This application claims the benefit of Korean Patent Application No. 10-2007-0043732, filed on May 4, 2007, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present general inventive concept relates to an apparatus to remove air bubbles in ink to be supplied to an inkjet printer head of an inkjet printer and a method of removing the air bubbles, and more particularly, to a bubble removing apparatus that can be applied to an array head of an inkjet printer that uses a line printing method, and method of removing the air bubbles using the same.
2. Description of the Related Art
Conventionally, an inkjet printer prints a desired image on paper by ejecting ink droplets onto the paper. As illustrated in
Printing methods include a shuttle method in which an image is printed on a paper P in a horizontal writing method while the printer head 10 reciprocally moves back and forth over the width of the paper P, and a line printing method in which a fixed printer head 10 is formed to cover the whole width of the paper P and an entire line of the image is simultaneously printed. Recently, the line printing method, that is, an array head is widely used due to its high printing speed.
In the inkjet printer described above, since an image is printed by ejecting ink droplets through the nozzles 11a formed in the chip 11 of the printer head 10, if the nozzles 11a are blocked by air bubbles, ink cannot be properly ejected, thus the image cannot be accurately printed. In order to avoid this problem, various methods to remove air bubbles in the ink have been proposed. A method commonly used is sucking out the air bubbles present inside the nozzles 11a together with a small amount of ink using a pump after covering a suction cap on the chips 11 of the printer head 10. This method is effective in a shuttle method head having small number of chips 11 and a relatively small area. However, in the case of an array head operating in a line printing method in which the chips 11 are widely disposed almost to cover the entire width of the paper P, it is difficult to apply the suction method. That is, in order to cover the entire width of the paper P, a lot of chips 11 having nozzles 11a must be disposed in the widthwise direction of the paper P. In this case, it is difficult to seal each of the entire chips 11 with a cap and to suck out air bubbles by applying a uniform pressure to all of the nozzles 11a. In the case of the array head, in order to address this problem, as illustrated in
As illustrated in
As illustrated in
In order to address this problem, a method of increasing the speed of fluid can be employed. That is, a large amount of ink is rapidly passed through the filter 92 so as to allow the air bubbles to penetrate through the mesh without being held in the filter unit 90. However, when the flow speed of the ink is increased, a negative pressure at the nozzles 11a of the printer head 10 is increased. Thus, external air can enter the printer head 10 through the nozzles 11a, and the external air can be a source of air bubble generation. Therefore, increasing the flow speed of ink is not a desirable solution.
As illustrated in
Therefore, to address the above problems, there is a need to develop a method of smoothly removing air bubbles embedded in ink.
To solve the above and/or other problems, the present general inventive concept provides a bubble removing apparatus for an inkjet printer that can smoothly remove air bubbles that are included in ink and held around a filter, and a method of removing the air bubbles using the bubble removing apparatus.
Additional aspects and utilities of the present general inventive concept will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the general inventive concept.
According to an aspect of the present general inventive concept, there is provided a bubble removing apparatus including an ink circulation line that connects an ink tank containing ink and a printer head, a filter unit installed on the ink circulation line to filter out foreign materials contained in the ink, and a pump capable of operating in a forward and a reverse direction to circulate the ink in the forward direction and in the reverse direction through the ink circulation line.
The ink circulation line may have a length L1 from the filter unit to the printer head greater than a length L2 from the filter unit to the ink tank where L1>L2.
The filter unit may include a housing having an ink inlet and an ink outlet and having a filter disposed between the ink inlet and the ink outlet, wherein the housing may be tapered such that the cross-sectional area of the housing gradually decreases in a direction away from the ink inlet.
The ink inlet and the ink outlet may be formed at an upper end of the housing.
According to another aspect of the present general inventive concept, there is provided an image forming apparatus including a printer head, an ink tank to contain ink, and an air bubble removing apparatus having an ink circulation line to connect the ink tank and the printer head, a filter unit installed on the ink circulation line to filter out foreign materials contained in the ink, and a pump capable of operating in a forward and a reverse direction that operates to circulate the ink in the forward direction and in the reverse direction through the ink circulation line.
According to another aspect of the present general inventive concept, there is provided a method of removing air bubbles of an inkjet printer including moving ink from an ink tank to a printer head through a filter unit on an ink circulation line by operating a pump that can be operated in a forward and a reverse direction in the forward direction; and moving ink that has been moved to the printer head back to the ink tank through the filter unit by operating the pump in the reverse direction.
