The present disclosure relates to a bubble formation apparatus and a bubble formation method.
A bubble formation apparatus that forms bubbles using an airtight tank and a rotor that rotates on a bottom surface of the tank has been known as disclosed in Patent Literature 1. In addition to the rotor, a porous body connected to a gas source that releases a gas, and a cylinder interposed between the porous body and the rotor are placed in the tank.
In the bubble formation apparatus, the gas is released by the porous body in the tank filled with a liquid. The released gas is guided to the periphery of the rotor by the cylinder. Bubbles are formed by stirring the gas, guided to the periphery of the rotor, by the rotor.
In addition to the tank and the rotor, at least the porous body and the cylinder are indispensably included in the above-described bubble formation apparatus, as described above. Therefore, the overall configuration of the device has been large.
An objective of the present disclosure is to provide a bubble formation apparatus and a bubble formation method, by which bubbles can be formed without requiring a large configuration.
A bubble formation apparatus according to the present disclosure includes:
a rotor;
a container in which the rotor is housed together with a liquid and a gas; and
a rotary device that causes rotation of the rotor with the rotor being pressed against a to-be-pressed surface, the to-be-pressed surface being an inner surface of the container,
wherein a bubble is formed by periodically repeating pressurization and depressurization of a mixture of the gas and the liquid in a gap between the to-be-pressed surface and a portion, pressed against the to-be-pressed surface, of the rotor due to the rotation of the rotor by the rotary device.
It is also acceptable that:
the rotor has magnetism, and
the rotary device is magnetically coupled to the rotor via the container, to thereby cause the rotor to rotate with the rotor being pressed against the to-be-pressed surface.
It is also acceptable that:
the rotary device includes a linkage member that is mechanically linked to the rotor, and
the rotary device causes the rotor to rotate with the rotor being pressed against the to-be-pressed surface using the linkage member.
It is also acceptable that at least one of a portion, pressed against the to-be-pressed surface, of the rotor or the to-be-pressed surface of the container has a recess-and-projection structure in which a recess and a projection are placed in a circumferential direction that is a direction of the rotation of the rotor.
It is also acceptable that the rotor has the recess-and-projection structure.
It is also acceptable that:
the container has an inner lower surface as the to-be-pressed surface, an inner upper surface facing the inner lower surface, and an inner side surface that joins the inner upper surface and the inner lower surface to each other, and surrounds the rotor, and
the rotor is provided to be closer to a portion of the inner side surface.
It is also acceptable that the container includes
an inlet through which the liquid and the gas are introduced, and
a discharge port that is placed at a position different from a position of the inlet, and through which a gas-liquid mixed fluid in which the gas allowed to be a bubble is dispersed in the liquid is discharged.
It is also acceptable that the rotor has an outer surface made of a resin having hydrophobicity.
A bubble formation method according to the present disclosure includes:
encapsulating a rotor, together with a liquid and a gas, in a container; and
periodically repeating pressurization and depressurization of a mixture of the gas and the liquid in a gap between a to-be-pressed surface and a portion, pressed against the to-be-pressed surface, of the rotor by causing the rotor to rotate with the rotor being pressed against the to-be-pressed surface, the to-be-pressed surface being an inner surface of the container.
It is also acceptable that:
the container has an inner lower surface as the to-be-pressed surface, an inner upper surface facing the inner lower surface, and an inner side surface that joins the inner upper surface and the inner lower surface to each other, and surrounds the rotor, and
in the periodically repeating, the mixture is locally pressurized between the rotor and a portion of the inner side surface by providing the rotor to be closer to the portion of the inner side surface.
In accordance with the bubble formation apparatus and bubble formation method of the present disclosure, a bubble is formed by periodically repeating the pressurization and depressurization of the mixture of the gas and the liquid in the gap between the to-be-pressed surface and the portion, pressed against the to-be-pressed surface, of the rotor.
A large configuration is not required because the need for a porous body that releases a gas, and a cylinder that guides, to the rotor, bubbles released by the porous body that have been conventionally required for forming bubbles is eliminated.
Bubble formation apparatuses according to Embodiments 1 to 6 will be described below with reference to the drawings. The same or corresponding portions are denoted by the same reference characters in the drawings.
