Buckle assembly having single release for multiple belt connectors

Abstract
A buckle assembly for a vehicle restraint system where the buckle assembly is adapted to receive a plurality of belt connectors, with the belt connectors being simultaneously released upon moving at least one handle to a release position.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to buckle assemblies for use in seat belt or restraint systems that are designed to protect vehicle occupants during a crash event or to hold cargo in place. More particularly, the present invention is directed to a buckle assembly adapted to receive a plurality of independent belt connectors for engagement with a respective plurality of latch mechanisms where the plurality of latch mechanisms may be moved to a release position simultaneously.


2. Discussion of the Prior Art


It has become common place for aircraft, automobiles and other vehicles to have occupant restraint systems. Frequently, there are safety related laws or standards that require certain types of driver and passenger safety systems, depending on the type of vehicle in which the system is to be installed. The systems often utilize seat belts of the well known lap and shoulder belt varieties. Indeed, lap and shoulder belts are commonly combined to provide enhanced ability to restrain movement of an individual.


Typically the lap and shoulder belts are joined to each other or are coupled in some way to the same connector. This permits a single connector to engage a single buckle, facilitating release of the combined belt system via one release handle. However, it often can be awkward for the seat occupant to bring the belt assembly into position to engage the single connector with the buckle. Moreover, in the event of a need to quickly exit the seat and vehicle, such as in the event of an accident or other emergency, occupants can easily get entangled or caught in the combined lap and shoulder belt systems. Also, coupling the lap and shoulder belts to a single connector can impede repair or replacement of a portion of the belt system, such as an individual damaged lap or shoulder belt portion of the system.


Accordingly, it is desirable to provide a seat belt system with a single buckle that can be releasably connected to a plurality of belts, such as both a lap and a shoulder belt. It also is desirable for the plurality of belts to be separately connectable to the buckle, so as to reduce the likelihood of becoming entangled in the belts when releasing them and trying to quickly exit a vehicle, and to permit replacement of separate respective portions of the belt system. In addition, it would be highly advantageous to have the buckle include a handle by which one can affect release of the plurality of separately connected belts to facilitate rapid egress from the vehicle.


Also, in the event that one wishes to combine a lap and shoulder belt into one belt connector and further include a shoulder belt or other multiple belt arrangement into at least a second belt connector, it would be advantageous that such combination could be received in one buckle assembly and that the belt connectors could be released simultaneously by grasping and moving one handle.


Further it is desirable to provide a buckle assembly for a cargo hold down or restraint system that permits rapid release of multiple belt connectors with movement of a single handle.


The present invention addresses shortcomings in buckle assemblies of prior art occupant restraint systems, while providing the above mentioned desirable features.


SUMMARY OF THE INVENTION

The purpose and advantages of the invention will be set forth in and apparent from the description and drawings that follow, as well as will be learned by practice of the invention.


The present invention is generally embodied in a buckle assembly of a vehicle occupant or cargo restraint system. The buckle assembly may be used in any type of vehicle, whether it be an aircraft, spacecraft, truck, automobile, boat or other craft for use in the air, on land or in water. The buckle assembly also may be used with any vehicle occupant, whether the occupant is a vehicle operator or passenger, or for cargo.


Given the advantageous single release capability of the buckle assembly of the present invention, while suitable for use in all types of vehicles, it is ideally suitable for use in vehicles that may require rapid egress, such as aircraft, spacecraft, emergency or military vehicles. Moreover, the simple, reliable and durable structure shown in the lift latch mechanisms of the preferred embodiments, and that may be employed via the present invention, makes it suitable for use in locations where vehicles may encounter adverse environmental factors, such as airborne sand or dirt.


In a first aspect of the invention, the buckle assembly has a buckle base, a plurality of latches coupled to the buckle base with each latch adapted to engage one of a plurality of respective independent belt connectors, and at least one handle coupled to the buckle base and adapted to have at least latching and release positions wherein the plurality of connectors are simultaneously released when the at least one handle is in the release position.


In another aspect of the invention, the buckle base can be configured to have at least three parallel upstanding flanges which are adapted to receive at least two belt connectors, with each belt connector being received between a respective pair of upstanding flanges in a side-by-side orientation within the same plane.


In a further aspect of the invention, the buckle base can be configured to have at least a pair of parallel upstanding flanges which are adapted to receive at least two belt connectors, with each belt connector being received between the pair of upstanding flanges, and the belt connectors being received in a stacked orientation, in spaced, parallel planes.


Thus, the present invention presents a desirable alternative to buckle assemblies used in present vehicle occupant and cargo restraint systems. The invention permits a plurality of belts, such as lap and shoulder belts, or combinations thereof, or cargo restraint to be independently latched into a single buckle assembly, yet simultaneously released by lifting one release handle.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and provided for purposes of explanation only, and are not restrictive of the invention, as claimed. Further features and objects of the present invention will become more fully apparent in the following description of the preferred embodiments and from the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

In describing the preferred embodiments, reference is made to the accompanying drawing figures wherein like parts have like reference numerals, and wherein:



FIG. 1 is a perspective view of a buckle assembly having a pair of latches arranged next to each other, in the same plane, for engaging a respective pair of belt connectors consistent with the present invention.



FIG. 2 is a sectioned side view of the buckle assembly of FIG. 1 with the handle in a latching position.



FIG. 3 is a sectioned side view of the buckle assembly of FIG. 1 with the handle in a release position.



FIG. 4 is an exploded perspective view of the buckle assembly of FIG. 1.



FIG. 5 is a perspective view of an alternative buckle assembly consistent with the invention but having a handle having at least two portions and staggered pivot axles.



FIG. 6 is a perspective view of an alternative buckle assembly having a pair of latches arranged in spaced, parallel planes for engaging a respective pair of belt connectors in stacked relation to each other consistent with the present invention.



FIG. 7 is a side view of the alternative buckle assembly of FIG. 6 with a pair of belt connectors inserted and shown in cross-section.



