This application claims priority from UK patent application no 1314629.5 filed on 15 Aug. 2013, entitled “A Buckle Assembly with Resetting Arrangement,” and naming Graham Hartnell and Stephen Ruff as inventors, the disclosure of which is incorporated herein, in its entirety, by reference.
The present invention relates to a buckle assembly. The present invention also relates to harness arrangement comprising the buckle assembly of the invention and an ejection seat having the harness arrangement.
It is known to secure two webbing straps together by the use of a buckle assembly. The buckle assembly is secured to one webbing strap and a lug is attached to the other webbing strap. The lug is securely but releasably retained in a socket of the buckle assembly. The lug is released from the socket arrangement in response to a user manually operating a button, switch, lever or other user operated input.
Such buckle assemblies are widely used in harness arrangements in aircraft. Attachment of a pilot to the ejection seat of the aircraft is normally by means of a conventional multi-point harness having a central connection block to which numerous webbing straps are connected. The multi-point connection block, incorporating a buckle assembly, is usually provided on a strap (the “negative-G strap”) connected to or adjacent the seat squab of the ejection seat. The strap passes between the legs of the pilot for connection of shoulder and lap webbing straps to the connection block.
It is necessary for a buckle assembly to afford quick manual attachment and detachment of the socket arrangement and lug(s) in normal use. At the same time, operation of the buckle assembly must be reliable and ensure secure retention of the lug(s) in the socket arrangement when desired. Any inadvertent, undesired, release of the lug from the socket arrangement must be prevented.
When a pilot ejects from an aircraft, the pilot will remain secured to the ejection seat for a predetermined period of time, at least until the parachute has fully deployed. In some situations, the pilot may remain attached to the seat substantially until the pilot lands. Particularly when landing on water, it is preferable for the pilot to remain close to the ejection seat, since it houses numerous survival provisions, such as a life-raft, flares, food etc.
Nevertheless, when landing in water, it is essential that the pilot is separated from the ejection seat as soon as possible, so that the pilot can swim free from the ejection seat.
It is known to provide a water-activated buckle assembly which, upon the detection of water, automatically releases the buckle assembly and therefore the pilot from the seat. Known systems comprise a water sensor located remote from the buckle assembly and operably connected by an actuator to the buckle assembly. In a known arrangement, a buckle assembly comprises a sacrificial pyrotechnic squib which, in response to a trigger condition from a water sensor, initiates to release the plurality of lugs from the buckle assembly. Such an arrangement is only a single use item since, once activated, the assembly will no longer be operable to receive and retain a lug in the assembly.
It has been known for such water-activated buckle assemblies to be inadvertently triggered. For example, a pilot may accidentally spill liquid over the water sensor. Alternatively, one of the components of the assembly (e.g. sensor, squib) may fail, causing triggering of the assembly. This causes the buckle assembly to automatically release the harness arrangement, with no provision to re-secure the lugs to the connection block. When a conventional water-sensing buckle assembly has been triggered, there is no way to reattach the lugs to the buckle assembly. The spent trigger system (i.e. the squib) must first be replaced before normal operation of the buckle assembly can be restored. This is clearly undesirable, particularly if the inadvertent release occurs during flight. There is a need for a reliable buckle assembly which seeks to address at least one of these problems.
Accordingly, a first embodiment of the present invention provides a buckle assembly comprising (1) at least one socket to receive and retain at least one lug therein, (2) an emergency release arrangement operable to release the at least one lug from the socket in response to a predetermined trigger signal, and (3) a manually operable resetting arrangement, operable to retain the at least one lug re-inserted into the at least one socket, following the triggering of the emergency release arrangement.
Preferably, the resetting arrangement is configured to retain the at least one lug in the socket by rotating a first component of the buckle assembly relative to a second component of the buckle assembly.
Advantageously, the emergency release arrangement is configured to release the at least one lug from the socket by translating a first component of the buckle assembly relative to a second component of the buckle assembly.
Conveniently, the buckle assembly comprises a base plate and a face plate, wherein the face plate is translatable with respect to the base plate and the at least one socket is defined in the base plate.
Preferably, the buckle assembly further comprises at least one socket plunger associated with the face plate, the socket plunger biased towards the base plate, and receivable in use in an aperture of the at least one lug, to retain the lug in the socket.
