Children love bubbles and the bubble makers that are used to create them. At least as far as children are concerned, there is a general understanding that the more bubbles that are made and the quicker they are made, the better the bubble maker. Simple wands that produce bubbles by loading the wands with a bubble solution and blowing through the wands with air from a person's mouth are well known. Furthermore, certain types of automated bubble producing devices, such as bubble producing guns, are also known. However, these types of devices can make a terrible mess in the hands of a child (the same goes for some adults, too) and are only entertaining to a child for a brief period of time. Thus, a need exists for an apparatus for generating bubbles which is more interactive and overcomes the above-noted deficiencies.
Exemplary embodiments according to the present disclosure are directed to an apparatus for generating bubbles. The apparatus may include a wheel having an outer surface that lies on a reference cylinder. The wheel may be configured to rotate about a first rotational axis. A fan device that is configured to generate an air stream may be located within the reference cylinder. A bubble generating assembly may also be located within the reference cylinder. The bubble generating assembly may include at least one bubble generating device. In use, rotation of the wheel about the first rotational axis may be configured to load a bubble solution onto the bubble generating device of the bubble generating assembly. In addition, or as an alternative, rotation of the wheel about the first rotational axis may be configured to rotate the fan device about a second rotational axis to generate the air stream.
In one aspect, the invention may be an apparatus for generating bubbles comprising: a wheel having an outer surface that lies on a reference cylinder, the wheel configured to rotate about a first rotational axis; a fan device located within the reference cylinder, the fan device configured to generate an air stream; a bubble generating assembly located within the reference cylinder, the bubble generating assembly comprising at least one bubble generating device; and wherein rotation of the wheel about the first rotational axis is configured to at least one of: (1) load a bubble solution onto the bubble generating device of the bubble generating assembly; or (2) rotate the fan device about a second rotational axis to generate the air stream.
In another aspect, the invention may be an apparatus for generating bubbles comprising: a wheel that is rotatable about a first rotational axis; a reservoir for holding a supply of a bubble solution; a fan device operably coupled to the wheel and located within the wheel; a bubble generating assembly operably coupled to the wheel, the bubble generating assembly comprising at least one bubble generating device; and wherein rotation of the wheel about the first rotational axis is configured to: (1) rotate the fan device about a second rotational axis to generate an air stream; and (2) rotate the bubble generating assembly about the first rotational axis to load the bubble solution onto the bubble generating device and then align the bubble generating device that is loaded with the bubble solution with the air stream to generate bubbles.
In yet another aspect, the invention may be a bubble generating toy comprising: a wheel that is configured to rotate about a first rotational axis, the wheel having an inner surface that defines an interior space; a hub assembly coupled to the wheel and comprising a reservoir containing a supply of a bubble solution, the hub assembly comprising an opening that forms a passageway between the ambient environment and the reservoir; a handle assembly coupled to the hub assembly and configured to be gripped by a user so that the user can push the bubble generating toy with the wheel in contact with a ground surface, thereby causing the wheel to rotate about the first rotational axis relative to the hub assembly; a fan device located within the interior space of the wheel, wherein the fan device is operably coupled to the wheel so that rotation of the wheel about the first rotational axis causes the fan device to generate an air stream; and a bubble generating assembly comprising a plurality of bubble generating devices located within the reservoir of the hub assembly, wherein the bubble generating assembly is operably coupled to the wheel so that rotation of the wheel about the first rotational axis causes the plurality of bubble generating devices to repetitively move: (1) into contact with the bubble solution in the cavity to load the bubble generating devices with the bubble solution; and (2) into simultaneous alignment with the air stream generated by the fan device and the opening in the hub assembly to generate bubbles from the bubble solution loaded on the bubble generating devices and allow the bubbles to flow into the ambient environment.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The description of illustrative embodiments according to principles of the present invention is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description of embodiments of the invention disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Moreover, the features and benefits of the invention are illustrated by reference to the exemplified embodiments. Accordingly, the invention expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features; the scope of the invention being defined by the claims appended hereto.