As illustrated in
The container 200 includes: a flat inner upper surface 211; a flat inner lower surface 221 facing the inner upper surface 211; and an inner peripheral surface 222 as an inner side surface that joins the inner upper surface 211 and the inner lower surface 221 to each other, and surrounds the rotor 100. An airtight and fluid-tight space is defined by the inner upper surface 211, the inner lower surface 221, and the inner peripheral surface 222.
The container 200 has a configuration in which the container 200 is divided into a lid 210 including the inner upper surface 211 and a body 220 including the inner lower surface 221 and the inner peripheral surface 222. The lid 210 can be removed from the body 220. The lid 210 and the body 220 can be fitted to each other by screwing the lid 210 into the body 220. The container 200 is formed of a material having magnetic permeability.
The rotary device 300 causes the rotor 100 to rotate in a state in which the rotor 100 is pressed against the inner lower surface 221 as a to-be-pressed surface of the container 200 by magnetic force. The rotor 100 rotates about a virtual rotation axis VA extending in a direction orthogonal to the inner lower surface 221.
The rotor 100 has a structure in which a magnetic substance is covered with a resin having hydrophobicity, specifically, polytetrafluoroethylene that is a fluorine resin. In other words, the outer surface of the rotor 100 includes polytetrafluoroethylene.
Moreover, the rotor 100 has an external shape that is a generally cylindrical shape of which the central axis is the virtual rotation axis VA, as a whole. The configuration of a portion (hereinafter referred to as “back surface portion”) 110, pressed against the inner lower surface 221 of the container 200, of the rotor 100 will be described below.
As illustrated in
Specifically, each of the plurality of projections 122 radially extends in a radial direction orthogonal to the virtual rotation axis VA. The recesses 121 are provided between the projections 122 next to each other in the circumferential direction. Each recess 121 is provided in a sector form in view parallel to the virtual rotation axis VA. The first recess-and-projection structure 120 according to the present embodiment includes the four projections 122 in total and the four recesses 121 in total.
The position of the virtual rotation axis VA penetrating the rotor 100 is eccentric with respect to the position of the non-illustrated central axis of the container 200 having a cylindrical shape. In other words, the rotor 100 is placed so that the rotor 100 is closer to a portion of the inner peripheral surface 222 of the container 200.
The action of the bubble formation apparatus 500 configured as described above will be described below.
First, a user encapsulates the liquid LQ, the gas GS, and the rotor 100 in the container 200 in an airtight and fluid-tight manner in an encapsulation step, as illustrated in
As described above, the rotor 100 is placed on the inner lower surface 221 in a state in which the rotor 100 is provided to be closer to a portion of the inner peripheral surface 222 and the back surface portion 110 faces the inner lower surface 221. The rotor 100 is allowed to rotate by the rotary device 300 in a rotation step.
The catching of the gas GS by the liquid LQ causes bubbles to be formed. The formed bubbles are fragmented by shearing the bubbles on the outer surface of the rotating rotor 100. Since the outer surface of the rotor 100 has hydrophobicity, the bubbles can be efficiently formed on the outer surface of the rotor 100 by the shearing in comparison with a case in which the outer surface of the rotor 100 has hydrophilicity.
The liquid LQ and the gas GS are mixed with each other in such a manner, to form a gas-liquid mixed fluid FL that is a mixture of the liquid LQ and the gas GS. In the gas-liquid mixed fluid FL, the gas GS allowed be bubbles is dispersed in the liquid LQ.
The flow of the gas-liquid mixed fluid FL in a plane parallel to the virtual rotation axis VA will be described with reference to
The gas-liquid mixed fluid FL is pressurized in the gap GP1 between each projection 122 and the inner lower surface 221, and is sharply depressurized when flowing out from the gap GP1 into the next recess 121. Such pressurization and depressurization are periodically repeated due to the rotation of the rotor 100.
As a result, the dissolution of bubbles in the liquid LQ included in the gas-liquid mixed fluid FL is promoted, and cavitation occurs. Therefore, the bubbles in the gas-liquid mixed fluid FL are fragmented. The fragmented bubbles can be formed in such a manner.