The operation of the pump in the forward direction may be continued until the distance the ink has been moved in the ink circulation line after leaving the filter unit is greater than the length of the ink circulation line between the ink tank and the filter unit, and the operation of the pump in a reverse direction may be continued until the ink has been moved a distance which is substantially the same as the length of the ink circulation line from the filter unit to the ink tank and before all of the ink that passed through the filter unit when the pump was operated in the forward direction has returned to the filter unit.
The method may further include moving the ink in the ink tank to the printer head by operating the pump in the forward direction after operating the pump in the reverse direction.
According to another aspect of the present general inventive concept, there is provided a method of removing air bubbles in an inkjet printer including moving ink in a first direction in an ink circulation line from an ink tank through a filter unit and toward a printer head, and moving the ink in the ink circulation line in a second direction opposite from the first direction, wherein the ink is lived in the first direction a distance L1 the ink is moved in the second direction a distance L2 and L1 is greater than L2.
L1 may be substantially the length of the ink circulation line from the filter unit to the printer head.
L2 may be substantially the length of the ink circulation line from the filter unit to the ink tank.
Moving the ink in the first direction may cause air bubbles embedded in the ink to become trapped in the filter unit.
Moving the ink in the second direction may cause substantially all the trapped air bubbles to be moved into the ink tank.
According to another aspect of the present general inventive concept, there is provided an image forming apparatus including a printer head, an ink tank to contain ink, and an air bubble removing apparatus having an ink circulation line to connect the ink tank and the printer head, a filter unit installed on the ink circulation line and spaced apart from the printer head a first distance and spaced apart from the ink tank a second distance shorter than the first distance.
These and/or other aspects and utilities of the present general inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept by referring to the figures.
Referring to
The pump 700 is a reversible pump, that is, can be driven in a forward direction and a reverse direction. That is, the pump 700 is configured that when the pump 700 is driven in the forward direction, ink in the ink tank 500 flows towards the printer head 100 through the filter unit 900 to remove foreign objects from the ink, and when the pump 700 is driven in the reverse direction, the ink that flows towards the printer head 100 returns to the ink tank 500 through the filter unit 900. This is a method of removing air bubbles held in the filter unit 900. A detailed method of removing air bubbles will be described below. Also, assuming that a first distance from the filter unit 900 to the printer head 100 is L1 and a second distance from the filter unit 900 to the ink tank 500 is L2, the filter unit 900 may be installed to satisfy a condition where L1>L2, which will be described in more detail below.
The first distance L1 may be an actual length of the ink circulation line 600 measured from the first port formed on the printer head 100 to the first port formed on the filter unit 900, and the second distance L2 may be an actual length of the ink circulation line 600 measured from the second port formed on the filter unit 900 to the first port formed on the ink tank 500. The actual length of the ink circulation line 600 is measured for L1 and L2 regardless of whether the ink circulation line 600 is straight, curved, or otherwise disposed between the printer head 100, the filter unit 900, and the ink tank 500.
As illustrated in
An operation of the bubble removing apparatus having the above configuration will now be described.
For example, if the ink circulation line 600 is required to be newly filled due to the change of the ink tank 500 or if there is otherwise a high possibility of introducing air bubbles into the filter unit 900, the following bubble removing process is performed. Also, since ink periodically is circulated through the ink circulation line 600 during a normal printing operation, air bubbles that enter the ink tank 500 are separated due to the gravitational force. However, air bubbles extant in ink tank 500 cannot be easily removed during a normal circulation operation of ink into the ink tank 500 and there is high possibility that the air bubbles will be trapped in the filter unit 900. The bubble removing process can be manually performed, or can be automatically operated in the case that there is high possibility that air bubbles are trapped in the filter unit 900 when the ink tank 500 is replaced.
As illustrated in
For reverse operation, once the ink has filled the L1 section from the L2 section due to the forward direction of operation, as illustrated in
Again in the forward direction, as illustrated in
According to the present general inventive concept, since normal operation begins when the air bubbles B trapped in the filter unit 900 are completely removed to ink tank 500, a pressure loss during printing operation can be prevented.
As described above, through the use of a bubble removing apparatus of an inkjet printer according to the present general inventive concept, air bubbles trapped in a filter unit can be readily removed. Accordingly, an effective working surface of a filter can be sufficiently ensured, and thus, pressure loss during normal printing operation can be prevented, thereby an ink supply failure or a degradation of chips of a printer head can be prevented.
Although a few embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2007-43732 | May 2007 | KR | national |