Referring to
The apparatus 1000 generally comprises a wheel 100, a hub assembly 200, and a handle assembly 300 that are operably coupled together and interact with one another in a desired manner that will be described in greater detail below. The apparatus 1000 also includes an air stream generator or fan device 400, a bubble generating assembly 500, and a gear assembly 600. The apparatus 1000 may also include a kickstand 700 for supporting the apparatus 1000 in an upright position when it is not in use, as described in more detail with reference to
The wheel 100 comprises an inner surface 101 and an outer surface 102. The inner surface 101 defines or bounds an interior space 103 within which certain other components of the apparatus 100 are located. The wheel 100 has a first opening 104 that provides a passageway into the interior space 103, best seen in
The gear assembly 600 is located within the reference cylinder RC, and in the exemplified embodiment the gear assembly 600 is located within interior space 103 of the wheel 100. As used herein, the interior space 103 of the wheel 100 is defined as the empty space that is located within the bounds of the wheel 100 if the openings into the empty space (such as the first opening 104) were to be closed. Thus, to be located within the interior space 103 of the wheel 100, a component must not extend beyond the boundary of the wheel 100 in any direction. Of course, it is possible for some components to be partially located within the interior space 103 so that a portion of said component is located within the interior space 103 and another portion of said component extends to the outside of the interior space 103. In the exemplified embodiment, the gear assembly 600 is located entirely within the interior space 103 of the wheel 100.
The gear assembly 600 comprises a plurality of gears that are operably coupled to the wheel 100, the fan device 400, and the bubble generating assembly 500 so that upon rotation of the wheel 100, the fan device 400 and the bubble generating assembly 500 are also made to rotate. Thus, in an entirely mechanical way and without any power sources, motors, or the like, the fan device 400 may rotate to generate an air stream and the bubble generating assembly 500 may rotate to become loaded with a bubble solution simply by moving the apparatus 100 in such a manner so that the wheel 100 rotates about the first rotational axis R1. The gear assembly 600 may be configured to rotate the fan device 400 at a rotational velocity that is greater than the rotational velocity of the wheel 100. The gear assembly 600 may configured to rotate the bubble generating assembly 500 at a rotational velocity that is less than the rotational velocity of the fan device 400. In some embodiments, the bubble generating assembly 500 may rotate at the same rotational velocity as the wheel 100, although this is not required in all embodiments and the bubble generating assembly 500 could rotate faster or slower than the wheel 100. Moreover, the bubble generating assembly 500 may not rotate in all embodiments but may move in other, non-rotational ways, or not at all, as described in greater detail below.
The fan device 400 is also located within the reference cylinder RC and within the interior space 103 of the wheel 100. In the exemplified embodiment, the fan device 400 is located entirely within the interior space 103 of the wheel 100. This may be desirable to prevent any chance of injury by having a user's finger or other extremity contact the fan device 400 while it is rotating. However, in other embodiments it may be possible to position the fan device 400 only partially within the interior space 103 of the wheel 100. In any case, the fan device 400 is located within the reference cylinder RC defined by the outer surface 102 of the wheel 100.
In the exemplified embodiment, the fan device 400 is positioned within an air stream guide member 450 and the fan device 400 is coupled to one of the gears of the gear assembly 600. Thus, when the wheel 100 rotates about the first rotational axis R1, the fan device 400 will rotate about a second rotational axis R2 due to the coupling between: (1) the wheel 100 and the gear assembly 600; and (2) the fan device 400 and the gear assembly 600. As noted above, the fan device 400 and the air stream guide member 450 are located within the interior space 103 of the wheel 100 in the exemplified embodiment. Furthermore, the fan device 400 and the air stream guide member 450 are located within the reference cylinder RC on which the outer surface 102 of the wheel 100 lies. Stated another way, the fan device 400 is located radially inward from the outer surface 102 of the wheel 100, relative to the first rotational axis R1, such that no portion of the fan device 400 extends radially beyond the outer surface 102 of the wheel 100. Thus, even if the fan device 400 is not located directly inside of the interior space 103 of the wheel 100, the fan device 400 will still remain located within the reference cylinder RC.
The fan device 400 may take on any desired structure so long as the fan device 400 is configured to generate an air stream upon the fan device 400 being rotated about the second rotational axis R2. In the exemplified embodiment, the fan device 400 comprises a hub portion 401 and a plurality of blades 402 extending from the hub portion 401 (depicted in
The air stream guide member 450 houses the fan device 400 and guides the air stream generated by the fan device 400 towards bubble generating devices 503 of the bubble generating assembly 500. In the exemplified embodiment, the air stream guide member 450 comprises a first portion 451 that is sized and shaped to receive the fan device 400 therein and a second portion 452 that is fluidly coupled to the first portion 451. The second portion 452 has a reduced cross-sectional area relative to the first portion 451 to guide the air stream to the desired location where it can flow through the bubble generating devices 503 of the bubble generating assembly 500 to generate bubbles. As will be described in greater detail below with reference to
The wheel 100 rotates on and relative to the hub assembly 200. Specifically, the hub assembly 200 is coupled to the wheel 100 and closes the first opening 104 of the wheel 100, thereby enclosing the fan device 400, the air stream guide member 450, and the gear assembly 600 within the interior space 103 of the wheel 100. In the exemplified embodiment, the hub assembly 200 comprises a reservoir component 210 and a cover plate 250 that are coupled together. However, in other embodiments the hub assembly 200 may be a unitary structure instead of being formed from multiple parts. The hub assembly 200 defines a reservoir 201 for holding a supply of a bubble solution that is used to generate or produce bubbles during use of the apparatus 100. The reservoir 201 is formed by a floor 202 and a sidewall 203 of the hub portion 200. More specifically, the reservoir component 210 comprises the floor 202 and a first portion 203a of the sidewall 203 and the cover plate 250 comprises a second portion 203b of the sidewall 203. Thus, the reservoir 201 is formed between the cover plate 250 and the reservoir component 210.
