at the place in the BTE part 10 in which the path to the other ear has a minimum distance, yielding on an optimized binaural link budget. By contrast, placing the capacitor 26 at the other end of the BTE part 10 close to the second microphone 16 would not be optimal, since the thickness of the BTE part 10 is lower there, so that the distance between the capacitor plates would be less, which would increase the capacitance between the plates and accordingly produce a weaker radiated electric field; in addition, at such place parasitic coupling from the capacitor plates to other components, like the second microphone and a RIC connector, would be stronger, which would also increase the capacitance value, let alone the potential risk of self-interferences on the microphone signal if the microphone is immersed in a strong electric field.
As already mentioned above, the proposed antenna produces high voltage amplitude between the radiating capacitor plates 28, 30, so that a high electric field amplitude is produced between the capacitor plates 28, 30 which, in turn, produces an electromagnetic wave having an electric field component orthogonal to the skin, which is optimal for propagation by diffraction around the head.
This is illustrated in
The best propagation path for a binaural link is by diffraction around the neck, since this path is shorter than other paths, such as the path around the top of the head or the path around the forehead which is partly obstructed by the auricle. With the antenna of the invention in the example of
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/081958 | 12/20/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/113927 | 6/28/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5995054 | Massey | Nov 1999 | A |
9369813 | Kvist | Jun 2016 | B2 |
9466876 | Kerselaers et al. | Oct 2016 | B2 |
20150281859 | Fischer | Oct 2015 | A1 |
20160050502 | Kvist et al. | Feb 2016 | A1 |
20160241973 | Murray et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2458675 | May 2012 | EP |
2723101 | Apr 2014 | EP |
2871860 | May 2015 | EP |
2985 834 | Feb 2016 | EP |
3110171 | Dec 2016 | EP |
3313096 | Apr 2018 | EP |
2 869 707 | Nov 2005 | FR |
WO 2012059302 | May 2012 | WO |
WO 2014090419 | Jun 2014 | WO |
WO 2016130590 | Feb 2016 | WO |
Entry |
---|
Dong Hyun Lee et al: “A compact and Low-Profile Tunable Loop Antenna Integrated With Inductors”, IEEE Antennas and Wireless Propogation Letters, IEEE, Piscataway, NJ, US, vol. 7, Jan. 1, 2008, pp. 621-624. |
Number | Date | Country | |
---|---|---|---|
20200091592 A1 | Mar 2020 | US |