The flow of the gas-liquid mixed fluid FL in a plane orthogonal to the virtual rotation axis VA will now be described with reference to
In
Such pressurization and depressurization are periodically repeated due to the rotation of the rotor 100. This also results in the dissolution of bubbles and the occurrence of cavitation, and contributes to the fragmentation of bubbles included in the gas-liquid mixed fluid FL.
For allowing the pressurization of the gas-liquid mixed fluid FL in the gap GP2 and the depressurization of the gas-liquid mixed fluid FL in a case in which the gas-liquid mixed fluid FL flows out from the gap GP2 to be more reliable, the dimension of the gap GP2 is preferably not more than D/20, more preferably not more than D/40, and more preferably not more than D/80 on the assumption that the maximum value of a spacing between the rotor 100 and the inner peripheral surface 222 (hereinafter referred to as “maximum spacing”) is D.
In accordance with the bubble formation apparatus 500 described above, the need for a porous body that releases a gas and a cylinder that guides, to the rotor, bubbles released by the porous body, which porous body and cylinder have been conventionally needed, is eliminated for obtaining the gas-liquid mixed fluid FL including fragmented bubbles, and therefore, the need for a large configuration is eliminated.
The results of experiments for searching conditions under which the number density of bubbles in a gas-liquid mixed fluid FL (hereinafter referred to as “bubble density”) is enhanced will be described below.
A rotor 100 having an outer diameter of 17 mm, purified water as a liquid LQ, and air as a gas GS were encapsulated in a container 200 having an inner diameter of 26.5 mm, and a gas-liquid mixed fluid FL was formed by rotating the rotor 100. The amount of the purified water was set at 4 mL. The height of the water surface of the purified water is equal to the height of the upper surface of the rotor 100. The rotation number of the rotor 100 was set at 700 rpm.
However, the rotor 100 was placed in the central portion of the inner lower surface 221 of the container 200 so that the rotor 100 was not provided to be closer to a portion of the inner peripheral surface 222 of the container 200. Specifically, the position of the virtual rotation axis VA of the rotor 100 was allowed to coincide with the position of the central axis of the container 200.
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 1 except that a rotor 100 was placed so that the rotor 100 was vertically reversed. In other words, in Comparative Example 1, the first recess-and-projection structure 120 of the rotor 100 does not face the inner lower surface 221 of a container 200, but faces the inner upper surface 211 of the container 200. Therefore, it is impossible to obtain the action described with reference to
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 1 except that a rotor that did not include the first recess-and-projection structure 120 was used instead of the rotor 100. Since the rotor does not include the first recess-and-projection structure 120, it is impossible to obtain the action described with reference to
Evaluation 1
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 1 except that a rotor 100 was provided to be closer to the inner peripheral surface 222 of a container 200, as illustrated in
Evaluation 2
Evaluation 3
As illustrated in
Evaluation 4
Accordingly, the higher rotation number of the rotor 100 is preferred. Specifically, the rotation number of the rotor 100 is preferably 200 rpm or more, more preferably 400 rpm or more, and more preferably 600 rpm or more.
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 2 except that the outer diameter of a rotor 100 was set at 15 mm.
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 2 except that the outer diameter of a rotor 100 was set at 10 mm.
Evaluation 5
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 1 except that the outer diameter of a rotor 100 was set at 25 mm, and the inner diameter of a container 200 was set at 41 mm. The amount of purified water as a liquid LQ was adjusted so that the height of the water surface of the purified water was equal to the height of the upper surface of the rotor 100.
A gas-liquid mixed fluid FL was formed under the same conditions as those of Example 1 except that the outer diameter of a rotor 100 was set at 60 mm, and the inner diameter of a container 200 was set at 69.5 mm. The amount of purified water as a liquid LQ was adjusted so that the height of the water surface of the purified water was equal to the height of the upper surface of the rotor 100.
Evaluation 6
The example of the configuration in which the rotary device 300 causes the rotor 100 to rotate in a non-contact manner has been described in Embodiment 1 as described above. However, a configuration may be adopted in which a rotary device 300 and a rotor 100 are mechanically linked to each other. A specific example of the configuration will be described below.
As illustrated in
The linkage member 410 includes: a rotation axis body 411 that extends in a rod form in a direction intersecting an inner lower surface 221 as a to-be-pressed surface of a container 200; and an elastic body 412 that is attached to the rotor 100.