FIG. 8 is a partially exploded, perspective view of the alternative buckle assembly of FIG. 6 with the assembly separated into upper and lower sections and with the resilient members removed to better illustrate the configurations of the respective latches.



FIG. 9 is a sectioned side view of the alternative buckle assembly of FIG. 6 with the handle in a latching position.



FIG. 10 is a sectioned side view of the alternative buckle assembly of FIG. 6 with the handle in a release position.



FIG. 11 is a frontal end view of the alternative buckle assembly of FIG. 6 but having alternative pivot axle structures.





It should be understood that the drawings are not to scale. While considerable mechanical details of a buckle assembly, including other plan and section views of the particular components, have been omitted, such details are considered well within the comprehension of those skilled in the art in light of the present disclosure. It also should be understood that the present invention is not limited to the preferred embodiments illustrated.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring generally to FIGS. 1-11 and upon review of this description, it will be appreciated that the buckle assembly of the present invention generally may be embodied within numerous configurations.


Referring to a preferred embodiment in FIGS. 1-4, a buckle assembly 1 has a buckle base 2 having a bottom portion 3 and parallel spaced upstanding flanges 4. Buckle base 2 may be coupled to an occupant or cargo restraint system by direct attachment to a safety belt, cable or other suitable element not shown, and may include belt tensioning or other commonly desirable features. In the preferred embodiment in FIGS. 1-4, upstanding center flange 5 of buckle base 2 is a separate piece having tabs 6 that engage slotted apertures 7 in bottom portion 3. Flanges 4, 5 further have aligned respective apertures 8 therethrough. Aligned apertures 8 receive a pivot axle 10, which in the preferred embodiment is fixed in position by press fit, or by including a knurled engagement with at least one of the flange apertures 8 and use of cap ends 11. Cap ends 11 may be integrally formed as part of pivot axle 10, as shown with cap end 11a, or may be a separate piece attached to the end of pivot axle 10, such as by press fitting, threaded engagement or the like, as shown with cap end 11b which engages a slotted pivot axle end. It will be appreciated that in the preferred embodiment, pivot axle 10 extending through aperture 8 in separate center flange 5 also serves to lock center flange 5 into position. Alternatively, pivot axle 10 could be configured to be two separate pivot axles, each of which would engage an aperture 8 of an outer flange 4 of buckle base 2, such as by press fit, and they could either each engage aperture 8 in center flange 5, or they otherwise could be connected to each other with one passing through aperture 8 in center flange 5. It also will be appreciated that buckle base 2 could be formed, such as by molding, to include an integral center flange 5, or buckle base 2 could be constructed in a manner in which pivot axle 10 would not pass through an aperture in a center flange.


In the preferred embodiment of FIGS. 1-4, the plurality of latches is a pair of latches 14, 16, pivotally mounted on a pivot axle 10, and spaced side-by-side for receipt of respective belt connectors 14a, 16a, in the same plane. It is to be understood that, in this context, belt is used to refer to belts, straps, other webbing materials, ropes, cables, and the like. Buckle assembly 1 further includes handle 20 having downward projecting parallel flanges 22. Flanges 22 have aligned apertures 24 for pivotal mounting of handle 20 on pivot axle 10. Handle 20 is biased toward a latching position L by at least one resilient member or biasing element. In the first preferred embodiment, the resilient member is in the form of a single coil spring 26 which engages the handle at a first end 26a and engages a latch 16 at a second end 26b. While shown as a spring 26, it will be understood that other forms of resilient members, or multiple resilient members could be used. Latches 14, 16 each have a pawl 34, 36 adapted to engage respective forward wall 34a, 36a of apertures 38a, 40a in belt connectors 14a, 16a when handle 20 is in the latching position L. To establish and maintain the engagement of pawls 34, 36, each latch 14, 16 has a second resilient member 42 to bias the respective pawl toward the latched position. In this preferred embodiment, springs 42 engage the pivot axle 10 at a first end (not shown) and engage the latch at a second end 42a, although alternative configurations may be used.


To release the belt connectors 14a, 16a, handle 20 is pivoted to an angled release position R. When handle 20 is pivoted about pivot axle 10 toward the release position R, release edges 44, 46 on handle 20 engage respective release abutments 54, 56 on latches 14, 16, and cause latches 14, 16 to join handle 20 in pivoting about pivot axle 10 to a release position wherein pawls 34, 36 are lifted out of engagement with respective forward walls 34a, 36a of apertures 38a, 40a in belt connectors 14a, 16a. In this release position R, belt connectors 14a, 16a are simultaneously released and permitted to be withdrawn from buckle assembly 1. It will be understood that alternative configurations for causing movement of the latches upon movement of the handle may be utilized.


The alternative preferred embodiment shown in FIG. 5 has a handle 20′ having separate portions 20a, 20b. This embodiment permits individual release of a selected belt connector, such as a shoulder belt connector, for instance, by moving handle portion 20a to a release position, while leaving handle portion 20b in a latching position. The multi-piece handle 20′ also permits selective simultaneous release of all belt connectors by moving handle portion 20b to a release position. This is affected by tab 21 which extends to the side of handle portion 20b. Tab 21 is configured to have a portion positioned behind handle portion 20a, to cause handle portion 20a to be moved along with handle portion 20b when handle portion 20b is moved.


The embodiment in FIG. 5 is shown without resilient members to bias the handles to the latching position for ease of illustration of the pivot axles. This embodiment illustrates that each latch 14, 16 may be pivotally coupled to the buckle base by a separate pivot axle 10a, 10b respectively. The separate pivot axles 10a, 10b, can but need not share a common axis if a handle 20 is configured to have two portions.