Advantageously, the buckle assembly is configured to release the lug from the socket when the base plate and face plate are spaced apart by at least a predetermined distance.
Conveniently, the emergency release arrangement comprises a protractor cartridge.
Preferably, the protractor cartridge is a squib.
Advantageously, the resetting arrangement comprises a reset plate which, when rotated with respect to the base plate, causes the face plate to move towards the base plate.
Conveniently, the buckle assembly further comprises a resetting carriage associated with the reset plate, an outer surface of a cylindrical portion of the resetting carriage being threaded and received within a threaded bore of the face plate.
Preferably, the emergency release arrangement comprises a protractor cartridge mounted in a cartridge holder, and a part of the cartridge holder is cylindrical and received within the cylindrical portion of the resetting carriage.
Advantageously, the buckle assembly further comprises a shuttle member translatable within the cylindrical portion of the cartridge holder and arranged in abutment with the operational end of the protractor cartridge.
Conveniently, upon initiation of the protractor cartridge, the shuttle member is caused to translate away from the cartridge and to engage with the resetting carriage, the force imparted by the protractor cartridge causing the resetting carriage and face plate to translate away from the base plate by at least a predetermined amount.
Preferably, the buckle assembly is configured such that, before triggering of the cartridge, the shuttle member is positioned to prevent the resetting carriage from translating with respect to the cartridge holder.
Advantageously, the cylindrical portion of the cartridge holder comprises at least one aperture to retain at least one locking ball; and the shuttle member varies in profile along its length.
Conveniently, the buckle assembly further comprises a water sensor associated with the emergency release arrangement.
Preferably, the water sensor comprises a plurality of water sensing modules, the water sensor configured to send a signal to the emergency release arrangement only when at least two of the water sensor modules indicates the detection of water.
Advantageously, the water sensor is housed within a chamber, the chamber having a plurality of apertures for the ingress of water.
Conveniently, each of the water sensing modules protrudes through an opening into fluid communication with the chamber, and each of the water sensing modules is surrounded by a lip.
Preferably, the buckle assembly further includes at least one associated lug.
The present invention further provides a harness arrangement comprising at least one buckle as described herein.
The present invention further provides an ejection seat having a harness arrangement as described herein.
The present invention further provides an aircraft including an ejection seat as a described herein.
The foregoing features of embodiments will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
General Arrangement of the Buckle Assembly
With reference to
A benefit of the buckle assembly 1 embodying the present invention is that, if the emergency release arrangement 4 is inadvertently triggered, it is possible for a pilot to subsequently re-insert and retain the lugs in the socket 2 in a manual resetting operation. Accordingly, the pilot can at least temporarily re-secure the lugs 3 to the socket 2 as a temporary measure, until the emergency release arrangement 4 can be replaced serviced.
Preferably, the manually operable resetting arrangement 5 is configured to operate by rotating a component of the resetting arrangement 5 relative to another component of the buckle assembly 1. Accordingly, after the emergency release arrangement 4 has been triggered, a pilot can reset the buckle assembly 1 by rotating the component relative to the buckle assembly 1, so that the buckle assembly 1 is then able once more to receive and retain at least one lug 3 within the socket 2.
Socket Arrangement
The buckle assembly 1 comprises a base plate 6 and a face plate 7. The face plate 7 is moveable with respect to the base plate 6. At least one socket 2 is defined in the base plate. Two sockets 2 are shown in cross section in
At least one socket plunger 8 (see
The lug 3 is released from the socket 2 by translating the socket plunger 8 out of engagement with the aperture 9 of the lug 3.
The socket plunger 8 is translated with respect to the socket 2 by either a manual release arrangement or an emergency release arrangement, both described below.
Manual Release Arrangement
In normal use, the lug 3 may be released from the socket 2 by a manual release arrangement operable by the pilot. The manual release arrangement causes the socket plungers 8 to translate with respect to the socket 2 of the base plate 6, against their bias, so as to allow removal of the lugs 3. Preferably, the manual release arrangement is operated by rotating the face plate 7 with respect to the base plate 6 in either direction. A plunger plate 10 is positioned for engagement with an upper lip 50 of the socket plungers 8. The plunger plate is constrained to linear translation with respect to the base plate 6. The plunger plate 10 is connected to the face plate 7 by levers 11.