The elastic body 412 is formed of a material having flexibility enabling elastic deformation, specifically, rubber. However, the elastic body 412 may be formed of a resin different from rubber. The elastic body 412 is allowed to adhere to a portion, intersecting a virtual rotation axis VA, of the upper surface of the rotor 100, with an adhesive.
The rotation axis body 411 extends along the virtual rotation axis VA. The lower end as one end of the rotation axis body 411 is connected to the upper surface of the rotor 100 via the elastic body 412. The upper end as the other end of the rotation axis body 411 is connected to a motor 420 placed above the container 200. The rotation axis body 411 may be formed of stainless steel or another metal, or may be formed of plastic or another resin.
The rotation axis body 411 penetrates the lid 210 of the container 200. A portion, through which the rotation axis body 411 penetrates, of the lid 210 serves as a bearing for the rotation axis body 411. The bearing has airtightness and fluid-tightness that prevent a gas GS and a liquid LQ from leaking outside the container 200.
The motor 420 rotates the rotation axis body 411 about the virtual rotation axis VA. As a result, the rotary torque of the rotation axis body 411 is transferred to the rotor 100 through the elastic body 412, to cause the rotor 100 to rotate.
Moreover, the rotary device 400 causes the rotor 100 to rotate in a state in which the rotor 100 is pressed against the inner lower surface 221 using the linkage member 410. Specifically, the rotary device 400 causes the rotor 100 to rotate while applying a thrust force, with which the rotor 100 is pressed against the inner lower surface 221, to the rotor 100 through the rotation axis body 411 and the elastic body 412.
The thrust force includes the loads of the rotation axis body 411 and the elastic body 412. As a result, a larger pressing force than the load of the rotor 100 acts between the inner lower surface 221 and the back surface portion 110 of the rotor 100, like the case of Embodiment 1.
The rotary device 400 may cause the rotor 100 to rotate in a state in which the rotor 100 is pressed against not only the inner lower surface 221 but also an inner peripheral surface 222. In such a case, the rotation axis body 411 preferably has elasticity that enables bending deformation. The elastic restoring force against bending, of the rotation axis body 411, enables the rotor 100 to be pressed against the inner peripheral surface 222.
As described above, the elastic body 412 is interposed between the rotation axis body 411 and the rotor 100 in the present embodiment. Therefore, even if axis deviation occurs in which the rotation axis body 411 deviates from the position of the virtual rotation axis VA while the motor 420 rotates the rotation axis body 411, the axis deviation is absorbed by the elastic deformation of the elastic body 412. Accordingly, the rotary device 400 enables the continuous stable rotation of the rotor 100. Other actions and effects are similar to those of Embodiment 1.
A rotor 100 having an outer diameter of 60 mm, purified water as a liquid LQ, and air as a gas GS were encapsulated in a cylindrical-shaped container 200 having an inner diameter of 67 mm. The rotary device 400 illustrated in
As illustrated in
Evaluation 7
As illustrated in
In Embodiment 1 as described above, an operation of opening and closing the lid 210 on the body 220 was required whenever the liquid LQ and the gas GS are introduced into the container 200, and the gas-liquid mixed fluid FL is discharged from the container 200. A container 200 may include a configuration in which it is possible to introduce a liquid LQ and a gas GS, and to discharge a gas-liquid mixed fluid FL, without opening and closing of a lid 210. A specific example of the configuration will be described below.
As illustrated in
The discharge port OUT is placed at a position different from that of the inlet IN. Specifically, the inlet IN is placed at the position that is lower than the upper surface of a rotor 100, and the discharge port OUT is placed at the position that is higher than the upper surface of the rotor 100.
Moreover, the bubble formation apparatus 500 according to the present embodiment includes: a first opening and closing valve 231 that allows opening and closing of the inlet IN; and a second opening and closing valve 232 that allows opening and closing of the discharge port OUT. Each of the first opening and closing valve 231 and the second opening and closing valve 232 enables such opening or closing with desired timing.