Referring now to an alternative preferred embodiment in FIGS. 6-10, a buckle assembly 102 has a buckle base 104 which, as with the prior embodiments, may be constructed in various ways and is intended to be coupled to further components in an occupant or cargo restraint system. In this embodiment, buckle base 104 has a bottom portion 105, a parallel spaced upstanding flanges 106 and a center portion 107 extending between upstanding flanges 106. Center portion 107 has a notch 107a along each side at its rear edge. Flanges 106 further have a pair of aligned respective apertures 108, 109 therethrough. Aligned apertures 108 receive a pivot axle 110, while aligned apertures 109 receive a pivot axle 111, parallel to pivot axle 110. As with pivot axle 10 in the first preferred embodiment, pivot axles 110, 111 are fixed in position in engagement with apertures 108, 109 by press fitting, knurled engagement or other suitable means, and may include comparable capped ends 112 integrally formed as part of pivot axles 110, 111 or attached thereto.


In the alternative embodiment shown in FIGS. 6-10, the plurality of latches is a pair of latches 114, 116, pivotally mounted on the parallel pivot axles 110, 111, in parallel planes for receipt of respective belt connectors 114a, 116a in stacked relation to each other. Buckle assembly 102 further includes handle 120 having downward projecting parallel flanges 122 which include downward projecting tabs 123. Flanges 122 have aligned apertures 124 for pivotal mounting of handle 120 on pivot axle 110. Handle 120 is biased toward a latching position L by a resilient member which may be similar to that in the other preferred embodiments, but is not shown. Latches 114, 116 each have a pawl 134, 136 adapted to engage respective forward wall 134a, 136a of apertures 138a, 140a in belt connectors 114a, 116a when handle 120 is in the latching position L′. To establish and maintain the engagement of pawls 134, 136, each latch 114, 116 may have a resilient member similar to that in the other preferred embodiments, but not shown, to bias the respective pawl toward the latched position.


To release the belt connectors 114a, 116a, handle 120 is pivoted to an angled release position R′. When handle 120 is pivoted about pivot axle 110 toward the release position R′, the upper edges 144 of the upper latch 114 engage the underside of handle 120 and cause latch 114 to pivot about pivot axle 110 along with handle 120. Because of this configuration which utilizes a relatively low lash, direct drive of upper latch 114 by the underside of handle 120, it will be appreciated that optionally handle 120 and upper latch 114 may be biased toward the latching position by use of a single resilient member that tends to bias handle 120 or latch 114 toward the latching position. Referring now to the interaction with lower latch 116, when handle 120 is moved to a release position, the downward projecting tabs 123 at the rear end of handle 120 engage a rearward projecting tab 154 of the lower latch 116, simultaneously causing latch 116 to move to a release position. In the release position, pawls 134, 136 are lifted out of engagement with respective forward walls 134a, 136a of apertures 138a, 140a in belt connectors 114a, 116a. Thus, in this release position R′, belt connectors 114a, 116a are simultaneously released and permitted to be withdrawn from buckle assembly 102.


Now turning to the further preferred embodiment in FIG. 11. This embodiment illustrates additional alternative ways of configuring the pivot axles. For instance, on the left side, a C-shaped portion 160 provides a pair of spaced stub shafts that serve as pivot axles 110a, 111a for the left side of buckle assembly 102. Pivot axles 110a, 111a of C-shaped portion 160 may be press fit into the apertures in upstanding flanges 106, or held in place by other suitable fasteners or means of attachment. For instance, on the right side, a further C-shaped portion 162 provides a corresponding respective pair of spaced stub shafts that serve as pivot axles 110b, 111b for the right side of buckle assembly 102, and which will be inserted through the apertures in upstanding flange 106. In this case, pivot axles 110b, 111b of C-shaped portion 162 also have grooves 164 to receive clips 166 to fasten C-shaped portion 162 to upstanding flange 106. Thus, FIG. 11 presents further examples of alternative ways of providing the pivot-axles. Similarly, it will be appreciated that individual stub shaft portions (not shown) also may be used, such as via press fit, to provide the pivot axles.


In the preferred embodiments, the latches and pivot axles are preferably made of steel, aluminum, alloys, plastics or other suitable rigid materials. To reduce weight, the base plates and handles preferably are made of aluminum; but could be made of steel, alloys, plastics or other suitable rigid materials. The resilient members may be made of spring steel, such as in a coil spring, or any other suitable material and configuration to perform the biasing function of a resilient member.


It will be appreciated that a buckle assembly in accordance with the present invention may be provided in various configurations that will receive and latch at least two independent belt connectors, but still provide for simultaneous release of all belt connectors upon moving a handle to a release position. Any variety of suitable materials of construction, configurations, shapes and sizes for the components and methods of connecting the components may be utilized to meet the particular needs and requirements of an end user. It will be apparent to those skilled in the art that various modifications can be made in the design and construction of such a buckle assembly without departing from the scope or spirit of the present invention, and that the claims are not limited to the preferred embodiments illustrated.