The hub assembly 200, and more specifically the reservoir component 210, comprises a reservoir portion 211 and an attachment portion 212. The attachment portion 212 extends from the reservoir portion 211 so that a tunnel portion 213 is formed between the attachment portion 212 and the reservoir portion 211. Specifically, the attachment portion 212 forms an arch that extends from the reservoir portion 211 and thereby defines the tunnel portion 213 of the reservoir component 210. The hub assembly 200 is coupled to the wheel 100 so that the wheel 100, or a portion thereof, is always located within the tunnel portion 213. Specifically, the attachment portion 212 extends around a portion of the wheel 100 so that the wheel 100 is sandwiched or trapped between the reservoir portion 211 and the attachment portion 212 of the reservoir component 210. The tunnel portion 213 has a cross-sectional area that is greater than the cross-sectional area of the wheel 100 so that the wheel 100 is capable of freely rotating relative to the hub portion 200. As the wheel 100 rotates about the first rotational axis R1, the specific portion of the wheel 100 that is located within the tunnel portion 213 of the reservoir component 210 will change. However, a portion of the wheel 100 will always remain within the tunnel portion 213 so long as the hub assembly 200 is coupled to the wheel 100.
The reservoir portion 211 of the reservoir component 210 comprises a body portion 214 that includes the floor 202 and the first portion 203a of the sidewall 203 of the reservoir 201 and a collar portion 215 that extends from the body portion 214. The tunnel portion 213 is formed between the attachment portion 212 and the collar portion 215 of the reservoir portion 211. During use, the wheel 100 rotates along the collar portion 215 of the reservoir portion 211 of the reservoir component 210.
The hub assembly 200 comprises a second opening 216 formed into the first portion 203a of the sidewall 203 of the reservoir component 210. As will be described in greater detail below, the air stream generated by the fan device 400 is configured to flow through the second opening 216. Furthermore, the bubble generating devices 503 of the bubble generating assembly 500 are configured to become aligned with the second opening 216 so that the air stream can flow therethrough for the production of bubbles. In the exemplified embodiment, the second opening 216 may have a diameter that is less than or equal to a diameter of the bubble generating devices 503 of the bubble generating assembly 500. Thus, the opening 216 forms a discrete region through which the air stream can flow to the bubble generating devices 503.
As mentioned above, the cover plate 250 is coupled to the reservoir component 210 so that the reservoir 201 is formed between the cover plate 250 and the reservoir component 210. In the exemplified embodiment, the cover plate 250 comprises a third opening 251 that forms a passageway between the ambient environment and the reservoir 201. In the exemplified embodiment, the third opening 251 is arcuate in shape, although the invention is not to be so limited in all embodiments. Furthermore, the third opening 251, or at least a portion thereof, is aligned with the second opening 216 in the reservoir component 210 of the hub assembly 200. Thus, the air stream flows through the second opening 216 and through the bubble generating devices 503 to produce bubbles, and the bubbles are then able to flow through the third opening 250 in the cover plate 250 to the ambient environment.
The cover plate 250 also comprises a fourth opening 252 and a cap 253 for closing the fourth opening 252. The fourth opening 252 also provides a passageway from the exterior/ambient environment into the reservoir 201. The cap 253 is removably coupled to the cover plate 250 between an attached state (
In the exemplified embodiment, the bubble generating assembly 500 is located within the reservoir 201. Specifically, the bubble generating assembly 500 is located within the space formed between the reservoir component 210 and the cover plate 250 of the hub assembly 200. Furthermore, the bubble generating assembly 500 is located within the reference cylinder RC defined by the outer surface 102 of the wheel 100 or on which the outer surface 102 of the wheel 100 lies. In the exemplified embodiment, the bubble generating assembly 500 is positioned, in its entirety, within the reference cylinder RC. Thus, no portion of the bubble generating assembly 500 extends past or protrudes through the reference cylinder RC. Stated yet another way, the bubble generating assembly 500 is positioned radially inward of the outer surface 102 of the wheel 100 relative to the first rotational axis R1.