In accordance with the present embodiment, the liquid LQ and the gas GS can be introduced into the container 200 through the first opening and closing valve 231 and the inlet IN, and the gas-liquid mixed fluid FL in the container 200 can be discharged to the outside through the second opening and closing valve 232 and the discharge port OUT. Therefore, the need for opening and closing the lid 210 illustrated in
Moreover, the internal pressure of the container 200 can be easily adjusted to a value that is different from atmospheric pressure. Specifically, the internal pressure of the container 200 can be at a higher value than the atmospheric pressure by inserting the liquid LQ and the gas GS with a force into the container 200 through the first opening and closing valve 231 and the inlet IN in the state of closing the second opening and closing valve 232. Moreover, the internal pressure of the container 200 can be set at a lower value than the atmospheric pressure by drawing the gas GS through the second opening and closing valve 232 and the discharge port IN in the state of closing the first opening and closing valve 231 before the gas-liquid mixed fluid FL is formed.
Moreover, treatment other than batch treatment, that is, continuous treatment of discharging the gas-liquid mixed fluid FL from the container 200 while introducing the liquid LQ and the gas GS into the container 200 is also enabled by allowing the rotor 100 to rotate in the state of opening the first opening and closing valve 231 and the second opening and closing valve 232.
The example of the case of using the single bubble formation apparatus 500 has been described in Embodiment 3 as described above. However, a plurality of bubble formation apparatuses 500 may be used in combination. A specific example thereof will be described below.
As illustrated in
A liquid LQ and a gas GS are introduced from the inlet IN of the bubble formation apparatus 500 in the bottom stage. The liquid LQ and the gas GS are moved upward with a centrifugal force caused by the rotation of a rotor 100 in each bubble formation apparatus 500 while the liquid LQ and the gas GS are mixed with each other. A gas-liquid mixed fluid FL is discharged from the discharge port OUT of the bubble formation apparatus 500 in the top stage.
In accordance with the present embodiment, the gas-liquid mixed fluid FL can be efficiently formed because the rotors 100 in the three bubble formation apparatuses 500 are allowed to concurrently rotate.
The first opening and closing valve 231 and the second opening and closing valve 232 illustrated in
As illustrated in
Therefore, two locally narrowed gaps GP2 are disposed between the inner side surface 222 and the rotor 100. Accordingly, a gas-liquid mixed fluid FL can be efficiently formed in comparison with Embodiment 1 in which only the one gap GP2 is provided.
For allowing the pressurization of the gas-liquid mixed fluid FL in each gap GP2 and the depressurization of the gas-liquid mixed fluid FL in a case in which of the gas-liquid mixed fluid FL flows out of each gap GP2 to be more reliable, the dimensions of the gaps GP2 are preferably not more than D/20, more preferably not more than D/40, and more preferably not more than D/80 on the assumption that a maximum spacing between the rotor 100 and the inner peripheral surface 222 is D. Here, the maximum spacing D refers to a longitudinal direction spacing between the rotor 100 and the inner peripheral surface 222 in the configuration illustrated in
As illustrated in
The embodiments of the present disclosure have been described above. The present disclosure is not limited thereto, and modifications described below are also possible.
However, it is preferable that at least the rotor 100, of the rotor 100 and the inner lower surface 221, has a first recess-and-projection structure 120. The formation of the first recess-and-projection structure 120 on the rotating rotor 100 enables the strong swirl flow of the liquid LQ and the gas GS in the container 200 and the efficient formation of the gas-liquid mixed fluid FL in comparison with the case of the formation of the first recess-and-projection structure 120 only on the inner lower surface 221.
A bubble formation apparatus 500 may include a temperature regulator that regulates, via a container 200, the temperatures of a liquid LQ and a gas GS in the container 200. The temperature regulator may cool the liquid LQ and the gas GS, or may heat the liquid LQ and the gas GS.
The foregoing describes some example embodiments for explanatory purposes. Although the foregoing discussion has presented specific embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the broader spirit and scope of the invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. This detailed description, therefore, is not to be taken in a limiting sense, and the scope of the invention is defined only by the included claims, along with the full range of equivalents to which such claims are entitled.
This application claims the benefit of Japanese Patent Application No. 2019-094202, filed on May 20, 2019, the entire disclosure of which is incorporated by reference herein.
The bubble formation apparatus and the bubble formation method according to the present disclosure can be used for forming a gas-liquid mixed fluid including bubbles.
Number | Date | Country | Kind |
---|---|---|---|
2019-094202 | May 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/019586 | 5/18/2020 | WO | 00 |