Claims
  • 1. A buckle assembly for attachment to a plurality of belt connectors, the buckle assembly comprising: a buckle base having first and second spaced apart upstanding flanges;a first axle extending parallel to the buckle base between the first and second upstanding flanges, wherein the first axle is aligned with a first axis;a second axle extending parallel to the buckle base between the first and second upstanding flanges, wherein the second axle is aligned with a second axis, offset from the first axis;a latch system mounted between the first and second flanges, wherein the latch system includes— a first engagement feature operably coupled to the first axle between the first and second upstanding flanges;a second engagement feature operably coupled to the second axle between the first and second upstanding flanges, wherein the first engagement feature is movable to a first engaging position in which the first engagement feature engages a first belt connector, and wherein the second engagement feature is movable to a second engaging position in which the second engagement feature engages a second belt connector;a first biasing element urging the first engagement feature toward the first engaging position; anda second biasing element urging the second engagement feature toward the second engaging position;an operating handle pivotally mounted to the buckle base, wherein the operating handle is movable toward a release position to disengage the first engagement feature from the first belt connector and the second engagement feature from the second belt connector.
  • 2. The buckle assembly of claim 1 wherein the second axle extends between the first and second upstanding flanges in stacked relation to the first axle.
  • 3. The buckle assembly of claim 1 wherein the first engagement feature includes a first latch pawl, and wherein the second engagement feature includes a second latch pawl that is independently movable relative to the first latch pawl.
  • 4. A buckle assembly for attachment to a plurality of belt connectors, the buckle assembly comprising: a buckle base having first and second spaced apart upstanding flanges;a first axle extending between the first and second upstanding flanges, wherein the first axle is aligned with a first axis;a second axle extending between the first and second upstanding flanges, wherein the second axle is aligned with a second axis, offset from the first axis;a latch system mounted between the first and second flanges, wherein the latch system includes— a first engagement feature operably coupled to the first axle between the first and second upstanding flanges;a second engagement feature operably coupled to the second axle between the first and second upstanding flanges, wherein the first engagement feature is movable to a first engaging position in which the first engagement feature engages a first edge portion of a first aperture in a first belt connector, and wherein the second engagement feature is movable to a second engaging position in which the second engagement feature engages a second edge portion of a second aperture in a second belt connector;a first biasing element urging the first engagement feature toward the first engaging position; anda second biasing element urging the second engagement feature toward the second engaging position; andan operating handle pivotally mounted to the buckle base, wherein the operating handle is movable toward a release position to disengage the first engagement feature from the first belt connector and the second engagement feature from the second belt connector.
  • 5. The buckle assembly of claim 4, further comprising a third upstanding flange positioned between the first and second upstanding flanges, wherein the first axle has a first end portion supported by the first upstanding flange and a second end portion supported by the third upstanding flange, and wherein the second axle has a third end portion supported by the second upstanding flange and a fourth end portion supported by the third upstanding flange.
  • 6. The buckle assembly of claim 4, further comprising a third upstanding flange positioned between the first and second upstanding flanges, wherein the first axle has a first end portion that extends through a first axle aperture in the first upstanding flange and a second end portion that extends through a second axle aperture in the third upstanding flange, and wherein the second axle has a third end portion that extends through a third axle aperture in the second upstanding flange and a fourth end portion that extends through a fourth axle aperture in the third upstanding flange.
  • 7. The buckle assembly of claim 4 wherein the second axle extends between the first and second upstanding flanges in stacked relation to the first axle.