Thus, in the exemplified embodiment all of the components needed for bubble generation are located within the wheel 100 or within the reference cylinder RC that is parallel to the rotational axis R1 of the wheel 100. Thus, during use the bubbles are formed within the wheel 100 itself, and not at some other location along the apparatus 1000. The rotation of the wheel 100 causes bubble generating, and the generated bubbles are formed within and then flow out of the wheel 100.
Referring briefly to
Each of the bubble generating devices 503 is a ring-shaped structure having an inner surface 505 that defines a central aperture 506. Of course, the shape need not be circular in all embodiments. The ring structure 505 has an inner diameter D1 defined by the inner surface 505 (the inner diameter D1 being the diameter of the central aperture 506). As mentioned above, the inner diameter D1 may be equal to or greater than the diameter of the second opening 216 in the hub assembly 200. Although not shown in the exemplified embodiment, there may be ribs, notches, or the like provided on the inner surface 505 of the ring structure 505 to enhance the attachment of the bubble solution to the bubble generating devices 503 during operation of the apparatus 1000.
Referring again to
Although rotation of the bubble generating assembly 500 is the way that the bubble generating devices 503 become loaded with the bubble solution in the exemplified embodiment, the invention is not to be so limited in all embodiments. In other embodiments, loading of the bubble generating devices 503 with the bubble solution may occur by the bubble generating assembly 500 moving linearly or in another non-rotatable manner. In still other embodiments the loading of the bubble generating devices 503 with the bubble solution may occur by the bubble solution being pumped to the bubble generating devices 503. For example, rotation of the wheel 100 may activate a pump that pumps the bubble solution from the reservoir 201 to the bubble generating devices 503. Such a pump may be a peristaltic pump in some embodiments, although other types of pumps may also be used (i.e., centrifugal pumps, rotary pumps, reciprocating pumps, piston pumps, diaphragm pumps, gear pumps, or the like). In still other embodiments, a motor and power source may be included to initiate rotation of the bubble generating assembly 500 for loading the bubble generating devices 503 with the bubble solution. However, as mentioned above, in the preferred embodiment there is no power source and there is no motor.
Referring again to the exemplary embodiment, as the bubble generating assembly 500 rotates about the rotational axis R1, the bubble generating devices 503 rotate into and out of the bubble solution that is located along the bottom portion of the reservoir 201. As the bubble generating devices 503 rotate out of the bubble solution, the bubble generating devices 503 becomes visible through the third opening 251 (which may also be referred to as a window). Thus, a user can watch the bubble generating assembly 500 rotate about the third rotational axis R3 through the third opening 251 in the cover plate 250. As the bubble generating devices 503 loaded with the bubble solution pass by the third opening 251 in the cover plate 250, the air stream generated by the fan device 400 flows through the bubble generating devices 503 via the second opening 216 in the reservoir component 210 and produces bubbles that can then flow out to the ambient environment through the third opening 251.
In the exemplified embodiment, rotation of the wheel 100 about the rotational axis R1 is configured to load the bubble solution onto the bubble generating devices 503 of the bubble generating assembly 500, rotate the fan device 400 about the second rotational axis R2 to generate an air stream, or both. As a general matter and to provide a general understanding, the wheel 100 rotates about the first rotational axis R1 in use but the hub assembly 200 does not also rotate. Although it is possible for the hub assembly 200 to also rotate, it does not do so as a result of the rotation of the wheel 100. Rather, the wheel 100 rotates relative to and around the hub assembly 200 during use and the hub assembly 200 may be stationary during the rotation of the wheel 100. It should be appreciated that the hub assembly 200 may also be capable of rotating or pivoting due to a user moving the handle assembly 300, which is coupled to the hub assembly 200, as described in more detail below. However, the rotation of the wheel 100 by itself does not cause any movement of the hub portion 200.