With reference to
Accordingly, rotation of the face plate 7 with respect to the base plate 6 allows for the release of the lug 3 from the socket 2. When the manual rotational force on the face plate 7 is released, a face plate biasing spring 12 causes the face plate 7 to return to its original rotational position with respect to the base plate 6. At the same time, the biasing of the socket plungers 8 cause them to linearly translate with respect to the socket 2.
So as to prevent inadvertent manual release of the lug 3 from the socket 2, rotation of the face plate 7 with respect to the base plate 6 may be prevented unless at least one user operated button is operated. (See
Emergency Release Arrangement and Manually Operable Resetting Arrangement
In addition to a manual release arrangement for releasing the lug 3 from the socket 2, the present invention further provides an emergency release arrangement.
Generally speaking, the emergency release arrangement 4 of a buckle assembly 1 embodying the present invention causes the face plate 7 to translate away from the base plate 6 in response to a predetermined trigger signal—i.e. from a water sensor (41) containing water sensing modules (42), a plurality of apertures (43) for the ingress of water and a lip (44) around each water sensing module (42). In turn, this causes the socket plungers 8 to translate with respect to the socket to release the lug from the socket. The operation of the emergency release arrangement 4 and the manually operable resetting arrangement 5 will now be described.
The base plate 6 is a generally circular armature, for attachment to a strap and/or part of a harness arrangement 45 (
A protractor cartridge 15 is mounted, in use, in the base portion 18 of the cartridge holder 17. Initiation of the cartridge 15 causes the expansion of the material of the cartridge 15. With reference to
The resetting arrangement 5 comprises a reset plate 20 and a resetting carriage 21. The resetting carriage 21 comprises a substantially circular disc portion 22 and a cylindrical portion 23 extending from one side of the disc portion 22. The circular disc portion 22 comprises a central aperture. When the buckle assembly 1 is assembled, the cylindrical portion 19 of the cartridge holder 17 is received within the cylindrical portion 23 of the resetting carriage 21. The profile of the cylindrical portion 23 of the resetting carriage 21 varies along its length.
At least part of the outer surface 46 of the cylindrical portion 23 of the resetting carriage 21 is threaded, and screwed into a corresponding threaded aperture 24 of the face plate 7. During assembly, the resetting carriage 21 is screwed into the aperture 24 of the face plate 7 until the circular disc portion 22 abuts the front surface of the face plate 7.
The disc portion 22 of the resetting carriage 21 is covered by a reset plate 25. As shown in
The buckle assembly 1 further comprises a shuttle member 27 translatable within the cylindrical portion 19 of the cartridge holder 17. One end 27A of the shuttle member 27 is arranged in abutment with the operational end of the protractor cartridge 15.
The shuttle member 27 varies in thickness along its length. As shown in
The third radially enlarged portion 30C of the shuttle member 27 contacts the end of the locking pin 26 and urges it into engagement with an inner ramped section 32 of the reset plate 32 (see
Upon initiation of the protractor cartridge 15, the expansion of the material of the cartridge causes the shuttle member 27 to translate towards the reset plate 25, away from the cartridge holder 17. With reference to
The shuttle member 27 translates until the end 27B of the shuttle member 27, remote from the cartridge 15, abuts the inside surface of the reset plate 25 (see
As the reset plate 25 is caused to move away from the reset disc portion 22 of the resetting carriage 21, the second radially enlarged portion 30B of the shuttle member 27 engages against the aperture of the circular disc portion 22 (
Further translation of the shuttle member 27 (to the right) thus urges the resetting carriage 21 away from the base plate 6. By virtue of the resetting carriage 21 being retained within a threaded aperture 24 of the face plate 7, the face plate 7 is also caused to translate away from the base plate 6. See
In the arrangement shown in
Resetting Arrangement
The operation of the manually operable resetting arrangement will now be described, with reference to
As the reset plate 25 and resetting carriage 21 are together rotated with respect to the face plate 7, the threaded interface between the cylindrical portion 23 of the resetting carriage 21 and the aperture 24 of the face plate 7 causes the face plate 7 to translate away from the resetting carriage 21. At the same time, the resetting carriage 21 translates away from the base plate 6. The shuttle member 27 is also caused to translate along with the resetting carriage 21, since it is held in place by the locking pins 26 which are urged by the reset disc into a reduced thickness section of the shuttle member 27. As the resetting carriage 21 continues to be rotated with respect to the face plate 7, the shuttle member 27 translates with respect to the cylindrical portion 19 of the cartridge holder 17 until the first radially enlarged section 30A end of the shuttle member 27 urges the locking balls 29 through the apertures 28 in the cylindrical portion 19 of the cartridge holder 17. In turn, these locking balls 29 impart against an enlarged end section of the cylindrical portion 23 of the resetting carriage 21, preventing further translation of the resetting carriage 21 away from the base plate 6. In the arrangement shown in
When the resetting carriage 21 has been rotated with respect to the face plate 7 to its maximum extent, the socket plungers 8 (not shown) once again extend across the socket 2 allowing the user to retain a lug within the socket.