  • 8. The buckle assembly of claim 4 wherein the first engagement feature includes a first latch pawl, and wherein the second engagement feature includes a second latch pawl that is independently movable relative to the first latch pawl.
  • 9. A buckle assembly for attachment to a plurality of belt connectors, the buckle assembly comprising: a buckle base;a first latching mechanism mounted to the buckle base, wherein the first latching mechanism includes a first engagement feature movable to a first engaging position to engage a first edge portion of a first aperture in a first belt connector;a second latching mechanism spaced apart from the first latching mechanism and mounted to the buckle base in stacked relation to the first latching mechanism, wherein the second latching mechanism includes a second engagement feature independently movable relative to the first engagement feature to a second engaging position to engage a second edge portion of a second aperture in a second belt connector;an operating handle pivotally coupled to the buckle base, wherein the operating handle is movable toward a release position to disengage the first engagement feature from the first belt connector and the second engagement feature from the second belt connector.
  • 10. The buckle assembly of claim 9, further comprising a first axle and a second axle, wherein the first engagement feature is pivotally coupled to the first axle and the second engagement feature is pivotally coupled to the second axle.
  • 11. The buckle assembly of claim 9 wherein the first engagement feature includes a first latch pawl movable to the first engaging position to engage the first edge portion of the first aperture in the first belt connector, and wherein the second engagement feature includes a second latch pawl movable to the second engaging position to engage the second edge portion of the second aperture in the second belt connector.
  • 12. The buckle assembly of claim 9 wherein the first latching mechanism further includes a first biasing portion urging the first engagement feature toward the first engaging position, and wherein the second latching mechanism further includes a second biasing portion urging the second engagement feature toward the second engaging position.
  • 13. The buckle assembly of claim 9, further comprising first and second pivot axles mounted to the buckle base, wherein the first pivot axle is aligned with a first axis and the second pivot axle is aligned with a second axis, offset from the first axis, and wherein the operating handle is pivotally mounted to one of the first and second pivot axles.
  • 14. The buckle assembly of claim 9 wherein the first latching mechanism includes a first latch pawl and the second latching mechanism includes a second latch pawl, and wherein the buckle assembly further comprises: a first torsion spring urging the first latch pawl into engagement with the first edge portion of the first aperture in the first belt connector; anda second torsion spring urging the second latch pawl into engagement with the second edge portion of the second aperture in the second belt connector.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/563,294, filed Sep. 21, 2009, which is a continuation of U.S. patent application Ser. No. 11/844,709, filed Aug. 24, 2007, now U.S. Pat. No. 7,614,124, which is a continuation of U.S. patent application Ser. No. 11/148,914, filed Jun. 9, 2005, now U.S. Pat. No. 7,263,750, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (454)
Number Name Date Kind
906045 Martin Dec 1908 A
1079080 Ward Nov 1913 A
1438898 Carpmill Dec 1922 A
2538641 Elsner Jan 1951 A
2549841 Morrow et al. Apr 1951 A
2639852 Sanders et al. May 1953 A
2641813 Loxham Jun 1953 A
2710999 Davis Jun 1955 A
2763451 Moran Sep 1956 A
2803864 Bishaf Aug 1957 A
2846745 Lathrop Aug 1958 A
2869200 Phillips et al. Jan 1959 A
2876516 Cummings Mar 1959 A
2892232 Quilter Jun 1959 A
2893088 Harper et al. Jul 1959 A
2899732 Cushman Aug 1959 A
2901794 Prete, Jr. Sep 1959 A
2938254 Gaylord May 1960 A
2964815 Sereno Dec 1960 A
2965942 Carter Dec 1960 A
3029487 Asai Apr 1962 A
3084411 Lindblad Apr 1963 A
3091010 Davis May 1963 A
3104440 Davis Sep 1963 A
3110071 Higuchi Nov 1963 A
3118208 Wexler Jan 1964 A
3137907 Unai Jun 1964 A
D198566 Holmberg et al. Jul 1964 S
3142103 Lindblad Jul 1964 A
3145442 Brown Aug 1964 A
3165805 Lower Jan 1965 A
3179992 Murphy Apr 1965 A
3183568 Gaylord May 1965 A
3189963 Alden et al. Jun 1965 A
3218685 Atumi Nov 1965 A
3226791 Carter Jan 1966 A
3233941 Selzer Feb 1966 A
3256576 Klove, Jr. et al. Jun 1966 A
3262169 Jantzen Jul 1966 A
3287062 Board Nov 1966 A
3289261 Davis Dec 1966 A
3293713 Gaylord Dec 1966 A
3312502 Coe Apr 1967 A
3369842 Adams et al. Feb 1968 A
3414947 Holmberg et al. Dec 1968 A
3451720 Makinen Jun 1969 A
3491414 Stoffel Jan 1970 A
3505711 Carter Apr 1970 A
3523342 Spires Aug 1970 A
D218589 Lohr et al. Sep 1970 S
3564672 McIntyre Feb 1971 A
3576056 Barcus Apr 1971 A