The handle assembly 300 comprises a pair of rod members 301 coupled to and extending from the attachment portion 212 of the reservoir component 210 of the hub assembly 200. The rod members 301 extend from the hub assembly 200 to a dashboard 302. A first handle 303 and a second handle 304 extend from the dashboard 302 in generally opposite directions. The first and second handles 303, 304 may include grips or the like to enhance comfort to a user. During use of the apparatus 1000, a user such as a child will grip the first and second handles 303, 304 with his/her hands to operate/manipulate/move the apparatus 100. Specifically, the user can grip the handles 303, 304 and push forward, thereby causing the wheel 100 to rotate in a clockwise direction. The user can alternatively pull the apparatus 100 backwards, thereby causing the wheel 100 to rotate in a counter-clockwise direction. In either case, the apparatus 100 may generate bubbles as a result of rotation of the wheel 100 as described herein. A user may also be able to pivot the handle assembly 300 upwardly and downwardly which will cause the hub assembly 200 to rotate/pivot relative to the wheel 100. This may be done to accommodate users of different height (the handle assembly 300 being pivoted downwardly for a shorter user and pivoted upwardly for a taller user).
Referring to
Although the description above is related to use by moving the apparatus 1000 along the ground surface 10, it should be appreciated that simply rotating the wheel 100 by hand will achieve the same results. Moreover, as mentioned above, although in the exemplified embodiment rotation of the wheel 100 causes rotation or movement of the bubble generating assembly 500 and of the fan device 400, this is not required in all embodiments. In other embodiments rotation of the wheel 100 may cause either movement of the bubble generating assembly 500 or movement of the fan device 400. In still other embodiments, rotation of the wheel 100 may cause the bubble generating devices 503 to become loaded with the bubble solution whether or not the bubble generating assembly 500 is made to move. Thus, variations are possible and the invention should be construed in terms of the scope set forth in the claims.
Next, the operation of the apparatus 1000 will be described in greater detail. Referring to
Referring to
After the supply of the bubble solution 20 has been placed into the reservoir 201 and the cap 253 has been coupled to the cover plate 250 of the hub assembly 200, the apparatus 1000 is ready for use to generate bubbles. Thus, at this stage a user can push or pull the apparatus 1000 across the ground surface 10 as described above with reference to
Referring to
As the bubble generating assembly 500 rotates about the first rotational axis R1, the bubble generating devices 503 of the bubble generating assembly 500 move into the bottom portion of the reservoir 201 within which the supply of the bubble solution 20 is located. As the bubble generating devices 503 pass through the bubble solution 20, the bubble solution 20 adheres to the bubble generating devices 503 and forms a film of the bubble solution that extends across the central apertures 506 of the bubble generating devices 503. A bubble generating device 503 that has the bubble solution adhered thereto may be described herein as being loaded with the bubble solution.
As the bubble generating assembly 500 continues to rotate about the first rotational axis R1, the bubble generating devices 503 that are loaded with the bubble solution eventually pass by the second opening 216. As seen best in this figure, the second opening 216 has a diameter that is equal to or less than the diameter of the bubble generating devices 216 so that all of the air flowing out of the second opening 216 flows through the central aperture 506 of the bubble generating device 216 as it passes the second opening 216. As discussed above and described in greater detail below, the air stream generated by the fan device 400 flows through the second opening 216. Thus, as the air stream flows through the second opening 216 the air stream will pass through the bubble generating devices 503 that are loaded with the bubble solution, which will cause bubbles to be formed from the bubble solution. Those bubbles will then flow out through the third opening 251 in the cover plate 250.
Referring to
As the fan device 400 rotates, it generates an air stream. As shown with the arrows in
To reiterate, in the exemplified embodiment the wheel 100, the fan device 400, and the bubble generating assembly 500 are all operably coupled to the gear assembly 600. Thus, when the wheel 100 is made to rotate about the first rotational axis R1, this causes a driver gear to rotate. The driver gear is coupled to other gears in the gear assembly 600, which causes those other gears to rotate. If the other gears are larger than the driver gear, then they will rotate slower than the driver gear. If the other gears are smaller than the driver gear, then they will rotate faster than the driver gear. The fan device 400 is coupled to one of the other gears that is smaller than the driver gear so that the fan device 400 rotates faster than the wheel 100. The bubble generating assembly 500 is coupled to another one of the gears and such gear may be smaller than, the same size as, or larger than the driver gear so that the bubble generating assembly 500 may rotate slower, faster, or at the same speed as the wheel 100. At any rate, in the exemplified embodiment rotation of the wheel 100 about the first rotational axis R1 directly causes the bubble generating assembly 500 to rotate to become loaded with the bubble solution and directly causes the fan device 400 to rotate to generate the air stream. Thus, by rotating the wheel 100, the apparatus 100 can generate bubbles as long as there is a sufficient amount of the bubble solution present in the reservoir 201.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention. Thus, the spirit and scope of the invention should be construed broadly as set forth in the appended claims.