Accordingly, a benefit of the present invention is that, if the emergency release arrangement is inadvertently activated, a user may still subsequently retain at least one lug within the socket by manually resetting the buckle assembly. After landing, the buckle assembly can be serviced and the emergency release arrangement reset.
A further benefit of the present invention is that, by virtue of the protrusion of the resetting carriage from the face plate, it is immediately visually apparent that the buckle assembly has been triggered and manually reset. This serves as a visual indicator that the buckle assembly must not be used until the emergency release arrangement has been restored.
When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
The embodiments of the invention described above are intended to be merely exemplary; numerous variations and modifications will be apparent to those skilled in the art. All such variations and modifications are intended to be within the scope of the present invention as defined in any appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1314629.5 | Aug 2013 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
1899656 | Wigley | Feb 1933 | A |
2504125 | Hight | Apr 1950 | A |
2668997 | Irvin | Feb 1954 | A |
2892232 | Cuthbert et al. | Jun 1959 | A |
2899732 | Cushman | Aug 1959 | A |
3132399 | Cooper | May 1964 | A |
3277545 | Martin | Oct 1966 | A |
3617019 | Femia | Nov 1971 | A |
3639948 | Sherman | Feb 1972 | A |
3747167 | Pravaz | Jul 1973 | A |
3825979 | Jakob | Jul 1974 | A |
3952381 | Barbe | Apr 1976 | A |
3967797 | Drew | Jul 1976 | A |
RE29342 | Barbe | Aug 1977 | E |
4228568 | Frost | Oct 1980 | A |
4589172 | Hoenigs | May 1986 | A |
4610058 | Stemmildt | Sep 1986 | A |
4656700 | Tanaka | Apr 1987 | A |
4742604 | Mazelsky | May 1988 | A |
4813111 | Nohren | Mar 1989 | A |
4815177 | MacKew | Mar 1989 | A |
4903382 | Held | Feb 1990 | A |
5036660 | Aronne | Aug 1991 | A |
5857246 | Becnel | Jan 1999 | A |
7159284 | Gastaldi | Jan 2007 | B2 |
7384014 | Ver Hoven | Jun 2008 | B2 |
7716794 | Wu | May 2010 | B2 |
7963614 | Kranz | Jun 2011 | B2 |
8468660 | Holler | Jun 2013 | B2 |
8631545 | Ford | Jan 2014 | B2 |
8888127 | Santana-Gallego | Nov 2014 | B2 |
9072346 | Greaves | Jul 2015 | B2 |
9084452 | Blackman | Jul 2015 | B2 |
9119445 | Humbert | Sep 2015 | B2 |
9277788 | Humbert | Mar 2016 | B2 |
20100125983 | Keene | May 2010 | A1 |
20100281660 | Lee | Nov 2010 | A1 |
20110010901 | Holler | Jan 2011 | A1 |
20120174353 | Lee | Jul 2012 | A1 |
20130212845 | Ford | Aug 2013 | A1 |
20150208792 | Bergkvist | Jul 2015 | A1 |
20160339869 | Schmidt | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
32 34 486 | Sep 1983 | DE |
2 151 693 | Jul 1985 | GB |
WO 8201529 | May 1982 | WO |
Entry |
---|
United Kingdom Intellectual Property Office, Search Report—Application No. GB1314629.5, dated Feb. 18, 2014 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20150047155 A1 | Feb 2015 | US |