3591900 Brown Jul 1971 A
3605207 Glauser et al. Sep 1971 A
3605210 Lohr Sep 1971 A
3631571 Stoffel Jan 1972 A
3639948 Sherman Feb 1972 A
3644967 Romanzi, Jr. et al. Feb 1972 A
3648333 Stoffel Mar 1972 A
3658281 Gaylord Apr 1972 A
3673645 Burleigh et al. Jul 1972 A
3678542 Prete, Jr. Jul 1972 A
3695696 Lohr et al. Oct 1972 A
3714684 Gley Feb 1973 A
3744102 Gaylord Jul 1973 A
3744103 Gaylord Jul 1973 A
3760464 Higuchi Sep 1973 A
3766611 Gaylord Oct 1973 A
3766612 Hattori Oct 1973 A
3775813 Higuchi Dec 1973 A
3825979 Jakob Jul 1974 A
3856351 Garvey Dec 1974 A
3879810 Prete, Jr. et al. Apr 1975 A
3898715 Balder Aug 1975 A
3935618 Fohl et al. Feb 1976 A
3964138 Gaylord Jun 1976 A
3986234 Frost et al. Oct 1976 A
3995885 Plesniarski Dec 1976 A
4018399 Rex Apr 1977 A
4051743 Gaylord Oct 1977 A
4095313 Pijay et al. Jun 1978 A
D248618 Anthony Jul 1978 S
4100657 Minolla Jul 1978 A
4118833 Knox et al. Oct 1978 A
4128924 Happel et al. Dec 1978 A
4136422 Ivanov et al. Jan 1979 A
4148224 Craig Apr 1979 A
4181832 Ueda et al. Jan 1980 A
4184234 Anthony et al. Jan 1980 A
4185363 David Jan 1980 A
4196500 Happel et al. Apr 1980 A
4220294 DiPaola Sep 1980 A
4228567 Ikesue et al. Oct 1980 A
4239260 Hollowell Dec 1980 A
4253623 Steger et al. Mar 1981 A
4262396 Koike et al. Apr 1981 A
4273301 Frankila Jun 1981 A
4302049 Simpson Nov 1981 A
4317263 Fohl et al. Mar 1982 A
4321734 Gandelman Mar 1982 A
4334341 Krautz et al. Jun 1982 A
4336636 Ishiguro et al. Jun 1982 A
4366604 Anthony et al. Jan 1983 A
4385425 Tanaka et al. May 1983 A
4408374 Fohl et al. Oct 1983 A
4419874 Brentini et al. Dec 1983 A
4425688 Anthony et al. Jan 1984 A
4457052 Hauber Jul 1984 A
4487454 Biller Dec 1984 A
4491343 Fohl Jan 1985 A
4525901 Krauss Jul 1985 A
4545097 Wier et al. Oct 1985 A
4549769 Pilarski Oct 1985 A
4555831 Otzen et al. Dec 1985 A
4569535 Haglund et al. Feb 1986 A
D285383 Anthony Sep 1986 S
4617705 Anthony et al. Oct 1986 A
4637102 Teder et al. Jan 1987 A
4638533 Gloomis et al. Jan 1987 A
4640550 Hakansson et al. Feb 1987 A
4644618 Holmberg et al. Feb 1987 A
4646400 Tanaka et al. Mar 1987 A
4648483 Skyba Mar 1987 A
4650214 Higbee Mar 1987 A
4651946 Anthony et al. Mar 1987 A
4656700 Tanaka et al. Apr 1987 A
4660889 Anthony et al. Apr 1987 A
4679852 Anthony et al. Jul 1987 A
4682791 Ernst et al. Jul 1987 A
4685176 Burnside et al. Aug 1987 A
4692970 Anthony et al. Sep 1987 A
4711003 Gelula Dec 1987 A
4716630 Skyba Jan 1988 A
4720148 Anthony et al. Jan 1988 A
4726625 Bougher Feb 1988 A
4727628 Rudholm et al. Mar 1988 A
4733444 Tanaka et al. Mar 1988 A
4738485 Rumpf Apr 1988 A
4741574 Weightman et al. May 1988 A
4742604 Mazelsky May 1988 A
D296678 Lortz et al. Jul 1988 S
4757579 Nishino et al. Jul 1988 A
4758048 Shuman Jul 1988 A
4766654 Sugimoto Aug 1988 A
4790597 Bauer et al. Dec 1988 A
4809409 Van Riesen Mar 1989 A
4832410 Bougher May 1989 A
4843688 Ikeda et al. Jul 1989 A
4854608 Barral et al. Aug 1989 A
D303232 Lortz et al. Sep 1989 S
4876770 Bougher Oct 1989 A
4876772 Anthony et al. Oct 1989 A
4884652 Vollmer Dec 1989 A
4911377 Lortz et al. Mar 1990 A
4919484 Bougher et al. Apr 1990 A
4934030 Spinosa et al. Jun 1990 A
4940254 Ueno et al. Jul 1990 A
4942649 Anthony et al. Jul 1990 A
4995640 Saito et al. Feb 1991 A
5015010 Homeier et al. May 1991 A
5023981 Anthony et al. Jun 1991 A
5026093 Nishikaji Jun 1991 A
5029369 Oberhardt et al. Jul 1991 A
5031962 Lee Jul 1991 A
5038446 Anthony et al. Aug 1991 A
5039169 Bougher et al. Aug 1991 A
5054815 Gavagan Oct 1991 A
5067212 Ellis Nov 1991 A
5074011 Carlson Dec 1991 A
5074588 Huspen Dec 1991 A
5084946 Lee Feb 1992 A
5088160 Warrick Feb 1992 A
5088163 Van Riesen Feb 1992 A
5097572 Warrick Mar 1992 A
D327455 Blair Jun 1992 S
5119532 Tanaka Jun 1992 A
5123147 Blair Jun 1992 A
5142748 Anthony et al. Sep 1992 A
5159732 Burke et al. Nov 1992 A
5160186 Lee Nov 1992 A
5170539 Lundstedt et al. Dec 1992 A
D332433 Bougher Jan 1993 S
5176402 Coulon Jan 1993 A
5182837 Anthony et al. Feb 1993 A
5219206 Anthony et al. Jun 1993 A
5219207 Anthony et al. Jun 1993 A
5220713 Lane, Jr. et al. Jun 1993 A
D338119 Merrick Aug 1993 S
5234181 Schroth et al. Aug 1993 A
5236220 Mills Aug 1993 A
5248187 Harrison Sep 1993 A
D342465 Anthony et al. Dec 1993 S
5267377 Gillis et al. Dec 1993 A
5269051 McFallis Dec 1993 A
5282672 Borlinghaus Feb 1994 A
5282706 Anthony et al. Feb 1994 A
5283933 Wiseman et al. Feb 1994 A
5286057 Forster Feb 1994 A
5286090 Templin et al. Feb 1994 A
5292181 Dybro Mar 1994 A
5308148 Peterson et al. May 1994 A
5311653 Merrick May 1994 A
5350195 Brown Sep 1994 A
5350196 Atkins Sep 1994 A
5369855 Tokugawa Dec 1994 A
5370333 Lortz et al. Dec 1994 A
5375879 Williams et al. Dec 1994 A
5380066 Wiseman et al. Jan 1995 A
5392535 Van Noy et al. Feb 1995 A
5403038 McFalls Apr 1995 A
5406681 Olson et al. Apr 1995 A
5411292 Collins et al. May 1995 A
D359710 Chinni et al. Jun 1995 S
5432987 Schroth et al. Jul 1995 A
