1. Field of the Invention
The present invention relates to a bubble liquid bottle, and more specifically, to a bubble liquid bottle with a pressure-relief function.
2. Description of the Prior Art
In general, a bubble liquid bottle (e.g. a soda bottle) usually has a pressure-relief function. A conventional design is to dispose a piston between an outlet channel of the bubble liquid bottle and a straw opening of the bubble liquid bottle communicated with an internal space of the bubble liquid bottle and to sleeve a ring on the piston to be located under the outlet channel. Accordingly, when an internal pressure of the bubble liquid bottle is less than a predetermined value (e.g. 30 Kg/cm2), the ring could block communication between the outlet channel and the straw opening for achieving the hermetic purpose. On the other hand, when the internal pressure of the bubble liquid bottle is greater than the predetermined value, the piston could be driven to move upward by the internal pressure of the bubble liquid bottle. Accordingly, with upward movement of the piston, the ring could move to be located above the outlet channel so as to make the straw opening communicated with the outlet channel for generating the pressure-relief effect. In such a manner, the internal pressure of the bubble liquid bottle could be reduced.
However, since the ring could be cut by a corner edge of the outlet channel when the ring moves with the piston, it may cause the problem that the ring could be cut off by the outlet channel after the bubble liquid bottle executes the pressure-relief function several times. Accordingly, the pressure-relief function of the bubble liquid bottle could lose its efficacy, so as to increase danger in use of the bubble liquid bottle.
The present invention provides a bubble liquid bottle including a bottle body, a pad, a straw, and a head. The bottle body has a mouth for containing liquid. The pad covers the mouth of the bottle body and has a communication opening. The straw is connected to the communication opening and inserted into the bottle body. The head is disposed on the mouth and covers the pad. The head includes a main body, a pressure-relief device, and a handle. The main body has an outlet channel, an inlet channel, and a communication channel. The outlet channel is communicated with the communication opening via the communication channel. The inlet channel is communicated with the communication channel, and is used for connecting to a gas filling bottle so as to make gas provided by the gas filling bottle enter the bottle body via the communication opening and then dissolve in the liquid contained in the bottle body to generate a bubble liquid. The pressure-relief device is disposed in the communication channel. The pressure-relief device includes a stopper, an elastic member, and a ring. The stopper is movably disposed in the communication channel. The elastic member is disposed in the communication channel and abuts against the stopper for providing an elastic force to drive the stopper to block communication between the outlet channel and the communication opening. The ring sleeves the stopper and is located above the outlet channel for preventing the bubble liquid or the liquid from overflowing out of the communication channel. The handle is pivoted to the main body and inserted into the stopper for moving the stopper upward along the communication channel when the handle is pressed so as to make the bubble liquid driven by an internal pressure of the bottle body to flow out of the outlet channel through the straw, the communication opening, and the communication channel. When the internal pressure of the bottle body is greater than a first predetermined value, the stopper is moved upward by the internal pressure of the bottle body to make the outlet channel communicated with the communication opening.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
More detailed description for the structural design of the head 18 is provided as follows. As shown in
In practical application, for solving the problem that bubble liquid (or liquid) is accumulated in the outlet channel 30 due to its surface tension so that the accumulated bubble liquid would flow out of the outlet channel 30 frequently even when the bubble liquid bottle 10 is not used, a guiding slot 33 is concaved from an inner wall 31 of the outlet channel 30 to break the surface tension of the bubble liquid. Furthermore, as shown in
Furthermore, for preventing a gas filling bottle from providing the bubble liquid bottle 10 with an excessive filling pressure, a check valve could be additionally disposed in the bubble liquid bottle 10. For example, as shown in
Via the aforesaid designs, when a user wants to use the bubble liquid bottle 10 to generate bubble liquid, the user just needs to open the head 18 and then takes out the pad 14 and the straw 16, so that the user could pour liquid into the bottle body 12 through the mouth 20. Subsequently, the user could assemble the bottle body 12 with the pad 14, the straw 16, and the head 18 sequentially, detach the cover 44 from the connection opening 35, and then connect a gas filling bottle to the connection opening 35. In such a manner, gas provided from the gas filling bottle could enter the bottle body 12 through the inlet channel 32, the communication opening 15, and the straw 16 and then dissolve in the liquid, so as to generate the bubble liquid. After completing the aforesaid process, the user could press the handle 28 to push the stopper 36 to overcome the elastic force of the elastic member 38, so that the stopper 36 could move upward along the communication channel 34 to make the outlet channel 30 communicated with the communication opening 15. According to the siphon principle, the bubble liquid generated in the bubble liquid bottle 10 could be driven by the internal pressure of the bottle body 12 to flow out of the outlet channel 30 through the straw 16, the communication opening 15, and the communication channel 34 for the user to drink. During the aforesaid process, if the internal pressure of the bottle body 12 is greater than a predetermined value (e.g. 30 Kg/cm2), the stopper 36 could be driven by the internal pressure of the bottle body 12 to overcome the elastic force of the elastic member 38, so that the stopper 36 could move upward along the communication channel 34 to make the outlet channel 30 communicated with the communication opening 15 for generating the pressure-relief effect. On the other hand, when the internal pressure of the bottle body 12 is less than the predetermined value after the aforesaid pressure-relief process is performed, the elastic member 38 could drive the stopper 36 to block communication between the outlet channel 30 and the communication opening 15 again for generating the hermetic effect. To be noted, since the gas provided from the gas filling bottle could enter the bottle body 12 through the inlet channel 32 and the communication opening 15 and the bubble liquid generated in the bubble liquid bottle 10 could flow out of the outlet channel 30 through the straw 16, the communication opening 15, and the communication channel 34, the bubble liquid bottle 10 of the present invention could further provide the gas-liquid separation function.
Compared with the prior art, the present invention adopts the design in which the ring located above the outlet channel would not be cut by the outlet channel and the stopper could be movably disposed in the communication channel to selectively block communication between the outlet channel and the communication opening or not, so as to efficiently solve the prior art problem that the ring could be cut off by the outlet channel during the pressure-relief function is executed. In such a manner, the bubble liquid bottle provided by the present invention could make sure that the pressure-relief device could still work well after performing the pressure-relief process many times, so as to greatly improve safety of the bubble liquid bottle in use.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
104106326 | Feb 2015 | TW | national |