5443302 Dybro Aug 1995 A
5451094 Templin et al. Sep 1995 A
D364124 Lortz et al. Nov 1995 S
5471714 Olson et al. Dec 1995 A
5495646 Scrutchfield et al. Mar 1996 A
5497956 Crook Mar 1996 A
5511856 Merrick et al. Apr 1996 A
5516199 Crook et al. May 1996 A
5526556 Czank Jun 1996 A
5560565 Merrick et al. Oct 1996 A
5561891 Hsieh et al. Oct 1996 A
5566431 Haglund Oct 1996 A
5568676 Freeman Oct 1996 A
5570933 Rouhana et al. Nov 1996 A
5584107 Koyanagi et al. Dec 1996 A
5588189 Gorman et al. Dec 1996 A
5606783 Gillis et al. Mar 1997 A
5622327 Heath et al. Apr 1997 A
5628548 Lacoste May 1997 A
5634664 Seki et al. Jun 1997 A
5669572 Crook Sep 1997 A
5695243 Anthony et al. Dec 1997 A
5699594 Czank et al. Dec 1997 A
D389426 Merrick et al. Jan 1998 S
5722689 Chen et al. Mar 1998 A
5743597 Jessup et al. Apr 1998 A
5765774 Maekawa et al. Jun 1998 A
5774947 Anscher Jul 1998 A
5779319 Merrick Jul 1998 A
D397063 Woellert et al. Aug 1998 S
5788281 Yanagi et al. Aug 1998 A
5788282 Lewis Aug 1998 A
5794878 Carpenter et al. Aug 1998 A
5813097 Woellert et al. Sep 1998 A
5839793 Merrick et al. Nov 1998 A
5857247 Warrick et al. Jan 1999 A
5873599 Bauer et al. Feb 1999 A
5873635 Merrick Feb 1999 A
5882084 Verellen et al. Mar 1999 A
D407667 Homeier Apr 1999 S
5908223 Miller Jun 1999 A
5915630 Step Jun 1999 A
5928300 Rogers et al. Jul 1999 A
5934760 Schroth et al. Aug 1999 A
D416827 Anthony et al. Nov 1999 S
5979026 Anthony Nov 1999 A
5979982 Nakagawa Nov 1999 A
5996192 Haines et al. Dec 1999 A
6003899 Chaney Dec 1999 A
6017087 Anthony et al. Jan 2000 A
6056320 Khalifa et al. May 2000 A
6065367 Schroth et al. May 2000 A
6065777 Merrick May 2000 A
6123388 Vits et al. Sep 2000 A
6182783 Bayley Feb 2001 B1
RE37123 Templin et al. Apr 2001 E
6230370 Nelsen May 2001 B1
6260884 Bittner et al. Jul 2001 B1
6295700 Plzak Oct 2001 B1
6309024 Busch Oct 2001 B1
6312015 Merrick et al. Nov 2001 B1
6315232 Merrick Nov 2001 B1
6322140 Jessup et al. Nov 2001 B1
6325412 Pan Dec 2001 B1
6328379 Merrick et al. Dec 2001 B1
6343841 Gregg et al. Feb 2002 B1
6357790 Swann et al. Mar 2002 B1
6363591 Bell et al. Apr 2002 B1
6367882 Van Druff et al. Apr 2002 B1
6374168 Fuji Apr 2002 B1
6400145 Chamings et al. Jun 2002 B1
6412863 Merrick et al. Jul 2002 B1
6418596 Haas et al. Jul 2002 B2
6425632 Anthony et al. Jul 2002 B1
6442807 Adkisson Sep 2002 B1
6446272 Lee et al. Sep 2002 B1
6463638 Pontaoe Oct 2002 B1
6467849 Deptolla et al. Oct 2002 B1
6485057 Midorikawa et al. Nov 2002 B1
6485098 Vits et al. Nov 2002 B1
6508515 Vits et al. Jan 2003 B2
6513208 Sack et al. Feb 2003 B1
6520392 Thibodeau et al. Feb 2003 B2
6543101 Sack et al. Apr 2003 B2
6547273 Grace et al. Apr 2003 B2
6560825 Maciejczyk May 2003 B2
6566869 Chamings et al. May 2003 B2
6588077 Katsuyama et al. Jul 2003 B2
6592149 Sessoms Jul 2003 B2
6606770 Badrenas Buscart Aug 2003 B1
6619753 Takayama Sep 2003 B2
6631926 Merrick et al. Oct 2003 B2
6665912 Turner et al. Dec 2003 B2
6694577 Di Perrero Feb 2004 B2
6711790 Pontaoe Mar 2004 B2
6719233 Specht et al. Apr 2004 B2
6719326 Schroth et al. Apr 2004 B2
6722601 Kohlndorfer et al. Apr 2004 B2
6722697 Krauss et al. Apr 2004 B2
6733041 Arnold et al. May 2004 B2
6739541 Palliser et al. May 2004 B2
6749150 Kohlndorfer et al. Jun 2004 B2
6763557 Steiff et al. Jul 2004 B2
6769157 Meal Aug 2004 B1
6786294 Specht Sep 2004 B2
6786510 Roychoudhury et al. Sep 2004 B2
6786511 Heckmayr et al. Sep 2004 B2
6796007 Anscher Sep 2004 B1
6802470 Smithson et al. Oct 2004 B2
6820310 Woodard et al. Nov 2004 B2
6834822 Koning et al. Dec 2004 B2
6836754 Cooper Dec 2004 B2
6840544 Prentkowski Jan 2005 B2
6851160 Carver Feb 2005 B2
6857326 Specht et al. Feb 2005 B2
6860671 Schulz Mar 2005 B2
6863235 Koning et al. Mar 2005 B2
6863236 Kempf et al. Mar 2005 B2
6868585 Anthony et al. Mar 2005 B2
6868591 Dingman et al. Mar 2005 B2
6871876 Xu Mar 2005 B2
6874819 O'Neill Apr 2005 B2
6882914 Gioutsos et al. Apr 2005 B2
6886889 Vits et al. May 2005 B2
6913288 Schulz et al. Jul 2005 B2
6916045 Clancy, III et al. Jul 2005 B2
6921136 Bell et al. Jul 2005 B2
6922875 Sato et al. Aug 2005 B2
6935701 Arnold et al. Aug 2005 B1
6951350 Heidorn et al. Oct 2005 B2
6957789 Bowman et al. Oct 2005 B2
6959946 Desmarais et al. Nov 2005 B2
6962394 Anthony et al. Nov 2005 B2
6966518 Kohlndorfer et al. Nov 2005 B2
6969022 Bell et al. Nov 2005 B2
6969122 Sachs et al. Nov 2005 B2
6993436 Specht et al. Jan 2006 B2
6997474 Midorikawa et al. Feb 2006 B2
6997479 Desmarais et al. Feb 2006 B2
7010836 Acton et al. Mar 2006 B2
D519406 Merrill et al. Apr 2006 S
7025297 Bell et al. Apr 2006 B2
7029067 Vits et al. Apr 2006 B2
7040696 Vits et al. May 2006 B2
7077475 Boyle Jul 2006 B2
7080856 Desmarais et al. Jul 2006 B2
7100991 Schroth et al. Sep 2006 B2
7108114 Mori et al. Sep 2006 B2
7118133 Bell et al. Oct 2006 B2
7131667 Bell et al. Nov 2006 B2
7137648 Schulz et al. Nov 2006 B2
7137650 Bell et al. Nov 2006 B2
7140571 Hishon et al. Nov 2006 B2
7144085 Vits et al. Dec 2006 B2
7147251 Bell et al. Dec 2006 B2
D535214 Kolasa Jan 2007 S
7159285 Karlsson Jan 2007 B2
7180258 Specht et al. Feb 2007 B2
7182370 Arnold Feb 2007 B2
7210707 Schroth et al. May 2007 B2
7216827 Tanaka et al. May 2007 B2
7219929 Bell et al. May 2007 B2
7232154 Desmarais et al. Jun 2007 B2
7237741 Specht et al. Jul 2007 B2
7240405 Webber et al. Jul 2007 B2
7240924 Kohlndorfer et al. Jul 2007 B2
7246854 Dingman et al. Jul 2007 B2
7263750 Keene et al. Sep 2007 B2
7278684 Boyle Oct 2007 B2
D555358 King Nov 2007 S
7300013 Morgan et al. Nov 2007 B2
7341216 Heckmayr et al. Mar 2008 B2
7360287 Cerruti et al. Apr 2008 B2
7367590 Koning et al. May 2008 B2
7377464 Morgan May 2008 B2
7384014 Ver Hoven et al. Jun 2008 B2
7395585 Longley et al. Jul 2008 B2
7404239 Walton et al. Jul 2008 B1
7407193 Yamaguchi et al. Aug 2008 B2
D578931 Toltzman Oct 2008 S
7452003 Bell Nov 2008 B2
7455256 Morgan Nov 2008 B2
7461866 Desmarais et al. Dec 2008 B2
7475840 Heckmayr Jan 2009 B2
7477139 Cuevas Jan 2009 B1
7481399 Nohren et al. Jan 2009 B2
7506413 Dingman et al. Mar 2009 B2
7516808 Tanaka Apr 2009 B2
7520036 Baldwin et al. Apr 2009 B1
D592543 Kolasa May 2009 S
7533902 Arnold et al. May 2009 B2
7547043 Kokeguchi et al. Jun 2009 B2
7614124 Keene et al. Nov 2009 B2
7631830 Boelstler et al. Dec 2009 B2
7669794 Boelstler et al. Mar 2010 B2
7698791 Pezza Apr 2010 B2
7722081 Van Druff et al. May 2010 B2
7739019 Robert et al. Jun 2010 B2
7775557 Bostrom et al. Aug 2010 B2
RE41790 Stanley Oct 2010 E
7861341 Ayette et al. Jan 2011 B2
7862124 Dingman Jan 2011 B2
D632611 Buscart Feb 2011 S
D637518 Chen May 2011 S
8096027 Jung et al. Jan 2012 B2
8240012 Walega et al. Aug 2012 B2
20020089163 Bedewi et al. Jul 2002 A1
20020135175 Schroth Sep 2002 A1
20030015863 Brown et al. Jan 2003 A1
20030027917 Namiki et al. Feb 2003 A1
20040217583 Wang Nov 2004 A1
20040251367 Suzuki et al. Dec 2004 A1
20050017567 Sachs et al. Jan 2005 A1
20050073187 Frank et al. Apr 2005 A1
20050107932 Bolz et al. May 2005 A1
20050127660 Liu Jun 2005 A1
20050284977 Specht et al. Dec 2005 A1
20060075609 Dingman et al. Apr 2006 A1
20060097095 Boast May 2006 A1
20060237573 Boelstler et al. Oct 2006 A1
20060243070 Van Druff et al. Nov 2006 A1
20060267394 David et al. Nov 2006 A1
20060277727 Keene et al. Dec 2006 A1
20070080528 Itoga et al. Apr 2007 A1
20070241549 Boelstler et al. Oct 2007 A1
20070257480 Van Druff et al. Nov 2007 A1
20080018156 Hammarskjold et al. Jan 2008 A1
20080054615 Coultrup Mar 2008 A1
20080093833 Odate Apr 2008 A1
20080100051 Bell et al. May 2008 A1
20080100122 Bell et al. May 2008 A1
20080172847 Keene et al. Jul 2008 A1
20090069983 Humbert Mar 2009 A1
20090183348 Walton et al. Jul 2009 A1
20090241305 Buckingham Oct 2009 A1
20100115737 Foubert May 2010 A1
20100125983 Keene et al. May 2010 A1
20100146749 Jung Jun 2010 A1
20110010901 Holler Jan 2011 A1
20120292893 Baca et al. Nov 2012 A1
Foreign Referenced Citations (34)
Number Date Country
2091526 Oct 1993 CA
2038505 Nov 2000 CA
2112960 Dec 2002 CA
2450744 Jan 2008 CA
4019402 Dec 1991 DE
4421688 Dec 1995 DE
69019765 Feb 1996 DE
26564 Apr 1981 EP
0363062 Apr 1990 EP
0380442 Aug 1990 EP
0401455 Dec 1990 EP
0404730 Dec 1990 EP
0449772 Oct 1991 EP
0519296 Dec 1992 EP
0561274 Sep 1993 EP
0608564 Aug 1994 EP
1153789 Nov 2001 EP
1447021 Aug 2004 EP
1298012 Jul 1961 FR
888436 Jan 1962 GB
1047761 Nov 1966 GB
1582973 Jan 1981 GB
2055952 Mar 1981 GB
2356890 Jun 2001 GB
52055120 May 1977 JP
63141852 Jun 1988 JP
63247150 Oct 1988 JP
10119611 May 1998 JP
2001138858 May 2001 JP
WO8603386 Jun 1986 WO
WO03009717 Feb 2003 WO
WO2004004507 Jan 2004 WO
WO2006041859 Apr 2006 WO
WO2010027853 Mar 2010 WO
Non-Patent Literature Citations (9)
Entry
U.S. Appl. No. 29/297,210, filed Nov. 6, 2007, Toltzman.
U.S. Appl. No. 12/569,522, filed Sep. 29,2009, Humbert.
European Search Report & Written Opinion; European Patent Application No. EP 06772609.1; Applicant: AmSafe, Inc.; Date of Mailing: Apr. 21, 2011, 7 pages.
Final Office Action; U.S. Appl. No. 12/563,294, Mailing Date Sep. 30, 2011, 8 pages.
Global Seating Systems LLC, “CCOPS,” Cobra: Soldier Survival System, 1 page, undated. [Color Copy].
International Search Report and Written Opinion, PCT Application No. PCT/US2006/22367; Applicant: AmSafe, Inc.; Date of Mailing: Sep. 18, 2006, 6 pages.
Non-Final Office Action; U.S. Appl. No. 12/563,294, Mailing Date Apr. 11, 2011, 9 pages.
Schroth Safety Products, Installation Instructions, HMMWV Gunner restraint, Single Lower with Swivel—M1151, Revision: A, Jul. 28, 2006, pp. 1-10.
Toltzman, Randall and Shaul, Rich; “Buckle Assembly”; U.S. Appl. No. 29/297,210, filed Nov. 6, 2007.
Related Publications (1)
Number Date Country
20130019439 A1 Jan 2013 US
Continuations (3)
Number Date Country
Parent 12563294 Sep 2009 US
Child 13492584 US
Parent 11844709 Aug 2007 US
Child 12563294 US
Parent 11148914 Jun 2005 US
Child 11844709 US